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Electrical conduction processes in aluminum: Defects and phonons
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It is well known that disorder (structural or thermal) induces electronic scattering processes which determine
the resistivity of crystalline metals. In this paper, we employ a variant of the Kubo-Greenwood formula to
compute the space-projected conductivity and study the atomistic details of conduction in models of crystalline
aluminum within the framework of density functional theory. We consider point and extended lattice defects and
show with spatial detail how the defect locally affects conduction. We simulate thermal disorder and determine
how the disorder affects the conductivity in real space and reveal the spatial nature of thermal fluctuations.
Furthermore, we show that well below the Debye temperature, a classical thermal molecular dynamics simulation
reproduces the form of temperature-dependent conductivity predicted by the Bloch-Grüneisen formula.
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I. INTRODUCTION

Transport theory in metals is one of the classic stories of
science. The Boltzmann transport equation [1,2] estimates the
dynamics of the electronic distribution function, taking into
account external fields and the collision processes. With the
development of quantum mechanics, Sommerfeld introduced
Fermi-Dirac statistics and a free-electron model [3]. Houston
[4] and Frenkel and Mirolubow [5] discussed scattering of
electron waves by crystals, but it was Bloch who established
the basis of the modern theory of metallic electrons [6]. Quan-
tum mechanical theories of transport in liquid metals appeared
in the 1950s [7] and were a substantial development over
earlier models.

From a different point of view—the statistical mechanics
of linear response—Kubo explored the linear response of a
material to an external AC electric field [8]. The resulting ex-
pression for the electrical conductivity, further approximated
within a single-particle picture of the electronic structure, is
known as the Kubo-Greenwood formula (KGF). This was
later generalized as the “fluctuation-dissipation theorem” that
mathematically connects the dissipative process with fluctua-
tions for systems near equilibrium [9]. The KGF has become a
widely used method to compute electronic conductivity. It has
been implemented in the Green’s function formalism [10,11]
and density functional theory (DFT) [12–19] with great suc-
cess. An ab initio estimate of the temperature dependence
of conductivity on amorphous solids has also been obtained
from KGF [15]. Where metals are concerned, the KGF has
been employed to compute the conductivity of highly disor-
dered or liquid metals [17,18]. To our knowledge, no attempt
has been made to compute the temperature dependence of
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the conductivity in a low-temperature range that represents a
weakly disordered phase of the metal. It is known from exper-
iments that the resistivity of simple metals closely follow the
Bloch-Grüneisen T 5 law at low temperatures [20], analogous
to Debye’s form for the specific heat.

DFT methods have been used to study lattice defects in
metals. There have been studies ranging from the structural
stability of defects [21] to charge transport [22]. However,
a full atomistic grasp of conduction with defects in metals
is lacking. It is of interest to know quantitatively how the
conduction is spatially affected by such defects. Recently,
we devised a method to exploit the KGF in a different way
to determine the conduction-active elements of materials ex-
ploiting a spatial decomposition of the KGF. We dubbed this
the “space-projected conductivity” (SPC). We have applied
the method to several problems in mixed semiconducting
systems (for example, conducting bridge computer memory
materials [23–26]). These computations identify conduction
pathways in heterogeneous materials and provide useful in-
formation for problems of material design. We also reported
conduction fluctuations in liquid silicon [27]. Here, we extend
this type of analysis to fcc aluminum, with defects and thermal
disorder. In one of our earlier works, we observed a uni-
form spatial distribution of conduction in crystalline Al [27].
We also showed that the spectrum of conduction eigenvalues
for this metal possesses an extended tail that is absent in
semiconductor/insulating systems.

In this paper, we study two different processes that affect
the conductivity of metals. First, we discuss thermal disorder
using a quantum molecular dynamics approach at a chosen
temperature and use the KGF method to compute the con-
ductivity. We show that the KGF correctly predicts the form
of the temperature dependence of the conductivity. Second,
we discuss the role of lattice defects in the conduction of the
metal. We show that reduction of conduction due to defects
is substantial and produce estimates for the spatial range of
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“conduction damage” induced by these defects. For this, we
consider two different types of defects, namely, vacancies and
the grain boundaries (GBs). For vacancies, we keep our anal-
ysis simple by considering a single vacancy and a divacancy
in a single crystal. For GBs, we consider two symmetric tilt
grain boundary models and visualize conduction pathways in
the vicinity of these GBs. To study the conduction near the
vacancies and GBs, we utilize our recently proposed method
to project conductivity onto real space [23].

