PHYSICAL REVIEW B

VOLUME 51, NUMBER 3

15 JANUARY 1995-1

Linear system-size scaling methods for electronic-structure calculations

Pablo Ordején
Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801

David A. Drabold
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701-2979

Richard M. Martin
Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801

Matthew P. Grumbach
Department of Physics and Astronomy and Materials Research Group in High Pressure
Materials Synthesis, Box 871504, Arizona State University, Tempe, Arizona 85287-1504
(Received 18 May 1994)

We describe a method for performing electronic-structure calculations of the total energy and
interatomic forces which scales linearly with system size. An energy functional is introduced which
possesses a global minimum for which (1) electronic wave functions are orthonormal and (2) the
correct electronic ground-state energy is obtained. Linear scaling is then obtained by introducing a
spatially truncated Wannier-like representation for the electronic states. The effects of this represen-
tation are studied in detail. Molecular-dynamics simulations using an orthogonal tight-binding basis
and ab initio local-orbital density-functional methods are presented. We study both Car-Parrinello
and conjugate-gradient molecular-dynamics schemes and discuss practical methods for dynamical
simulation. A detailed connection between our method and the density matrix approach of Daw
[Phys. Rev. B 47, 10895 (1993)] and Li, Nunes, and Vanderbilt [Phys. Rev. B 47, 10891 (1993)]

is also provided.

I. INTRODUCTION

Recent advances in computational methods have made
possible first-principles calculations for materials far be-
yond anything possible only a few years ago. The work of
Car and Parrinello,! in particular, initiated an entire new
set of methods? which can be applied to any independent-
particle theory such as the density-functional approach.
Current methods have in common that the total energy
is written as a functional of the electronic states and ef-
ficient techniques are used to iterate the wave functions
toward the minimum energy solution. Although they are
vastly more efficient than traditional matrix diagonaliza-
tion methods (especially for large basis sets, like plane
waves), the most widely used methods still have the same
scaling as diagonalization—for large systems the compu-
tational time increases asymptotically as the cube of the
number of electrons considered. In fact, current algo-
rithms intrinsically involve a nonlinear dependence upon
the number of electrons, since they require that each or-
bital be orthogonal to the others, which in general would
appear to scale at least as the square of the number of
electrons.

On the other hand, it is clear that this nonlinear scaling
is not inescapable. It is well known that the local prop-
erties of a region can be computed from knowledge of the
electronic states only in some vicinity of that region. This
is established, for example, by expressing properties in
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terms of Green’s functions or density matrices. This has
been emphasized particularly by Heine and co-workers.3
One of the methods they have applied very successfully
is the recursion method,* which is a continued fraction
representation of an expansion in coordination shells of
interactions. The continued fraction can be terminated
in a range that allows feasible calculations. Quantum me-
chanics requires that the properties at one point cannot
be purely local; however, the effects decay rapidly (expo-
nentially in the case of insulators) and can be considered
to vanish outside some range of nonlocality. Clearly, for
large enough systems (larger than the range of the nonlo-
cality), calculations by this method are linear in the size
of the system, since different parts can be computed inde-
pendently. Many other workers have employed methods
which are based upon generation of Green’s functions or
an equivalent representation.®12

The aim of the present work is to develop a method
that will combine the virtues of these two different ap-
proaches, that is, a method which can scale linearly with
system size for large systems, and yet utilize the com-
putational advances of the Car-Parrinello-type methods.
One way to accomplish this was suggested by Galli and
Parrinello,’® who pointed out that Car-Parrinello-type
methods can be modified to scale linearly for large sys-
tems if the electronic orbitals are required to be localized,
Wannier-like functions. For purposes of determining in-
tegrated properties such as the total energy or forces on
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the atoms, it is always possible to transform to a set of
orbitals which are localized. In a metal they have power-
law localization and in an insulator they are exponen-
tially localized.!* If one can neglect the overlap of these
functions beyond some range, then it is in principle pos-
sible to construct an algorithm which scales linearly with
the system size, since a given electron orbital overlaps
only a finite number of other orbitals, independent of the
size of the system.

Several groups have independently proposed meth-
ods to make practical algorithms based upon localized
Wannier-like functions'® 2! or localized orbitals.?? Here
we describe in detail one method.'® The algorithm gener-
ated clearly scales linearly in principle; however, for rea-
sons that will be explained below, the constraint requir-
ing the wave functions to be strictly localized can lead
to difficulties in applying efficient iterative methods. To
show that the methods can be practically implemented,
an important part of the present paper is the demonstra-
tion that these difficulties can be overcome in realistic
cases.

Here we will emphasize application of the linear scaling
methods in cases where one wishes to calculate properties
of an entire system, for example, as would happen in a
thermal simulation or a global relaxation. This is in con-
trast to the spirit of the Green’s function methods, which
emphasize that one can calculate the properties of part
of a large system without ever dealing with the entire
system. Such an approach seems preferable if one seeks
only a local relaxation, for example. We note that the
present methods can also be adapted to work in this way
as well—the only change required is to allow variations in
the wave functions only in a localized region, but enforc-
ing orthogonality to a finite number of surrounding fixed
localized functions. While this is not of primary concern
in this paper, we show in Sec. VII that the calculation
of the force constant matrix is particularly efficient since
it may be built by considering small local displacements
of each of the atoms. This provides an efficient means of
computing the vibrational power spectrum.

While the present method does not explicitly produce
eigenvalues, we note that existing techniques allow the
computation of selected eigenvalues or the density of
states in an order-N fashion.2372% This makes it easy to
compute the optical gap, for instance. These methods
can be used as a complement to the present technique.

In the process of generating the present algorithm, we
found it very convenient to express our minimization pro-
cedure in such a way that orthogonalization is not explic-
itly performed. We will define a functional which when
freely minimized with no constraints leads to the cor-
rect energy and orthogonal functions. We believe this
procedure has general utility in many different meth-
ods, whether linearly scaling or not. For instance, it has
proven to be useful in cases where a self-consistent so-
lution cannot be found by standard techniques due to
the instability of the solution, like the one-dimensional
Hubbard model.2¢ The basic idea is that a minimization
procedure which involves no constraints is more robust
and may be expected to better utilize minimization al-
gorithms which are available. In this respect our work is

quite close to that of Mauri, Galli, and Car'”>!8 and also
has similarities to work of Wang and Teter.!® There are
also strong links between our orbital formulation and the
density matrix approach of Li et al.2” and Daw.28 The lo-
calization properties of the density matrix were exploited
by Yang?® to produce an order-N algorithm.

The method presented here also represents a way to
calculate approximate Wannier functions, which may
have many possible uses. For example, Nunes and
Vanderbilt3® have recently pointed out a way to calculate
the dielectric response of insulators using this approach.
This is a solution to a problem which is quite difficult in
the usual representation of extended Bloch states.

This paper is organized as follows. In Sec. II we
discuss general aspects of solving the noninteracting-
electron problem, to put the present work in context.
In Sec. ITI we describe the use of localized Wannier-like
functions to represent the electronic states. In Sec. IV
we give a detailed analysis of an energy functional which
may be directly minimized without any subsidiary or-
thonormality condition. When combined with the Wan-
nier picture of electronic states, linear system-size scal-
ing is obtained. In Sec. V, the method is implemented
with a simple tight-binding Hamiltonian to illustrate the
practical implementation of the scheme. The only im-
portant approximation of the method, the truncation of
the Wannier-like states, is discussed in Sec. VI with some
elementary but revealing examples of its effects. Quanti-
tative examples of these effects for practical problems are
given in Sec. VII, whereas in Sec. VIII we describe means
for performing accurate molecular-dynamics simulations.
Section IX contains the conclusions of our work. Addi-
tionally, in Appendix A we provide some rigorous prop-
erties of the new energy functional, and in Appendix B
a detailed connection of the present work with the den-
sity matrix method proposed by Li et al.?” and Daw?® is
given.

