Supplemental material: Simulation of multi-shell fullerenes using Machine-Learning Gaussian Approximation Potential

C. Ugwumadu,^{1, *} K. Nepal,¹ R. Thapa,¹ Y. G. Lee,¹ Y. Al Majali,² J. Trembly,² and D. A. Drabold¹

¹Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute (NQPI), Ohio University, Athens, Ohio 45701, USA ²Russ College of Engineering and Technology, Ohio University, Athens, Ohio 45701, USA (Dated: August 4, 2022)

Sect. S1. Description of Animations produced for the buckyonion models

To aid visualizing some of the discussions in the paper, we have produced some animations for some buckonion models.

- 1. BO300_mov.mp4 and BO1374_mov.mp4 files show the buckyonion formation process for BO300 and BO1374 respectively.
- 2. BO_growthProcess.mp4 show the clustering and growth process for 540 randomly distributed atoms within a 720-atom fullerene isomer.

Sect. S2. Supporting Tables and Figures

Models	Layers	Ring size:				
		5	6	7	8	9
BO ₆₀	s_1	12	20	0	0	0
BO ₃₀₀	s_1	15	22	3	0	0
	s_2	26	74	14	0	0
BO ₅₄₀	s_1	26	50	12	1	0
	s_2	62	85	28	8	2
BO ₈₄₀	s_1	6	1	0	2	1
	s_2	34	84	20	3	0
	s_3	68	148	40	11	0
BO 1374	s_1	27	34	14	3	1
	s_2	25	189	13	2	0
	s_3	50	292	36	3	0
BO ₂₁₆₀	s_1	15	20	10	2	1
	s_2	36	291	25	0	5
	s_3	55	380	32	2	5
BO ₃₇₇₄	s_1	31	91	17	4	4
	s_2	47	183	26	5	4
	s_3	112	333	80	18	6
	s_4	179	422	123	24	7

TABLE S1: Ring-size analysis for the buckyonion models.

^{*} Corresponding author.

Tel: +1740-818-8818. E-mail: cu884120@ohio.edu

FIG. S1: Plots of the energy difference (ΔE) against the Conjugate gradient (CG) iterations carried out using VASP on BO₃₀₀ (a) and BO₅₄₀ (b). SIESTA was used for the BO₃₀₀ (c) and BO₈₄₀ (d) models as well. The insets in a-d represent the models before and after CG relaxation.

FIG. S2: Starting from (a) an initially random atomic configuration with a cylindrical shape, (b) a capped multi-wall carbon nanotube was formed. The figure in (c) show the nanotube from the z-axis with the cap sliced off. The system has 840 atoms and periodic boundaries only in the z-axis.

FIG. S3: Figure showing some of the buckyonions models simulated in this work

FIG. S4: Growth Process from C_{720} isomer with 540 atoms randomly distributed C atoms. The outermost shell (green) remained with 720 atoms at the end of the simulation. The heptagons in the outermost shell are coloured in black.

FIG. S5: Figure showing the distribution of the charge density for one end of BO_{300} model in -xy planar-slices starting with a pentagon (blue) in the inner shell (red) in a(i) to the first slice in the outer shell (green) showing a hexagonal structure (yellow) in a(v). The figures in b(i - v) and c(i - v) show the heat-map and contour values of the charge density for 5 slices from a(i) to a(v). The entire system is shown in a(iii) and charge distribution in the other end of the system is discussed in main manuscript.