The rest of this paper is organized as follows. In Sec. II, we
discuss the details of the models and computational method-
ologies employed in this paper. In Sec. III, we provide the
results for the electronic conduction processes for different
kinds of defects present in aluminum. We summarize our
findings in Sec. IV.

II. MODELS AND METHODS

A. Simulation of thermal disorder

To estimate the effects of thermal disorder on conduction,
we created a 4 × 4 × 4 structure from the fcc primitive cell
to form a supercell with 256 atoms. To model thermal disor-
der, we simply average the KGF over a constant-temperature
MD simulation. For any MD snapshot, the thermal disorder
induces inhomogeneous conduction in space, as gauged by
the SPC. Such a procedure is obviously suspect for T < �D,
with �D being the Debye temperature, and must fail as T → 0
as the classical dynamics freeze-out. How this crude approx-
imation is reasonable to a temperature lower than �D in the
sense that the resistivity given by experiment or the Bloch-
Grüneisen formula is well reproduced is of interest.

We implemented ab initio molecular dynamics simulations
(AIMD) to obtain representative models at different temper-
atures. Snapshots of the Al crystal at a selected temperature
T were obtained by equilibrating the cell and sampling steps
near the end of a 2 ps run. A time step of 1.5 fs was used,
and the temperature was controlled by a Nosé-Hoover ther-
mostat [28–30]. The last configuration from each temperature
was used as a starting configuration for the succeeding tem-
perature. For each temperature, the last 10 configurations at
an interval of 10 steps (15 fs) were chosen for the con-
ductivity calculations. Static calculations were performed at
four k points sampled on the first Brillouin zone using the
Monkhorst-Pack scheme.

B. Defects

1. Vacancies

For this case, we constructed a 5 × 5 × 5 structure from the
fcc primitive cell, yielding a cubic supercell 20.25 Å on a side
and consisting of 500 atoms. Single vacancies and divacancies
were then created by removing an atom(s) from the supercell.
For these larger models with vacancies, static calculations
were performed at the � point.

2. Grain boundaries

We also considered a few possible GBs. GBs are of-
ten described by the nomenclature �, tilt/twist angles,
symmetric/asymmetric GBs, crystallographic directions, and

specification of GB planes. The term � corresponds to the
reciprocal of the density of the coincident site lattice (CSL).
For example, �5 has 1/5 of the atoms in the CSL. The tilt
boundaries are often described by a shared tilt axis that lies
within the grain boundary plane, e.g., 〈1 0 0〉, and either one
(symmetric) or two (asymmetric) planes. For further informa-
tion on the crystallography of the GBs and the CSL, the reader
is referred to Refs. [31,32]. We created two symmetric grain
boundary models, namely, �5 {0 −3 1} 〈1 0 0〉 and �13
{0 −2 3} 〈1 0 0〉. The misorientation angles for these grain
boundary models are 36.87◦ and 22.62◦, respectively. In these
models, there are two GBs, one at the middle of the supercell
and the other at the interface of the boundaries parallel to the
middle GB because of the periodic boundary conditions. The
distance between the middle and interface GBs was kept at a
distance of at least 25 Å to minimize the interactions between
these GBs. This resulted in orthorhombic supercells with 936
and 816 atoms, respectively. Fifty initial structures for each
GB were obtained by translating atoms slightly along the GB
plane. The minimum distance between the Al atoms at the GB
was no less than 2.56 Å. For these 50 structures, zero-pressure
relaxations were done separately using the conjugate gradient
method, and the structure with minimum energy was chosen.
Since the cells were large, relaxations were performed with
LAMMPS using the embedded-atom method potential [33]. The
force acting on each atom was computed using the Vienna
Ab initio Simulation Package (VASP) for these relaxed mod-
els and was relatively small (0.01 eV/Å). Static calculations
were then performed using VASP to obtain the information for
conductivity calculations.