II. BACKGROUND

We will consider a system of N noninteracting elec-
trons of each spin, moving in an effective potential Vog(r),
so that the effective one-particle Hamiltonian is

hZ
Hegr(x) = — 5~V + Ver(r) . (1)

The effective potential V.g(r) includes the Coulomb in-
teraction of the electrons with the nuclei and any ex-
ternal potential and must also simulate the many-body
electron-electron interactions in an effective way. The
detailed form of the effective one-electron Hamiltonian
depends on the particular approximation that one uses.
In empirical tight binding,! the matrix elements h,, of
the Hamiltonian in an atomiclike orbital basis {|¢,)} are
assumed to be known and in practice are adjusted to
fit experimental or theoretical information such as the
band structure. On the other hand, in ab initio ap-
proaches such as Hartree-Fock3? or density functional33
(DF) in the local-density approximation3* (LDA), the
interactions are obtained from first principles, making
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some approximations to map the many-body problem
of the interacting electrons onto an effective system of
noninteracting particles. In the Hartree-Fock method,
the effective potential contains the Coulomb repulsion of
each electron with the electronic charge created by the
rest of the electrons (Hartree term) and a nonlocal ex-
change term that arises from the correlated motion of
the electrons due to the Pauli principle. In the Kohn-
Sham formulation of density-functional theory, the effec-
tive Hamiltonian takes the form
2
Hypa(r) = —;—mvz + Vion(r) + Vu(r) + Vxc(n(r)) ,

(2)

where V,, is the Coulomb potential of the nuclei situ-
ated at positions {R;}, Vg is the Hartree potential of
the electrons

n(r’)

A (3)

_ 2
Vu(r) =e Ty

and Vxc is the exchange-correlation potential. In the
local-density approximation Vxc(r) depends on the value
of the charge density n(r). The LDA Hamiltonian can
also include a nonlocal pseudopotential term to eliminate
the core electrons from the calculation.

For the noninteracting electrons that we are consider-
ing, the state of the system can be described specifying
N one-electron states {|x;)}, # =1,..., N, each of which
is occupied with two electrons of opposite spin. {|x;)}
is one of the possible bases of the occupied space (Hocc),
which is a subspace of #, the Hilbert space of the sys-
tem. Physical properties such as the charge density and
the electronic energy can be obtained within this occu-
pied space without any need to make reference to the rest
of the Hilbert space. Although the most usual procedure
is to use orthonormal sets of states to describe the occu-
pied space, this is not a fundamental limitation, and one
can also use nonorthonormal sets to describe the quan-
tum system. In this case, the usual matrix representation
for orthogonal basis generalizes to a tensorial represen-
tation for the vectors and operators in the Hilbert space,
as shown by Artacho and Mildns del Bosch.3® If the set
of states defining the occupied space are nonorthogonal,
the overlap matrix

Si; = (Xilx;s) (4)

is not the identity matrix é;;. In this case, the density
matrix operator, defined as the projection onto the occu-
pied space, is given by the expression

N
=2 x5 Miilxsl (5)
i,j=1
where (S71);; is the element 4,j of the inverse of the S
matrix, and the factor 2 is for spin. The charge density
is simply the diagonal elements of p in the coordinate
representation

N

p(r) =23 xi(r)(S7)ix; (r). (6)

3,j=1

The calculation of the electronic total energy depends
on the specific one-electron model used. There is, how-
ever, a term common to all the approximations: the
band structure energy, which is defined as the trace of
the Hamiltonian in the occupied space. In terms of the
matrix elements of the Hamiltonian H in the occupied
space basis {|x;)}, the band structure energy takes the
form

N
Egs = 2Tr(H) =2 ) (S71)i; Hji

i,5=1

N
=2 (SN (x; | Hlxa) - (7)

3,j=1

In empirical tight binding,3! the total electronic en-
ergy is usually taken as the band structure energy plus a
repulsive two-body potential Vi between the atoms that
is fitted to experiment together with the electronic inter-
actions h,,,:

1 !
E = Eps + 5; Ve(|IRi — Ry|) . (8)

In the LDA, the total electronic energy is obtained by
adding to the band structure energy two terms which
account for double counting in the Coulomb electronic
repulsion and for exchange-correlation corrections:
e? 3 n(r') 5,
E:EBS—f-?[—/n(r)d’r‘ ‘—r-_—r,ldr

+ / n(r) [exc(n)—vxc(n)]d3r] . 9)

These correction terms can be calculated using Eq. (6)
for the charge density, even for the case of nonorthonor-
mal states {|x;)}-

The ground state of the system is the one that mini-
mizes the energy. There are two “standard” procedures
to find this ground state: direct diagonalization and it-
erative minimization. In direct diagonalization one di-
agonalizes the whole Hamiltonian matrix (which has di-
mension M x M if the basis set has M elements) and
obtains all the eigenvectors. The band structure energy
and the charge density are computed using the energies
and wave functions of the V lowest eigenstates. In the
Hartree-Fock or Kohn-Sham LDA methods, the proce-
dure is repeated until self-consistency is achieved. For
non-self-consistent Hamiltonians, one diagonalization is
sufficient. In iterative minimization the total energy is
minimized with respect to variations in the states {|x;)}.
Although some authors2%:21:36:37 have developed schemes
to deal with nonorthonormal sets of states {|x;)}, calcu-
lating the inverse of the overlap matrix (S~!) and using
Eq. (7), the most common procedure is to restrict the
minimization to orthonormal states, imposing explicitly
the condition

Sij = (xilx;) = ds; (10)

by means of an orthonormalization procedure (usually
Gram-Schmidt) during the energy minimization. The



51 LINEAR SYSTEM-SIZE SCALING METHODS FOR . .. 1459

advantage of this extra step is that the band structure
energy and the charge density take a simple form:

N
Eps=2)» Hi, (11)

=1

N
p(r) = ZZ xi ()%, (12)

avoiding the calculation of the S~! matrix and the ap-
pearance of numerical instabilities. The iterative mini-
mization techniques are very convenient for calculations
involving large systems or large basis sets, since only the
occupied states are calculated and stored. For non-self-
consistent Hamiltonians, the true ground-state band en-
ergy is given by the minimum value of Eq. (11) in the
space of all functions {|x;)},7 = 1,..., N, which satisfy
the constraints Eq. (10). For self-consistent theories, the
solution is found by minimizing the total energy [Eq. (9)
for the LDA], using Eq. (11) for the band structure en-
ergy, updating the charge density and the Hamiltonian at
the same time, so that minimization and self-consistency
are simultaneously achieved. For a review of ab initio
iterative minimization techniques we refer the reader to
Ref. 2.

One limitation of these traditional methods is their
unfavorable scaling with system size. For large enough
systems the computational time needed increases as N3,
due to the necessary orthogonalization step. On the other
hand, the memory required to store the wave functions
scales as N2, and it has been argued3® that this is the
real limit for the size of systems that can be handled
by currently available computational platforms. In any
case, it is clear that a method with linear scaling, both in
the computation time and in the memory requirements,
would be of great value for the study of large systems
which cannot be treated with the standard approaches.
We describe one such method in the following sections.

III. LOCALIZED WAVE FUNCTIONS

Several authors have developed linear scaling algo-
rithms making use of localized Wannier-like functions.
These methods explicitly exploit the fact that the set of
states {|x;)} that defines the ground state of the system
is not unique, since any unitary transformation of the
N lowest eigenvectors {|¢;)} has the same energy. In
particular, we can describe the ground state of the sys-
tem by means of orthonormal localized wave functions
(LWEF’s) centered on different points. In the case of a
periodic system, these LWF’s are simply the Wannier
functions. Although, strictly speaking, the LWF’s are
spread throughout the system, they decay very rapidly
with the distance from the center of localization. This
decay is exponential in insulators and a power law in
metals. Kohn'* has pointed out that, for an insulator
with gap Eg, the best localized Wannier functions decay
exponentially with a rate x ~ (2mE,/A?)1/2, where m is

the electron mass. For realistic systems, Wannier func-
tions have been computed by a number of authors.3® As
an illustration, in Fig. 1 we show a Wannier function
for a one-dimensional (1D) tight-binding chain at half
filling. The chain has two alternating kinds of orthog-
onal s orbitals with a difference in on-site energies of 1
eV, which interact with a first-neighbor hopping V = —1
eV. Figure 1 shows one of the Wannier functions of the
system, the one which is centered on atom number 49.
Since the system has an energy gap of 1 eV, the decay
of the LWF is exponential. Therefore, although in order
to describe the system ezactly with LWF’s one should
allow them to spread through all the system, we can, as
an approximation, truncate the LWF’s beyond a certain
cutoff radius R, from the center. Note that the typical
localization range does not depend essentially on the size
of the system but on the nature of the bonding and the
electronic states (metallic or insulating), and the energy
gap. In this case, truncating the localized wave functions
beyond R. would produce an order-NN scaling. Indeed,
if the LWF’s are zero outside the localization range, the
Hamiltonian and overlap matrix elements between LWF’s
centered on distant points will be zero, and therefore, for
each localized orbital |x;), only the matrix elements H;;
and S;; with orbitals |x;) within a distance of the order
of 2R, must be calculated (a number that is independent
of the size of the system).