C. Energy functionals and electron-ion interactions

The AIMD calculations were performed using VASP [34].
A plane-wave basis set was used with a kinetic energy cutoff
of 250 eV. For static calculations, a larger cutoff of 320 eV
was used. We used projected augmented wave potentials [35]
to account for the ion-electron interaction and the generalized
gradient approximation of Perdew, Burke, and Ernzerhof [36]
as the exchange-correlation functional.

D. Space-projected conductivity

In this section, we summarize a method to project elec-
tronic conductivity onto real-space grids by exploiting the
KGF [8,37]. The average conductivity from the diagonal el-
ements of the conductivity tensor for any frequency ω can be
expressed as

σ (ω) = 2πe2

3m2�ω

∑
k

wk

∑
i, j

∑
α

[ f (εi,k ) − f (ε j,k )]

× |〈ψ j,k|pα|ψi,k〉|2δ(ε j,k − εi,k − h̄ω). (1)

In Eq. (1), e and m represent the charge and mass of the
electron, respectively. � is the volume of the supercell, and ω

is the frequency. Here, wk are the k-point integration weights.
ψi,k is the non-spin-polarized Kohn-Sham orbital associated
with energy εi,k, and f (εi,k ) denotes the Fermi-Dirac weight.
pα is the momentum operator along each Cartesian direction
α. Let us rewrite Eq. (1) with terms involving energies (bands)
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and the spatial part α separately,

σ =
∑

k

wk

∑
i, j,α

gi j,k |〈ψ j,k|pα|ψi,k〉|2, (2)

where

gi j,k = 2πe2

3m2�ω
[ f (εi,k ) − f (ε j,k )]δ(ε j,k − εi,k − h̄ω).

To project the conductivity onto real space, Eq. (2) is writ-
ten in the position representation with x and x′ as dummy
variables:

σ =
∑

k,i, j,α

wk gi j,k

∫
d3x

∫
d3x′[ψ∗

j,k(x)pαψi,k(x)]

× [ψ∗
j,k(x′)pαψi,k(x′)]∗. (3)

If we define complex-valued functions ξα
ji,k(x) = ψ∗

j,k(x)pα

ψi,k(x) on a real-space grid (call the grid points x) with uni-
form spacing of width h in three dimensions, then we can
approximate the integrals as a sum on the grids. Thus, Eq. (3)
can be written as

σ ≈ h6
∑
x,x′

∑
k,i, j,α

wk gi j,k ξα
ji,k(x)

[
ξα

ji,k(x′)
]∗

. (4)

In the preceding equation, the approximation becomes exact
as h → 0. If we define a Hermitian, positive-semidefinite
matrix

�(x, x′) = h6
∑

k,i, j,α

wk gi j,k ξα
ji,k(x)

[
ξα

ji,k(x′)
]∗

, (5)

we can spatially decompose the conductivity at each grid
point as ζ (x) = |∑x′ �(x, x′)|. ζ (x) contains vital infor-
mation about the conduction-active parts of the system.
We showed elsewhere that the eigenvectors of � provide
a convenient and often compact description of electronic
conduction [27].

To implement the method, we used VASP and associated
Kohn-Sham orbitals ψi,k; nevertheless, the method is suitable
for any appropriate basis sets. A grid spacing in the range of
≈0.3–0.5 Å was used. We then projected the wave function
corresponding to each band onto a grid point [38]. ξα

ji are
obtained using a centered finite-difference method to compute
the gradient of ψi with respect to the α direction. We have
averaged over Cartesian indices α. We used an electronic tem-
perature of T = 1000 K in the Fermi-Dirac distribution. The δ

function in Eq. (1) is approximated by Gaussian distributions
of different widths in the range 0.005–0.04 eV, which we
discuss in more detail below. The impact on the conductivity
due to different factors such as the smearing width, number of
atoms, smearing temperature, and energy cutoff for finite-size
cells is discussed in Refs. [18,19,39].