Once we have taken the approach of building localized
functions for the solution of the electronic problem, we
have to devise an algorithm for the actual calculation of
the LWF’s and the minimization of the electronic energy.
The naive approach would be to use the standard itera-
tive minimization techniques for the minimization of the
electronic energy. In principle, it would be convenient to
use orthonormal LWF’s, since this allows us to use Eq.
(11) for the electronic energy, avoiding the calculation of
the S~ matrix. This is convenient because, even when
the states are strictly localized and the overlap matrix S
is sparse, the ezact S~! matrix is not, and this would be a
difficulty for achieving the linear scaling. One possibility
is to use an orthonormalization procedure combined with
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FIG. 1. Wannier function for the 1D chain described in
the text. We plot the weight of the Wannier function on each
of the atoms in the chain. R. represents the range beyond
which the Wannier function could be truncated without loss
of accuracy.
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the minimization of the electronic energy Eq. (11) (valid
for orthonormal states). The ideal candidate would be
the Lowdin orthonormalization scheme,*C in which, given
an initial set of normalized but nonorthogonal wave func-

tions {|x:)}, a new set {|x;)} is generated by

o) = ) = 5 O Suslxa), (13)
J#i

and this is repeated until the wave functions are orthog-
onal to the desired degree of accuracy. If the initial
wave functions are localized, this orthonormalization pro-
cedure produces orthonormal functions which are also
localized, since in each iteration the functions are only
mixed with those in the neighborhood (the ones which
have a nonzero overlap). However, each iteration of the
orthogonalization increases the localization range. If we
want to impose a strict cutoff on the LWF’s, we must
modify slightly the algorithm to avoid mixing the wave
function with components of others outside the localiza-
tion range. This results in a decrease in the efficiency that
will ultimately preclude its practical application with re-
alistic values of the localization range. To illustrate this
point, we have performed a calculation using this scheme
in a 64-atom Si supercell in the diamond structure, with
the atoms displaced 0.05 A in the direction of the LO
phonon mode. We have used an ab initio tight-binding
Hamiltonian*! with an sp3 basis on each Si atom, with
interactions and overlaps up to third nearest neighbors.
The localized wave functions are centered on the cova-
lent bonds, and we have imposed a cutoff radius of 4.0
A. In Fig. 2 we show the maximum deviation from or-
thonormality (i.e., the maximum value of |S;;|) versus
the number of iterations in the orthonormalization pro-
cedure. We observe that, although the value of the maxi-
mum overlap decreases rapidly in the first iterations, the
process degrades after a while, and the orthogonality can-
not be improved beyond a certain degree of accuracy.
This difficulty in imposing a strict orthogonalization to
the LWF’s is common to other possible orthonormaliza-
tion schemes that we have tested. Since the calculation
of the electronic energy by means of Eq. (11) requires
orthonormal wave functions, the errors in the orthonor-
malization will translate into errors in the values of the
energy, which will be more severe for larger deviations
from orthogonality. In Fig. 3 we show a steepest de-
scent energy minimization of the electronic energy using
the described Lowdin orthogonalization. The results cor-
respond to two different values (0.032 and 0.01) for the
tolerance in the orthogonalization procedure. The exact
value of the energy, computed with diagonalization, is
—1069.32 eV. In the case of the large tolerance the error
is so large that the energy oscillates widely and finally di-
verges. Even for the smaller tolerance the errors are large
enough to prevent an accurate determination of the min-
imum energy. Imposing a stricter tolerance is impossible,
as was shown in Fig. 2.

The orthogonalization problem remains, therefore, a
serious obstacle to the achievement of linear scaling.
When the wave functions are kept localized, the orthog-
onalization is no longer order N3, but it is not accurate
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FIG. 2. Maximum deviation from orthonormality vs num-
ber of iterations in the Léwdin orthogonalization. The full
line corresponds to a typical orthogonalization of strictly lo-
calized wave functions in silicon. The cutoff range was 4.0
A. The dashed lines show the tolerances used in the energy
minimizations shown in Fig. 3.

enough to allow the minimization of the electronic en-
ergy. We must, therefore, find a way to avoid the orthog-
onalization in order to find a reliable order- NNV algorithm.
With that in mind, in the next section we propose an
energy functional that, when freely minimized (i.e., with
no orthonormalization constraints) leads to the correct
ground-state energy and a set of orthogonal wave func-
tions. It will be shown that this functional is well suited
to be used with localized wave functions, a combination
which produces an efficient order-N algorithm.

IV. THE NEW ENERGY FUNCTIONAL

In this section we will describe the new energy func-
tional that we have derived, and that will enable us to
develop an orbital formulation with order-N scaling. In
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FIG. 3. Energy minimization with localized functions for
silicon, using steepest descent and Léwdin orthonormaliza-
tion. The localized wave functions were centered on the bonds
and maintained strictly localized within a radius of 4.0 A. We
show two curves, for different tolerances in the orthogonaliza-
tion procedure.
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our approach, we want to maintain the nice properties of
the iterative minimization procedures, but with the pur-
pose of deriving an order-N algorithm. We wish to use a
formalism that avoids the calculation of the S~ matrix,
since it is nonsparse and can lead to numerical instabili-
ties, and also avoids an explicit orthonormalization step.
We therefore want to minimize Eq. (11) (the energy for
the case of orthonormal states), subject to the constraints
that the states are orthonormal (i.e., that S;; = 6;;). The
well-known Lagrange multipliers method suggests how to
solve this problem. A new functional E is built which
consists of the function that has to be minimized plus
a term including the constraints multiplied by the La-
grange multipliers (one for each of the constraints):

N N
E=2|> Hi— Y Aj(Si; —6;5)| - (14)
=1

i,j=1

In the usual approach, the Lagrange multipliers Aj; are
considered independent variables, and the solution would
be obtained by requiring that E be stationary with re-
spect to variations in both the wave functions |x;) and
the Lagrange multipliers Aj;:

SE
vl 0, (15)
SE

Since the second equation implies that the orthonormal-
ization conditions S;; = d;; have to be satisfied, solving
Egs. (15) and (16) is equivalent to our original prob-
lem. However, these equations suggest an alternative ap-
proach. The first of the stationary conditions for F, Eq.
(15), can be expressed as

JE
5( HlX: Z Ajilxs) = (7)

Taking the product on the left with the vector (xkl,
Eq. (17) leads to

N
=S AjSk; =0, (18)
s

which, in matrix notation, reads
H-SA=0. (19)

This equation defines a relation between the Lagrange
multipliers and the wave functions |x;) (through the ma-
trix elements of H and S) that must be satisfied at the
solution. In that case, the second of the stationary con-
ditions for £, Eq. (16), must also hold, so that § = 1.
Therefore the solution satisfies the equation

Aij = Hy; = (alH|x;)- (20)

We stress that this relation only holds exactly for the so-
lution, i.e., for the |x;) and A;; that make the energy
stationary. However, we can define a functional with
A;; = H;; even for those x’s which are not in the correct
solution. Following this approach leads to the functional

_2 ZHH_ Z z]—6ij)Hji
3,j=1
— 2Tr {[1 + (1 — S)] H} (21)

which is defined for all sets of functions {|x;)}, which
need be neither normalized nor orthogonal. It is appar-
ent that, for a given state defined by the set {|x;)}, the
“modified energy” E will only take the same value as the
band energy Fps [Eq. (11)] if it is an orthonormal set,
in which case the second term in Eq. (21) will vanish.
It is also evident that E will be stationary for those sets
{|x:)} corresponding to the orthonormal solution, since
it has been explicitly built from Egs. (15) and (16).

In Appendix A we will show that, under certain general
conditions, the functional E is not only stationary but
has a minimum for the correct orthonormal ground state
of the system. Therefore, the unconstrained minimum
of the functional E coincides with the minimum of Fgg
subject to the orthonormality constraints. We can there-
fore find the ground-state {|x;)} and the ground-state
energy Eo by means of an unconstrained minimization of
the functional E. The advantage of such a formulation
is that no explicit orthonormalization is required, since
the second term Y 1. =1(8ij — 6i5)Hji in Eq. (21) forces
the wave functions toward orthonormality. In general,
unconstrained minimization can be performed efficiently
by means of standard minimization techniques such as
conjugate gradients (CG’s). Thus it may be possible
to improve upon algorithms which explicitly enforce the
constraints. On the other hand, the function F is explic-
itly nonlinear in the variables |x;), so that the solution
may be more complex. We therefore conclude that it is
worthwhile to study the direct unconstrained approach,
and also to consider possible comparisons of this method
with the usual constrained methods? and with other ap-
proaches which explicitly consider the S—! matrix.20:21,36

The functional we have defined is related to the one
proposed by Wang and Teter,'® who also use localized
functions and an unconstrained minimization approach.
There are, however, two salient differences between the
two schemes. (i) Wang and Teter use normalized LWF’s
and a penalty function to enforce approximate orthogo-
nality. This penalty function is different from the second
term of our Eq. (14) in that it contains a single adjustable
parameter ) instead of our Lagrange matrix A;;, and is
built to minimize the overlap between neighbor functions,
whereas our functional has no free parameters and simul-
taneously achieves normality and orthogonality. The pa-
rameter A must be chosen properly, since the results de-
pend critically on its value. (ii) Wang and Teter restrict
the LWF’s to the orbitals of the two atoms forming each
bond, and as a consequence they must reparametrize the
tight-binding interactions in order to obtain close agree-
ment with exact diagonalization results. We do not need
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to do that, since our energy functional gives an accurate
variational approximation to the exact energy when the
localization range is large enough (typically two shells
of neighbors for silicon). Obviously, our approach re-
quires a larger computational effort, but eliminates any
parametrization.

It is interesting to note that a whole family of func-
tionals can be generated in the same spirit as Eq. (21).
As we have discussed, Eq. (20) only holds strictly for
the orthonormal solution that minimizes the energy Eq.
(11), and therefore S = 1. If, however, we are near that
orthonormal solution, so that S;; —d;; are small, we could
think that a solution better than A;; = H;; to Eq. (19)
would be obtained if the departure from orthonormality
was taken into account. This can be done if we express
Eq. (19) as

H-A+(@-S)A=0, (22)
so that
A=H+(1-S)A. (23)

We can consider Eq. (23) as a recurrence relationship for
A so that, given an estimate A(™), a better one can be
obtained:

AP = H 4 (1 — S)A™). (24)

If we use the exact value of A at the solution [Eq. (20)]
as a zeroth-order approximation, then the successive ap-
proximations to A can be written as

AN =H4+@-8)H+ ---(1-8)"H

= i (1—S)™H . (25)

m=0

These approximations of A generate a family of function-
als EW) when inserted in Eq. (14):

N
EW) = 2Ty [Z (1 - S)'"H} . (26)

m=0

The functional defined in Eq. (21) is a member of this
family, and corresponds to the case N/ = 1.

The same family of functionals has recently been de-
rived independently by Mauri et al.l” using a different
line of reasoning. Instead of using the Lagrange multipli-
ers method to obtain the minimum of the energy Eq. (11)
subject to the orthonormality constraints, their starting
point is the band structure energy for the general case of
nonorthonormal states, Eq. (7). They then replace the
inverse of the overlap matrix by its Taylor series expan-
sion in (1 — S) up to an order N:

N
sTt=f-@-S Tt~y @-s", @0

which, when inserted in Eq. (7), produces the family of
functionals Eq. (26). In addition, Mauri et al. showed

that functionals EW) corresponding to odd-A have the

desired property of having a global minimum at that sta-
ble point. Therefore, if we want to be guaranteed to find
the solution by means of standard minimization tech-
niques, only the odd-N functionals are valid candidates.

It is worth noticing that all the odd-A functionals of
this family are equally valid for finding the ground state
of the system and that the solution will be independent
of which one is used: they will all give an orthonormal
set of states {|x;)} which span the occupied subspace
(ground state). However, the numerical performance of
the functionals will differ in the number of iterations dur-
ing the minimization procedure and the number of oper-
ations per iteration. It is clear that high-A/ functionals
will require more operations per iteration, since they re-
quire more matrix multiplications to calculate the pow-
ers of (1 — S). Besides, as we will discuss in Sec. V,
it is crucial to an order-N scheme that the H and S
matrices be sparse. ' Higher-A functionals will contain
higher powers of (1 —5) which will be less and less sparse,
eventually destroying the order-N scaling. We therefore
have restricted our calculations to the simplest functional
N =1, described by Eq. (21).

Although we will only apply the present method to
non-self-consistent Hamiltonians, it can be also used
in self-consistent problems, like the Hartree-Fock?® and
LDA methods. There one needs the charge density, which
for nonorthonormal states is defined by Eq. (6). The def-
inition consistent with our energy functional, in which
S~! is approximated by (21 — §), is

N
A(r) =2 x:i(r)(26i5 — Sij)x; (r). (28)

7,j=1

This function satisfies p(r) = p(r) for the proper or-
thonormal solution, and is defined for all x;(r). Asshown
by Mauri et al.,'” the Kohn-Sham energy Eq. (9) in
which the band structure energy is computed using the
functional FE, and the charge density is approximated by
Eq. (28), has a minimum for the orthonormal Kohn-
Sham solution, and can therefore be used to find the
self-consistent ground state. Some problems can appear,
though, since the electron number is not conserved and
one may find g(r) < 0 for some S. This can only happen,
however, in the initial steps of the minimization if a very
bad initial guess is made. If a reasonable initial guess is
used, no problems should appear. Furthermore, in a few
iterations of the minimization of E, the wave functions
become more orthonormal, and so the process is stable.
At the end of the minimization the electron density will
be the exact one, and the number of electrons will be the
correct value, 2N.

The present formulation is of general interest, not only
for the linear scaling algorithms, but also for the standard
iterative minimization methods with extended wave func-
tions. The advantage of the new functional is that, being
easy to compute, it avoids the need of the orthonormal-
ization step. When used with extended wave functions
(i.e., without imposing the localization condition), the
method still scales as N3. In order to fully exploit the
present formulation and obtain an order-N scaling, we
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turn now to use localized wave functions. As discussed
in Sec. III, when the wave functions are localized, each
of them only interacts with those in the same region, a
number independent of the system size, leading to order-
N scaling. This scaling is preserved regardless of the type
of basis functions used to express the LWF’s:

M
‘Xi> = Z Cﬂil¢#>' (29)

p=1

If we use localized basis orbitals (atomic orbitals or Gaus-
sian functions) the finite localization of each LWF is eas-
ily achieved by expanding it only in terms of those |¢,)
which are inside the localization radius R., so that there
is only a limited number (independent of the size of the
system) of Cy; # 0 for each LWF |x;). The Hamiltonian
and overlap matrix elements between LWF’s

M
Hy = (xilH|x;) = Y ChikuCu; (30)
pv=1
M
Si; = (xilxs) = D ChisuwCu; (31)
pr=1

are given in terms of h,, = (¢,|H|¢,) and s, = ($u|d.),
the matrix elements in the basis orbitals (which are zero
for orbitals centered on distant sites). The number of
nonzero matrix elements H;; and S;; is proportional to
the system size, while the cost of the calculation of each
of them is independent of the size of the system, since
in the sums in Egs. (30) and (31) one considers only
those basis orbitals |¢,) and |¢,) within the localization
range of |x;) and |x;), respectively, and that interact with
each other via h,, or s,,. Therefore the calculation of
all the nonzero matrix elements is an order-V operation.
Obviously, the computation of £ in Eq. (21) is also order-
N.

If plane waves are used, the localization of the wave
functions can be achieved with the methods proposed
by Galli and Parrinello!® (which perform the calculation
dealing with the inversion of the overlap matrix that
we avoid). In that case, the Hamiltonian and overlap
matrix elements and the charge density can be calcu-
lated in a small mesh around each LWF, which using
fast Fourier transform algorithms would require an effort
proportional to N.

V. PRACTICAL IMPLEMENTATION OF THE
ORDER-N SCHEME WITH A LOCALIZED
BASIS

As we described in Sec. IV, when localized basis or-
bitals are used, an order-V scaling obtains. In the calcu-
lations, both the CPU time and the memory storage are
optimized using sparse matrix multiplication routines,
since only the nonzero elements of the product matrix
are calculated and stored.