III. RESULTS AND DISCUSSION

A. Temperature dependence of the conductivity

In this section, we study the effects of thermal disorder on
conductivity. We first present the results of thermally averag-
ing the KGF to estimate the T dependence of the conductivity
and then briefly discuss the spatial distribution of conduction

FIG. 1. Electronic conductivity (logarithmic scale) computed us-
ing the Kubo-Greenwood formula at different temperatures. The
bars correspond to standard deviation from the mean conductivity
averaged from the last 10 snapshots that are 15 fs apart at the end
of 2 ps MD. “Width” in the legend refers to the values of smearing
widths used in the Gaussian distribution function to approximate the
δ function in Eq. (1).

at two different temperatures: one at room temperature and the
other near the melting point.

Figure 1 shows the thermally averaged conductivity com-
puted using the KGF from the last 10 snapshots of 2 ps
annealing. From Fig. 1, we see that the value of the conductiv-
ity is sensitive to the choice of smearing width; nevertheless,
the shape of the conductivity as a function of T is not much
affected (although the value of the conductivity varies by a
factor of ≈4 over the range of widths selected). In our previ-
ous work, we observed conductivities within a factor of 10
(or better). This is not surprising in view of the sensitivity
of the conductivity to cell size effects, k points, intrinsic
limitations of the KGF, etc. [15,40]. One of the well-known
challenges of KGF calculations is handling the δ function
in Eq. (1). For a supercell, the number of states near the
Fermi level EF scales with the number of atoms. For small
cells and defective semiconductors, for example, there will
be inadequate sampling of the relevant states, so that some
strategy is required to mimic the thermodynamic limit. The
most obvious expedient is to simply broaden the δ function
to include more states near EF . On the other hand, for metals
like Al, there is a large number of bands near EF even for our
small supercells. For the chosen models in our calculations,
we observe that the splitting of these states lies within ≈0.01–
0.03 eV and is affected by the temperature. Conductivities
with smearing widths of 0.01 eV and smaller are mostly
attributed to intraband transitions and are closely analogous
to Drude conductivity. Since the conductivity follows almost
the same trend for the selected smearing widths, we fitted the
resistivity derived from the KGF with the Bloch-Grüneisen
formula [41] for a smearing width of 0.02 eV, which includes
the contributions from both intra- and interband transitions.
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FIG. 2. Resistivity derived from the KGF (smearing width of
0.02 eV) calculated at different temperatures (blue solid circles)
and the fitted values using Eq. (6) (red solid stars). The blue bars
correspond to standard deviation from the mean resistivity that is
computed from the KGF. The orange dashed line is added as a guide
for visualization that passes along the fitted values. The experimental
data are shown by green solid diamonds taken from Ref. [42]. There
is a factor of 2.4 between the calculated and experimental values.

The Bloch-Grüneisen formula is expressed as

ρ(T ) = ρ0 + A

(
T

�D

)5 ∫ �D/T

0

x5

(ex − 1)(1 − e−x )
dx, (6)

where ρ0 is the residual resistivity and is independent of tem-
perature, A is the prefactor of the Bloch-Grüneisen formula
and is proportional to the electron-phonon coupling constant,
and �D is the Debye temperature of the metal.

The resistivity using the KGF and the fit using the Bloch-
Grüneisen formula at selected temperatures are shown in
Fig. 2. The calculated and fitted values of resistivity are repre-
sented by solid blue circles and solid red stars, respectively.
The orange dashed line represents the fit using the Bloch-
Grüneisen formula for every 10 K apart to aid visualization.
The scattered green solid diamonds correspond to the exper-
imental data. From Fig. 2, we see that the calculated values
differ by a factor of ≈2.4 from experiment. We can see that
the resistivity provides a good fit to Eq. (6) and is proportional
to the T 5 law. For larger supercells that have a relatively
narrower splitting of electronic states near EF , we have the
flexibility of using a smaller broadening width that provides
better agreement with the experiment. For the current models,
we find that the smearing width of 0.005 eV closely agrees
with the experiment. For T < 50 K, the method fails as the
quantum nature of the phonon dominates.