The search for the minimum of the energy functional

as a function of the expansion coefficients C,; can be
performed with several methods,? such as Car-Parrinello-
type molecular dynamics or conjugate gradients. In both
cases one needs to calculate the gradients of the energy
functional at a given point. From Egs. (21), (30), and
(31), the gradients can be expressed as

3E M M N
acs, = 43 HuCui—2Y ) SuCy;iHj

v=1 v=1j=1

M N
—2) "> H,C.;Sj. (32)

v=1j3=1

which, again, can be calculated performing sparse matrix
multiplications. Note, however, that not all the nonzero
elements F /0C};; have to be calculated, only those cor-
responding to the coefficients C,; that we allow to be
nonzero (i.e., those within the localization radius for each
LWF).

If the minimization is performed following the
conjugate-gradients scheme,? for each step (n) of the min-
imization one must calculate the gradient at the current
point C‘(;) using Eq. (32), and then determine the min-

imization direction ng), which is conjugate to all the
former directions. The energy has then to be minimized
along the line defined by C,; = C‘("Z) + /\D‘(Z). It is very
convenient to notice that the energy functional E is a
quartic function of the coefficients C,;, if the Hamilto-
nian is not self-consistent, or if it is held fixed during the
line minimization. Therefore, the eract line minimum
can be found, as proposed in Ref. 15, by computing the
energy at five different points of the line. One can also
use the values of the energy and the gradient at the initial
point (A = 0) which are already calculated, and compute
only the energy for three other values of A. This proce-
dure has the advantage that it avoids the need for choos-
ing arbitrary “time steps,” and assures the convergence
towards the minimum.

In order to show the linear scaling of the algorithm, we
have performed a series of calculations for silicon super-
cells in the diamond structure with different numbers of
atoms, up to 1000. We have used an orthogonal tight-
binding model with first-neighbor interactions.*? Only
the I" point was used in the calculations. The LWEF’s
were centered on bonds. In Fig. 4 we show the scaling of
the CPU time with the number of atoms in the supercell
for two different values of R, corresponding to LWF’s
confined to n = 26 and n = 38 atoms, respectively. The
number of conjugate-gradients iterations was restricted
to ten in all cases. As we will discuss in Sec. VIII, this is
a typical number of iterations in molecular-dynamics sim-
ulations. We observe that the CPU time scales linearly
with the number of atoms in the supercell. Obviously,
the time increases with the number of atoms included in
each localized function. For comparison, we also include
the CPU time for exact diagonalization, which clearly
shows a superlinear scaling.

Once the ground-state electronic energy has been cal-
culated by means of conjugate gradients or other tech-
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FIG. 4. CPU time vs number of atoms in the supercell for
c-Si. We show the results for exact diagonalization and for our
order-N scheme with localized functions confined to n = 26
and n = 38 atoms.

nique, one can find the forces between the atoms. These
are needed for performing molecular-dynamics simula-
tions, or looking for the equilibrium atomic configura-
tions. We will assume that we know the variation of the
Hamiltonian and the overlap matrix elements in the ba-
sis of atomic orbitals, so that we can calculate 8h,, /R,
and 8s,,/OR;. This is clearly the case for the empiri-
cal tight-binding method, and for the Harris functional
non-self-consistent version of the LDA that we will use in
Sec. VII. As suggested by Sankey and Niklewski,*! the
band structure force can be evaluated using a variation
of the Hellmann-Feynman theorem. Let us first derive
the forces for the traditional energy functional Eq. (7).
In that case,

_ 9Egs
oR,

8s—1 _,0H
R H+S a-R—,] . (33)

FPS = = —2Tr [

To calculate S~ !/0R; we can take into account that
S~1§ =1, so that

851 L 98 .,
= -5 " — . 34
oR; SRS (34)

From Egs. (30) and (31), we obtain

oH oh _  act ac

OH _ ot Oh o 9C 04 oth 98 35
R, aR," TR, T "orR, (35)
8s 8s _ act ac

95 _ st 9s 090" 1, 9C

R, o] oR, C+ R, sC+C SBRI (36)

If we take into account that the band structure energy
has been minimized with respect to the coefficients C,,; so
that 0Eps/0C),; = 0, after a cumbersome manipulation
one finds that the terms involving 8CT/8R,; and 8C/8R,
from Eq. (35) cancel with those from Eq. (36), so that
the forces read

FPS = —2Tr [s—lcf(%‘c]
l
Os

—11
+2’I‘r[5 CBR,

C’S“lH] . (37)

The derivation of the forces for the family of function-
als Eq. (26) follows the same lines:

N
SEW) 6(2_:0(]1 B S)m)
] D

BS _
Fio = R,

N
+y (- S)mg-g;] . (38)

m=0

In this case, the derivative in the first term is

o (X "
a‘a‘:(é‘“‘”)

m—1

N S
=3y > (- S)"a—Rl(n ) i 1))

m=1 n=0

Again, expressing H and S in terms of the matrices C,
Ct, h, and s, and taking into account that dEW) /0C,; =
0, one obtains

N oh
FPBS = —2Tr [Z(n - S)mcfa—Rlc}
m=0

N m-1

+2Tr[2 - 5)"07(—9‘?1%

m=1 n=0

xC(1 — S)m—l‘"H} . (40)

It is easy to see that Eq. (40) reduces to Eq. (37) when
N — oo, since S = 3> (1 — S)™. We also recover
the formulas derived by Sankey and Niklewski*! for the
orthonormal case S = 1. For the simplest functional
N =1, which we will use in our calculations, the forces
are

FPS = —2Tr [[n + (1 - 8)] cfa—ali—lc}

" Os
R,

+ 2Tr [C CH ] . (41)

We see that the calculation of the forces reduces again
to multiplications of sparse matrices, and can there-
fore be performed in order-IN operations. Note that, as
pointed out by Sankey and Niklewski,*! Pulay correc-
tions are not necessary, since we have taken derivatives
of the matrix elements, not matrix elements of the deriva-
tives.

VI. CONSEQUENCES OF THE LOCALIZATION

The localization of the wave functions can be viewed
as a constraint that we impose on our minimization. The
introduction of these “localization constraints” has sev-
eral important consequences in the form of the solutions
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and the properties of the energy functional.

(i) The energy minimum will be different from the ex-
act ground-state energy, since a number of degrees of
freedom has been removed (those C,; outside the local-
ization range). This occurs because, as we discussed in
Sec. III, the exactlocalized functions have long range tails
that we are removing. We have, however, a variational
approximation to the exact energy, since the minimum of
the energy subject to the localization constraints is ob-
viously higher than the unconstrained minimum. If the
localization range is very large, this approximation will
be very accurate, since the variables C),; that we will be
neglecting would be in fact very small. _

(ii) The solution that minimizes the energy E (21) sub-
ject to the localization constraints will not be a strictly
orthonormal set of states,* since the global minimum
of E cannot be reached in the constrained minimization.
In particular, nonorthonormality is favored by the fact
that nonorthonormal wave functions can be more local-
ized than orthonormal solutions.** On the other hand,
deviation from orthonormality is penalized by the sec-
ond term of Eq. (21). A trade-off between these two
effects is reached at the solution. The deviations from
the orthogonality will be larger if the localization range
is small, since in that case the energy gain will be more
important.

(iii) The localization constraints cause the energy func-
tional E to have shallow local minima and flat regions in
which the algorithm can be trapped for a long time dur-
ing the minimization of the electronic wave functions.
We have not found these problems if the wave functions
are allowed to delocalize. In that case, it appears that
the functional has a single minimum at the ground state
of the system, or, more precisely, a locus of equivalent
minima corresponding to unitary transformations of the
ground state, as discussed in Appendix A. Imposing the
localization constraints amounts to cutting the hypersur-
face defined by the functional E in the space of param-
eters C,; with planes corresponding to the localization
conditions C,; = 0. It is clear that the intersection can
have several local minima, even when the whole surface
had just one. Moreover, the minima will now be discon-
nected, since we have eliminated part of the dimensions
of the space. An example of these effects in a simple
system is shown at the end of Appendix A.

(iv) Another consequence of the localization con-
straints clearly seen in the illustration in Appendix A
is the symmetry breaking of the localized solutions. Al-
though the eract Wannier-type wave functions can be
made to have the symmetry of the system, when a local-
ization cutoff is imposed the solution that minimizes the
energy happens to break the symmetry. This point is fur-
ther discussed in Appendix A. In realistic applications,
like the Si and C systems discussed in Secs. VII and VIII,
this situation also appears. If we are constructing local-
ized functions centered in bonds, the lowest-energy solu-
tion consists of functions which are nonsymmetric with
respect to the two atoms in the bond, each of them being
slightly different from those centered on other bonds. To
arrive at this symmetry-broken solution we must start
the minimization with an initial guess that breaks the

symmetry, otherwise we will obtain a symmetric solu-
tion with higher energy. To that end, we can add some
small random numbers to the initial vectors, or give ran-
dom small displacements to the atoms to slightly break
the crystal symmetry. Clearly, this only applies to sys-
tems which have an internal symmetry, like crystals in
the equilibrium configuration. For disordered systems, or
crystals with thermal motion, the atomic disorder natu-
rally breaks the symmetry of the wave functions, and no
perturbation on the initial guess is necessary.

VII. ACCURACY OF THE SOLUTIONS
VERSUS LOCALIZATION RADIUS

In this section we will study the accuracy of the so-
lutions obtained with our order-N approach, as a func-
tion of the localization range imposed on the wave func-
tions. First we will study the case of crystalline sili-
con, to test the accuracy of static properties such as
the total energy, lattice constant, and bulk modulus.
Then we will analyze the accuracy of the atomic forces
in a disordered carbon system. In the applications of
this section, we have used the local-orbital, ab initio
total-energy molecular-dynamics method of Sankey and
Niklewski.*! The main approximations of this formula-
tion are (1) four confined pseudoatomic orbitals (one s
and three p’s) per atom, (2) nonlocal, norm-conserving
pseudopotentials,*® and (3) the non-self-consistent Har-
ris functional version of density-functional theory.® Note
that using the Harris functional keeps the Hamiltonian
fixed (no self-consistency is included), so, from a formal
point of view, this is a very precise analog of the empirical
tight-binding model. However, the basis is nonorthogo-
nal and the orbital interactions are obtained from first
principles.

The first system we study is crystalline silicon in the
diamond structure. The atomic basis orbitals used for
Si have a confinement radius of 5ap, producing third-
neighbor interactions and overlaps (29 interacting atoms
for each silicon). We have used a 512-atom supercell, re-
stricting the sampling of the Brillouin zone (BZ) to the
T’ point. In this case, the localized functions have been
centered on bonds. In order to break the symmetry of the
bond-centered wave functions (as discussed in Sec. VI),
we first obtain the solution for a slightly disordered cell,
and use this as an initial guess for the perfect crystalline
cell. In Fig. 5 are shown the results for the cohesive
energy, lattice constant, and bulk modulus versus the lo-
calization radius of the wave functions. We show the
percent error with respect to the exact solution obtained
by diagonalization. For a given cutoff radius R, we in-
clude in each localized function the two atoms forming
the bond, and all the atoms which are closer than R, to
either of these two atoms. The results show that the er-
ror in the cohesive energy decreases monotonically with
increasing localization cutoff, as expected from the varia-
tional character of the energy functional E. The accuracy
is excellent for R, larger than 3 A (i.e., including 26 or
more atoms in each LWF'), the error in the cohesive en-
ergy being smaller than 0.14 eV /atom. The lattice con-
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FIG. 5. Fractional errors vs localization cutoff R. for a

512-atom supercell of c-Si. The LWF’s were centered on

bonds.

stant seems to be very insensitive to the cutoff R., giving
errors of less than 1% in all cases. The bulk modulus is
the most sensitive quantity as expected, since it involves
the second derivative of the energy. However, the results
are very acceptable, the error being lower than 10% for
R, larger than 2 A.

In order to test the accuracy of the forces versus the
localization cutoff of the electronic wave functions, we
have performed a calculation of the vibrational spectrum
of a 64-atom cell of tetrahedral amorphous carbon (ta-
C). The cell was generated by Drabold et al.*” The most
important feature of this cell is that it models an amor-
phous tetrahedral network, and contains three types of
structural defects: sp? atoms forming 7 bonds, strain de-
fects with bonds angles larger than 150°, and stretched
bonds longer than 1.8 A. We therefore expect a large
variety of localized vibrational modes together with the
extended modes. The accuracy in the description of the
localized modes will depend on the accuracy of the forces
on the atoms in which each mode is localized. The atomic
orbitals used for carbon have a confinement radius of
4.1ap. The I" point was used to sample the BZ. The vi-
brational spectrum is computed by diagonalizing the dy-
namical matrix which is built computing the force acting
on every atom in the system when each single atom is dis-
placed a small distance from its equilibrium position.*®
Since only small displacements of one atom at a time are
involved, the minimization of the energy is extremely ef-
ficient in this case, taking fewer than five iterations for
each atomic displacement (using as the initial guess the
solution for the undistorted system). In Fig. 6 we show
the vibrational power spectrum for different localization
ranges for the wave functions, together with the exact
result. In this case, the wave functions were centered
on atoms (two LWF’s per atom). The results are in ex-
cellent agreement with the exact spectrum, being better
for larger R.. In all cases the spectral limits of the ex-
tended states band are accurately reproduced, as well
as the peak structure in the high-frequency part of the
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FIG. 6. Vibrational power spectrum for a 64-atom tetra-
hedral amorphous carbon cell. Each curve is obtained using
a different value of the cutoff of the localized wave functions
R, (indicated by each curve), except the one labeled “Ex-
act,” which was obtained using exact diagonalization. The
localized functions were centered on the atoms.

spectrum, which is due to localized modes in the defects.
A slight shift towards higher frequencies is observed for
lower values of the localization radius, which indicates
that the forces are larger than the exact ones when the
localization range is small. The small differences in the
spectra are probably due to the fact that the equilib-
rium structure of the cell is slightly different for different
R.. We therefore conclude that our order-N method pro-
duces forces which are accurate enough to describe a case
as complex as the vibrational structure of an amorphous,
defective network.

VIII. MOLECULAR DYNAMICS

In this section we apply our order-N approach to
molecular-dynamics (MD) simulations. We will first dis-
cuss the general application of our energy functional to
the standard quantum mechanical molecular-dynamics
schemes, in the absence of the localization constraint.
Then we will study the effects of the localization on the
MD generated by our method. We analyze the accuracy
of the dynamics that our scheme generates, and show
that, even though some difficulties appear as a conse-
quence of the localization constraints, the problems can
be overcome by means of standard techniques.

A. MD algorithms

The application of our scheme to molecular-dynamics
simulations is straightforward, given the simplicity of the
formulas for the calculation of the atomic forces. There
are essentially two different standard schemes for quan-
tum mechanical MD simulations, both of which can be
applied in the context of our order-N formulation.

(i) Car-Parrinello (CP) molecular dynamics.! In this
method, the system of ions and electrons is governed by a
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classical Lagrangian containing the physical ionic kinetic
energy, the total electronic and ionic potential energies,
and a fictitious electronic kinetic energy. The electronic
degrees of freedom then obey the classical equations of
motion dictated by the fictitious Lagrangian. The ionic
and electronic “trajectories” are then integrated simul-
taneously with a finite difference method.%® In this ap-
proach, the electrons are not in their ground state for
each ionic position, but they can be made to stay close
to the Born-Oppenheimer surface by choosing appropri-
ately the initial conditions and the fictitious electronic
mass. The advantage of the formulation is that the elec-
tronic energy need not be minimized for each ionic posi-
tion, with the consequent savings in time. On the other
hand, for the algorithm to be stable, the time step to
integrate the equations of motion must be small.