As an illustration to simulate the effect of thermal disorder
on conduction, we computed the SPC from two different mod-
els, one at 300 K (room temperature) and the other at 900 K
(near the melting point). Figure 3 displays SPC as an isosur-
face color map of an inverted rainbow spectrum obtained from

FIG. 3. SPC ζ projected on grids as a color-map plot (units of
S/cm) corresponding to different temperatures: room temperature
(300 K; top) and near the melting point (900 K; bottom). The inverted
rainbow color bar shows the magnitude of SPC scaled with the
maximum value at 900 K. The gray spheres represent Al atoms.

those models. The top and bottom plots correspond to 300 and
900 K, respectively. From Fig. 3, it is apparent that a higher
reduction of conduction exists at 900 K compared with 300 K.
At room temperature, the conduction still appears to be uni-
form (deep blue and violet in the top plot in Fig. 3), whereas
near the boiling point, the conduction is quite random. We
see more conduction deficit regions (shown by orange/yellow
regions in the bottom plot in Fig. 3) than at room temperature.

B. Spatial distribution of conduction in Al with vacancies

In this section, we discuss the spatial distribution of
conduction in aluminum (∼500 atoms model) with single
vacancies and divacancies. For this, we computed space-
projected conductivity from both types of vacancies as
discussed in Sec. II D and visualized it along a few crystallo-
graphic planes. We also discuss the directional dependence of
the conductivity along those chosen crystallographic planes.

1. Single vacancy

a. 010 plane. Figure 4(a) is a grayscale plot of conductivity
projected on the grids closest to the 010 plane of the supercell
containing the vacancy. From Fig. 4(a), it is apparent that the
primary effect is very local, and the effect decays on moving
away from the vacancy. The distance over which the vacancy
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FIG. 4. (a)–(c) Conductivity projected on grids closest to the 010, 011, and 111 crystallographic planes containing vacancy as a 2D
grayscale plot. The magnitude of conductivity increases from white to black. The colored lines with small spheres are just for a guide to the
eye, representing different directions from the vacancy. (d)–(f) Variation of conductivity with distance from the grid closest to the vacancy
along different directions on the 010, 011, and 111 planes, respectively. θ and φ refer to the polar and azimuthal angles, respectively. Colors in
the legends in (d)–(f) match the lines shown in (a)–(c), respectively.

produces a significant effect on the conductivity can be termed
the “reduction range.” This distance may also be viewed as the
“recovery length” over which the conduction is likely to be
recovered after being affected by the defect. For consistency,
we pick the latter in the rest of the paper. Figure 4(d) displays
the behavior of SPC away from the vacancy at different angles
on the 010 plane (θ = 0◦). It can be seen that there is slight
anisotropy around the vacancy. The recovery length along the
axes (φ = 0◦, 90◦) is ≈2.96 Å. Similarly, along other angles
with φ = 45◦ and complementary angles (φ = 26.56◦, 63.44◦),
the conduction recovers distances of ≈2.80 and 2.76 Å,
respectively. The recovery length along the studied directions
is close to first-nearest-neighbor distance (≈2.86 Å), and
therefore, the effect of the vacancy can be considered local,
as visually observed in Fig. 4(a).

b. 011 plane. Figure 4(b) displays the SPC projected on
the 011 plane as a grayscale two-dimensional (2D) plot. On
this plane, the effect of vacancy on the conduction spans from
the local to intermediate range and has more anisotropy than
the 010 plane. Figure 4(e) shows the variation of SPC with
distance along different directions on this plane. The conduc-
tion along the direction shown by yellow lines in Figs. 4(b)
and 4(e) with (θ , φ) = (90◦, 135◦) recovers at a distance of
≈4.1 Å. The recovery length along the direction shown by
green lines in Figs. 4(b) and 4(e) with (θ , φ) = (135◦, 125◦)
is the longest and is ≈6.0 Å. We see a similar recovery length

along (θ , φ) = (45◦, 125◦), which is shown by orange lines in
Figs. 4(b) and 4(e).

c. 111 plane. Figure 4(c) is a grayscale plot of SPC pro-
jected onto the 111 plane. The effect of the vacancy on this
plane also ranges from the local to intermediate range, as ob-
served in the 011 plane. Figure 4(f) shows the variation of SPC
with distance along different directions. The recovery length
on this plane also varies with direction. The recovery lengths
along the directions pointing towards the left and bottom left
[blue and red lines in Fig. 4(c)] with (θ , φ) = (315◦, 90◦)
and (0◦, 135◦) are short and are ≈3.5 Å. The recovery lengths
along the directions shown by the magenta and green lines
with (θ , φ) = (45◦, 145◦) and (124◦, 106◦) are ≈6.0 Å.

2. Divacancies

a. 010 plane. Figure 5(a) illustrates the SPC projected on
the grids closest to the 010 plane with two adjacent vacancies.
The spatial distribution of conduction around each vacancy
towards the opposite end of either vacancy is similar to the
distribution around a single vacancy [see Fig. 4(a)]. The dis-
tribution of conduction is dumbbell shaped. Figure 5(d) shows
the distribution of SPC from the grid closest to the center of
the two adjacent vacancies along different directions. From
Fig. 5(d), we see that the distribution is highly anisotropic in
nature. Along the z-axis (θ , φ) = (0◦, 0◦), the recovery length
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FIG. 5. (a)–(c) Conductivity projected on grids closest to the 010, 011, and 111 crystallographic planes containing the divacancies as
a 2D grayscale plot. The magnitude of SPC increases from white to black. The lines with small spheres are just for a guide to the eye,
representing different directions from the vacancy. (d)–(f): Variation of conductivity with distance from the grid closest to the center joining
two vacancies along different directions on planes 010, 011 and 111 respectively. Colors of legends in (d)–(f) match with the lines shown in
(a)–(c) respectively.

of conduction from the center joining the vacancies is ≈6.9 Å.
Along the positive x axis (θ , φ) = (0◦, 90◦), the recovery
length from the center is ≈9.3 Å, and from the left vacancy
it is ≈6.9 Å. Along the direction with φ = 27◦, the recovery
length is ≈7.7 Å. Along other directions with φ = 45◦ and
135◦, the recovery length is ≈7.6 Å. The reduction caused
by the divacancy is intermediate, and the recovery length
is more than twice that for the single vacancy projected on
same plane.

b. 011 plane. Figure 5(b) displays the SPC projected on
the grids closest to the 011 plane. We can see that the effect of
the vacancies is more than the local range along all directions
on the plane. The distribution of the conduction towards the
opposite end is similar to that of the 010 plane; however, along
the other directions, the distribution is different. Figure 5(e)
shows the distribution of SPC from the grid closest to the
center of the two adjacent vacancies along different directions
on this plane. From Fig. 5(e), it is clear that there exists a
high degree of anisotropy similar to what was observed in
the 010 plane. We find a variation in the reduction along
different directions. The recovery lengths are from ≈7.0 to
≈9.3 Å. In other words, the effect of the vacancy is mostly
either intermediate or long range in nature. Along directions
with (θ , φ) = (27◦, 114◦), (45◦, 125◦), the recovery length
is ≈8.6 Å. Along the direction pointing downwards [yellow

line in Fig. 5(b)] with (θ , φ) = (90◦, 135◦), the length is
≈7.0 Å.

c. 111 plane. Figure 5(c) shows the SPC on the grids that
are closest to the 111 plane with two adjacent vacancies. The
spatial distribution of conduction is quite different near each
vacancy. We can see that the reduction is more pronounced
near one of the vacancies. Figure 5(f) shows the distribution
of the SPC from the grid closest to the center of the two adja-
cent vacancies along different directions on this plane. From
Fig. 5(f), we see that the distribution is highly anisotropic.
The recovery length in the direction pointing towards the left
[blue line in Fig. 5(c)] with (θ , φ) = (315◦, 90◦) is ≈7.0 Å.
The length pointing downwards with (θ , φ) = (45◦, 145◦) in
Fig. 5(c) is ≈6.1 Å. Along the directions shown by the yellow
and green lines on the right side in Fig. 5(e), the recovery
length is ≈5.6 Å.