In our order-N formulation, the expression for the CP
Lagrangian takes the form

1 N M 2 1
£=§MZZC‘“+§

i=1 p=1 1

at

]\4[:[{12 —F [{C/_n'a Rl}] ) (42)

MZ

1

where the first term is the fictitious kinetic energy K,
of the electronic degrees of freedom, the second is the
total ionic kinetic energy Kj, and the third is the elec-
tronic and ionic total potential energy, which includes
the band structure energy functional Eq. (21). We have
assumed that the electronic wave functions are real. p is
a fictitious electronic mass parameter, that is chosen to
keep the electrons close to the ground-state surface. The
classical Lagrange equations of motion determine the dy-
namics of the ions and the electronic variables. For the
ions,

MR, =F,, (43)

where F} is the total force on ion I [which contains the
band structure force Eq. (41)]. The electronic variables
obey the equations of motion

_OB{CuRi)]

o (44)

l‘éui =

The derivative of the energy with respect to the coef-
ficients C,; is computed using Eq. (32). It is worth
noticing that, in the present formalism, it is not neces-
sary to include any orthonormality constraint term in the
Lagrangian, since the energy functional takes care of the
orthonormalization. In the standard CP techniques, one
has to keep the functions orthonormal during the dynam-
ics, either calculating the ezact Lagrange multipliers for
each time step, or performing an orthonormalization at
the end of the step (see Ref. 50 for a detailed discussion),
otherwise the total energy is not a constant of motion.
In our case this is unnecessary, since our energy func-
tional does not require orthonormal functions. During
the simulation the wave function will depart slightly from
orthonormality, but will oscillate about the orthonormal
state, since it is the minimum of the energy functional
Eq. (21). Since the equations of motion are derived
directly from the Lagrangian, the internal total energy

Uc = K.+ K1+ E[{C,i,R,}] is a constant of motion for
the trajectories generated by Egs. (43) and (44). The to-
tal energy of the ionic system (the physical total energy
Ur = K1 + E[{Cy;,R;}]) is not conserved, but, in sys-
tems with a gap, its value keeps very close to U, and ap-
proximately constant, if the parameter u is chosen small
enough so that the characteristic frequency of the elec-
tronic degrees of freedom is much larger than the ionic
frequencies.®! In that case, the MD generated provide
meaningful statistical averages in the microcanonical en-
semble.

In order to illustrate the former scheme, we have per-
formed a thermal simulation on a 64-atom cell of crys-
talline carbon in the diamond structure. We have used
the tight-binding total-energy model of Xu et al.5? using
the I" point to sample the Brillouin zone. We take a time
step of 0.13 fs (5.37 atu), and a fictitious electronic mass
# = 300 a.u. The ions are initially in the equilibrium
crystalline positions, and the initial temperature is set to
400 K. The ionic trajectories were integrated using a fifth-
order predictor-corrector algorithm,® and the electronic
variables were solved with a velocity Verlet algorithm.53
In Fig. 7 we show the total potential energy E, the physi-
cal total energy Uy, and the constant of motion U, which
is constant within the numerical accuracy. The physical
total energy Uy is approximately constant, with oscilla-
tions of about 0.2 meV /atom, showing no significant drift
during the simulation. The oscillations in the potential
energies reflect the ionic thermal oscillations around the
equilibrium crystal positions. These oscillations, as well
as the ionic trajectories, are indistinguishable from those
generated by a MD scheme with exact diagonalization,
over periods of picoseconds. This shows that the energy
functional E is appropriate for molecular-dynamics sim-
ulations, and that, as we discussed above, it is not nec-
essary to treat the orthonormalization of the wave func-
tions during the simulation, in contrast with the standard
iterative minimization methods.
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FIG. 7. Car-Parrinello molecular-dynamics simulation of
diamond, with an initial temperature of 400 K. No localization
constraints were imposed. We show the evolution of the total
potential energy E (full line), total energy Ur (dashed line),
and the Car-Parrinello constant of motion Ug (dotted line),
as a function of time.
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(ii) Conjugate-gradients dynamics. In this scheme, for
a given atomic configuration, the electronic energy [Eq.
(21) in our case| is minimized by means of a conjugate-
gradients minimization. Once the electronic wave func-
tions that minimize the electronic energy have been de-
termined, the atomic forces [Eq. (41)] are computed,
and the classical equations of motion for the ions are
integrated by means of a Verlet algorithm or other fi-
nite difference method.*® Within this approach the elec-
trons are kept on the Born-Oppenheimer surface during
the simulation. This yields accurate atomic forces and
permits long time steps in the integration of the ionic
equations of motion, typically one order of magnitude
larger than those in CP dynamics. Under these circum-
stances, the total energy Ur = K1 + E[{CLi,Ri}] is a
constant of motion in the MD simulation. However, a
strict tolerance must be imposed on the minimization of
the electronic energy to obtain good accuracy, which can
lead to a relatively large number of iterations during the
conjugate-gradients minimization.

We have tested the CG MD scheme in the absence of
localization constraints in the 64-atom crystalline carbon
system discussed before. Again we use the I' point to
sample the BZ, and a fifth-order predictor-corrector al-
gorithm to integrate the ionic equations of motion. Now,
however, we use a larger time step of 1 fs (41.32 atu). At
each time step of the simulation, the electronic energy

" E was minimized within a tolerance of 1078. In order
to reduce the number of iterations in each minimization,
instead of using the solution of the former time step, we
make a simple linear extrapolation®* for the initial guess
at time t,, using the values of the wave functions at the
times t,_1 and t,_2:

Cu'i(tn) = Cui(tn—l) + [C;Li(t‘n—l) - C‘“'(tn_z)] . (45)

This reduces the average number of iterations to about
four. We show the results for the potential energy E and
the total energy Uy in Fig. 8. We see that the total en-
ergy Uy is nearly constant throughout the simulation, the
energy drift being smaller than 0.4 meV/atomps. The
evolution of the potential energy is identical to the one
obtained in the Car-Parrinello simulation.

B. Molecular dynamics with localized wave functions

Once we have demonstrated the applicability of our
energy functional to the standard MD schemes, we study
the effect of the localization constraints on the dynam-
ics generated by our order-N method. As we discussed
in Sec. VI, when the electronic wave functions are re-
quired to be localized there are serious changes in the
properties of the energy functional E that will have an
important effect in the molecular dynamics. In partic-
ular, the difficulty of minimizing F is a serious obstacle
in using the present scheme. If the number of iterations
required to minimize the electronic energy to the desired
tolerance is too large, we would be losing the advantages
of the order-N scaling. This, however, can be avoided as
is shown below. We have studied the same system as in
Sec. VIIT A, namely, the 64-atom supercell of carbon in
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FIG. 8. Conjugate-gradients molecular-dynamics simula-
tion of diamond, with an initial temperature of 400 K. No
localization constraints were imposed. We show the evolution
of the total potential energy E (full line) and the total energy
U; (dashed line) as a function of the time.

the diamond structure with an initial temperature of 400
K. In all the cases, we have used wave functions centered
on bonds, with a localization radius of 2.6 A, for which
there are 26 atoms in each LWF.

We start with the CG scheme. We have studied the
quality of the MD generated using different tolerances in
the minimization of the electronic energy E. In Fig. 9 we
show the evolution of the total energy U; with the simu-
lation time for three different values of the relative toler-
ance 7 = 1078, 1077, and 10~6. In all three cases, there
is an appreciable drift in the total energy. For the most
strict tolerance of T = 108, we see that the drift is con-
tinuous, with an energy loss of about 19 meV/atom ps.
In this case, the average number of CG iterations per
simulation time step is 15, considerably larger than the
one corresponding to the nonlocalized case for the same
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FIG. 9. Total energy U; vs time for several conju-

gate-gradients MD simulations of diamond, with an initial
temperature of 400 K. The localized functions are centered
on bonds and are restricted to 26 atoms. We show the results
for different tolerances in the CG minimization: 107% (full
line), 10~7 (dashed line), and 10~® (dotted line).
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tolerance. For the less demanding tolerances of 10~7 and
1076, we see that the total energy suffers jumps with
time and a larger drift. The jumps are due to the fact
that the energy functional has local minima and flat re-
gions, as discussed in previous sections. If the tolerance
in the minimization is not strict enough, the electronic
wave functions get trapped in a local minimum for some
time, forcing the total energy to increase. Then, as the
atoms move, the electronic variables are eventually able
to escape the local minima into a lower-energy solution,
and the total energy decreases suddenly. An analysis of
the number of CG iterations per time step indicates that
this number is maximum at the points of sudden decrease
in the total energy (about five times larger than the aver-
age), showing that the wave functions are finding a path
to another minimum.

One can, alternatively, use a fixed number of CG iter-
ations per time step, instead of minimizing the electronic
energy up to a certain tolerance. We show the results
of such an approach in Fig. 10, for different numbers of
CG iterations. We can see that, with 100 iterations per
time step, there is still an energy loss, but it reduces to 4
meV /atom ps. The energy drift increases with decreasing
number of iterations, as expected. However, we see that,
even in the case of 10 iterations per step, the energy curve
is smooth, in contrast to the case in which we imposed a
certain tolerance in the minimization. This means that
the wave functions are able to escape from local minima
during the simulation and to relax to more stable regions.
We have therefore found a way to overcome the difficulty
of the local minima in the energy functional E. However,
only when the number of iterations is large are the forces
accurate enough to produce dynamics with a small en-
ergy loss. This would be a drawback in the application
of the method to MD, since a large number of iterations
would obviously decrease the efficiency greatly.