From the preceding discussion, it is apparent that the spa-
tial distributions of conduction due to single vacancies and
divacancies are quite different and vary with the crystallo-
graphic directions. The degree of anisotropy is higher for
the divacancy relative to the single vacancy. The recovery
length for the single vacancy is up to ≈6.0 Å, and that for the
divacancy is ≈8.0 Å. The recovery lengths for these studied
vacancies are close to the decay length of the density matrix
in Al [43].
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FIG. 6. Two-dimensional plot of SPC projected on a layer of
atoms on the 010 plane in the vicinity of the middle grain boundary
for two different grain boundary models. Left: �5 {0 −3 1} 〈1 0 0〉.
Right: �13 {0 −2 3} 〈1 0 0〉. The inverted rainbow colors in both
plots represent the magnitude of SPC values, with red corresponding
to the small values and violet representing the larger values.

C. Conduction near grain boundaries

In this section, we briefly discuss the spatial distribution
of conduction in an aluminum model with GBs. As already
described in Sec. II B 2, we chose two symmetric tilt grain
boundary models, namely, �5 {0 −3 1} 〈1 0 0〉 and �13 {0
−2 3} 〈1 0 0〉. For simplicity, we name these �5 and �13.
For both GB models, we computed the SPC in the vicinity of
the middle grain (up to ≈9.0 Å). Figure 6 displays the SPC
as a 2D color map projected on the xz plane (i.e., the 010
plane) along a layer of Al atoms for both GB models. The
left and right plots correspond to �5 and �13, respectively.
In both plots, the inverted rainbow color maps represent the
magnitude of the SPC values, where lower and higher values
are shown in red and violet, respectively. It is apparent that

the conduction is reduced at the GB, and the effect decays on
moving away normally on either side from the GB. For �5
(left plot in Fig. 6), the conduction mostly recovers at ≈8.0
Å. On the other hand, the length for �13 is close to ≈6.0 Å
and is shorter compared with that of �5. The recovery length,
however, cannot be generalized from these two symmetric
boundaries because many types of grain boundaries exist in
metals. From Fig. 6, we see that the distribution pattern of the
conduction is unique to the particular grain boundary. In both
GBs, most reduction occurs in the empty regions that lie at
the grain boundaries. One way to improve conductivity in real
metals is by reducing the scattering sites that are abundant at
the grain boundaries. Experiments have been done interfacing
graphene with metals like Al/Cu, and these composites have
shown a promising enhancement of the conductivity [44,45].

IV. CONCLUSIONS

In this paper, we utilized the Kubo-Greenwood formula
to simulate the temperature dependence of conductivity in
aluminum and obtained results in qualitative agreement with
the Bloch-Grüneisen formula. We showed that the KGF cap-
tures the T dependence down to 50 K. We briefly reviewed
a method to project conductivity onto a real-space grid and
applied it to study the spatial distribution of conduction in
aluminum with thermal disorder and lattice defects. We in-
vestigated the effect of conduction in the proximity of single
vacancies and divacancies that form prototypes for point de-
fects in the crystal. We computed the range and anisotropy
of the conduction reduction. The reduction due to divacan-
cies was shown to involve a longer length scale. We also
presented two examples of grain boundaries that are symmet-
rically tilted. We found that the conduction in such models is
reduced at the GB, and the effect decays in a complex way
with distance from the GB.
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[17] V. Vlček, N. de Koker, and G. Steinle-Neumann, Phys. Rev. B

85, 184201 (2012).
[18] D. Knyazev and P. Levashov, Comput. Mater. Sci. 79, 817

(2013).
[19] L. Calderín, V. Karasiev, and S. Trickey, Comput. Phys.

Commun. 221, 118 (2017).
[20] F. Bloch, Zeitschrift für Physik 59, 208 (1930).
[21] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter,

and J. D. Kress, Phys. Rev. B 63, 224106 (2001).
[22] R. C. Munoz and C. Arenas, Appl. Phys. Rev. 4, 011102 (2017).
[23] K. Prasai, K. N. Subedi, K. Ferris, P. Biswas, and D. A. Drabold,

Phys. Status Solidi RRL 12, 1800238 (2018).
[24] K. N. Subedi, K. Prasai, M. N. Kozicki, and D. A. Drabold,

Phys. Rev. Mater. 3, 065605 (2019).
[25] R. Thapa, B. Bhattarai, M. N. Kozicki, K. N. Subedi, and D. A.

Drabold, Phys. Rev. Mater. 4, 064603 (2020).
[26] K. N. Subedi, K. Prasai, and D. A. Drabold, in The World

Scientific Reference of Amorphous Materials (World Scientific,
Singapore, 2021), Chap. 3, pp. 79–105.

[27] K. N. Subedi, K. Prasai, and D. A. Drabold, Phys. Status Solidi
B 258, 2000438 (2021).

[28] S. Nosé, J. Chem. Phys. 81, 511 (1984).
[29] N. Shuichi, Prog. Theor. Phys. Suppl. 103, 1 (1991).
[30] D. M. Bylander and L. Kleinman, Phys. Rev. B 46, 13756

(1992).
[31] V. Randle, The Role of the Coincidence Site Lattice in Grain

Boundary Engineering (Woodhead, Cambridge, 1997).
[32] M. A. Tschopp, S. P. Coleman, and D. L. Mcdowell, Integr.

Mater. Manuf. Innovation 4, 176 (2015).
[33] Y. Mishin, D. Farkas, M. J. Mehl, and D. A.

Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).
[34] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[35] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[36] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[37] D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
[38] R. M. Feenstra and M. Widom, https://www.andrew.cmu.edu/

user/feenstra/wavetrans.
[39] P. Bulanchuk, Comput. Phys. Commun. 261, 107714 (2021).
[40] C. M. Van Vliet, Equilibrium and Non-equilibrium Statistical

Mechanics (World Scientific, Singapore, 2008).
[41] J. M. Ziman, Electrons and Phonons: The Theory of Transport

Phenomena in Solids, Oxford Classic Texts in the Physical
Sciences (Oxford University Press, New York, 1960).

[42] A. Chowdhury and S. Bhattacharjee, J. Phys. D 46, 435304
(2013).

[43] X. Zhang and D. A. Drabold, Phys. Rev. B 63, 233109 (2001).
[44] W. Li, D. Li, Q. Fu, and C. Pan, RSC Adv. 5, 80428 (2015).
[45] M. Cao, Y. Luo, Y. Xie, Z. Tan, G. Fan, Q. Guo, Y. Su, Z. Li,

and D.-B. Xiong, Adv. Mater. Interfaces 6, 1900468 (2019).

104114-8

https://doi.org/10.1103/PhysRevA.21.12
https://doi.org/10.1103/PhysRevA.38.5512
https://doi.org/10.1021/j100303a015
https://doi.org/10.1103/PhysRevB.76.045212
https://doi.org/10.1103/PhysRevB.79.115109
https://doi.org/10.1103/PhysRevB.85.184201
https://doi.org/10.1016/j.commatsci.2013.04.066
https://doi.org/10.1016/j.cpc.2017.08.008
https://doi.org/10.1007/BF01341426
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1063/1.4974032
https://doi.org/10.1002/pssr.201800238
https://doi.org/10.1103/PhysRevMaterials.3.065605
https://doi.org/10.1103/PhysRevMaterials.4.064603
https://doi.org/10.1002/pssb.202000438
https://doi.org/10.1063/1.447334
https://doi.org/10.1143/PTPS.103.1
https://doi.org/10.1103/PhysRevB.46.13756
https://doi.org/10.1186/s40192-015-0040-1
https://doi.org/10.1103/PhysRevB.59.3393
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1088/0370-1328/71/4/306
https://www.andrew.cmu.edu/user/feenstra/wavetrans
https://doi.org/10.1016/j.cpc.2020.107714
https://doi.org/10.1088/0022-3727/46/43/435304
https://doi.org/10.1103/PhysRevB.63.233109
https://doi.org/10.1039/C5RA15189A
https://doi.org/10.1002/admi.201900468