In order to understand the origin of this energy loss
and cure this problem, we analyze the MD generated with
the Car-Parrinello scheme, in the presence of localization
constraints. In Fig. 11 we show the results for the total
potential energy E, the physical total energy Uy, and the
constant of motion Uz. Whereas U is constant through-
out the simulation, indicating that the integration of the
equations of motion was accurate, there is a total energy
Ur loss of 13 meV/atom ps, similar to the CG dynam-
ics. The difference between U, and Uy is the electronic
fake kinetic energy. We notice that there is a continu-
ous heating of the electronic system, at the expense of
the decrease of energy in the ionic system (see Fig. 11).
This means that there is a transfer of heat between the
ionic and electronic systems, which makes the electronic
wave functions depart from the Born-Oppenheimer sur-
face. In the standard Car-Parrinello scheme, this situa-
tion is typical of systems in which the gap for the elec-
tronic excitations is very small or zero.?! In this case, the
characteristic frequencies of the electronic system over-
lap with those of the ions, and the adiabatic approxima-
tion breaks down, resulting in an energy transfer from
the ions to the electronic variables. In our case, even
if the system has a gap, the localization constraints in-
troduce small frequency modes in the electronic energy
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FIG. 10. Total energy U; vs time for several conju-

gate-gradients MD simulations of diamond, with an initial
temperature of 400 K. The localized functions are centered
on bonds and are restricted to 26 atoms. We show the results
for a fixed number of CG iterations per time step: 100 (full
line), 30 (dashed line), and 10 (dotted line) iterations.

surface (flat energy regions) that are responsible for the
energy transfer.>® The similarity in the dynamics of our
formulation with localization constraints and the stan-
dard Car-Parrinello scheme in metals suggests a possible
way to overcome the energy loss of the ionic system to
the electronic wave functions. As proposed by Blochl and
Parrinello,?® one can avoid the energy transfer by cou-
pling two Nosé thermostats®” ¢ acting as heat baths that
keep each system at a different temperature. The ionic
thermostat is set to the physical temperature wanted for
the simulation, whereas the electronic thermostat is kept
to a small temperature, to avoid the heating of the elec-
tronic system. The ionic dynamics generated within this
scheme are not microcanonical (since there is an energy
flow between the system and the thermostats) but rather
belong to the canonical ensemble. We have applied this
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FIG. 11. Total potential energy E (full line), total energy
U; (dashed line), and the Car-Parrinello constant of motion
U. (dotted line) as a function of the time for a Car-Parrinello
MD simulation of diamond, with an initial temperature of
400 K. The localized functions are centered on bonds and are
restricted to 26 atoms.
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procedure to our scheme, and show the results in Fig.
12. The temperature of the thermal bath for the ions has
been set to 200 K (which is the approximate equilibra-
tion temperature that the system reached in the previous
examples), and the target electronic kinetic energy was
8 meV. We see that now the physical total energy Uy is
not conserved, but it oscillates around the mean value
without any appreciable drift. The oscillations are due
to fluctuations in the energy in the canonical ensemble.
On the other hand, the electronic kinetic energy does not
rise, since the thermal bath absorbs the excess of energy
transferred from the ionic system.

We can use the same kind of ideas in the CG molecular
dynamics. Here, we do not need to use any Nosé ther-
mostat for the electrons, since they are minimized to (or
close to) the Born-Oppenheimer surface during the sim-
ulation. However, in order to avoid the energy loss in the
ionic system due to the lack of accuracy of the atomic
forces (especially when a small number of iterations is
used), we can couple a Nosé thermostat to the ions, set to
the physical temperature wanted in the simulation. This
is done in Fig. 13 for two different values of the num-
ber of CG iterations per time step. We see that in both
cases the total energy oscillates around the average value
with no overall drift, as in the case of Car-Parrinello MD
shown in Fig. 12. Notice that the dynamics generated
with 10 iterations per time step are essentially identical to
those generated with 30 iterations, showing that, once the
total-energy drift has been controlled with the Nosé ther-
mostat, the CG MD can be performed using a small num-
ber of iterations. This is of paramount importance for the
practical application of the order-N scheme to realistic
MD simulations. We also note that the results are very
similar to those obtained with Car-Parrinello dynamics
(with two Nosé thermostats) shown in Fig. 12, indicating
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FIG. 12. Total potential energy E (full line), total energy
U; (dashed line), and fake electronic kinetic energy K. (dot-
ted line) as a function of the time for a Car-Parrinello MD
simulation of diamond with two Nosé thermostats (one for the
electrons and one for the ions). The initial temperature was
400 K; the target ionic temperature was 200 K and the target
electronic kinetic energy 8 meV. The localized functions are
centered on bonds and are restricted to 26 atoms.
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FIG. 13. Conjugate-gradients MD simulation of diamond
with a Nosé thermostat coupled to the ionic system. The
initial temperature was 400 K and the target ionic tempera-
ture was 200 K. The localized functions are centered on bonds
and are restricted to 26 atoms. We show the total potential
energy E and the total energy U; as a function of time for
two simulations with 10 and 30 CG iterations per time step,
respectively.

that the results are robust and do not depend on the de-
tails of the simulation algorithm. From a practical point
of view, the choice between Car-Parrinello and conjugate-
gradients dynamics depends mostly on the computational
difficulty of calculating the atomic forces, depending on
the particular model being used. Since the CP approach
requires the calculation of the forces more often (because
the time step is smaller), this method would be preferred
when this computation is cheap, as in empirical tight-
binding models. However, if the forces involve a large
numerical effort, the CG scheme is more economical.
The use of the Nosé thermostat allows us to perform
reliable order-N MD simulations, either within the Car-
Parrinello scheme or with conjugate gradients with a
small number of iterations. The dynamics generated cor-
respond to the canonical ensemble, not the microcanoni-
cal. This has advantages if we want to perform a thermal
annealing, or a thermal simulation, for example, since in
that case the calculation resembles the physical situa-
tion. However, in certain cases, one may be interested
in working within the microcanonical ensemble, i.e., at
constant total energy. This is the case, for example, for
the simulation of a phonon mode, in which the system is
not at thermal equilibrium. In this case, using a thermal
bath would not be appropriate. Here we propose a way
to perform constant-energy MD simulations, avoiding the
energy loss. The procedure is inspired by the success of
the Nosé thermostat in producing reliable CG dynamics
even when the forces are not accurate due to the small
number of iterations. In particular, the fact that, using
the Nosé thermostat, the dynamics are essentially identi-
cal when the number of iterations is 10 (where the atomic
forces have larger errors) or 30 iterations suggests that
the errors in the forces are random and that on supplying
the energy lost (with the Nosé thermostat) the difference
in the trajectories is negligible. In this case, we could
perform constant-energy MD simulations, restoring the
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FIG. 14. Conjugate-gradients MD simulation of diamond.
We show the total potential energy E and the total energy
U; for two simulations with five (dashed line) and ten (dotted
line) iterations per time step, using an “energy thermostat”
to conserve the total energy (see text). For comparison, we
also show the results using 100 iterations (full line) without
any thermostat. In all cases the initial temperature was 400
K and the localized functions are centered on bonds and are
restricted to 26 atoms.

energy lost in each time step by simply rescaling the ve-
locities in such a way that the total energy Uy is con-
stant. However, this could introduce discontinuous per-
turbations on the atomic movements, so we have used a
more refined procedure. We use the same formalism as in
the constant-temperature Nosé dynamics, but with a tar-
get ionic temperature that varies with time. The target
ionic kinetic energy at each time step is chosen as the ki-
netic energy that would make the total energy constant.
The effect of this “energy thermostat” is to restore the
missing energy to the ionic system, if some energy is lost
during the simulation, but in a smooth way. On the other
hand, if the system has no energy losses (i.e., the forces
are accurate), then the instantaneous kinetic energy at
each time is equal to the target kinetic energy (since the
energy is conserved), and the forces on the atoms due
to the “thermostat” would be zero throughout the sim-
ulation. We have tested this approach in the diamond
system discussed above. In Fig. 14 we show the results
using five and ten CG iterations per simulation step, and
compare them with the case in which the number of iter-
ations was 100 and no thermostat was used. We see that
the “energy thermostat” is effective in keeping the total
energy close to a constant value. The small oscillations
are due to the dynamic nature of the Nosé algorithm. It
is important to notice that the potential energy shows
the same behavior in all three cases, showing that the
use of the “energy thermostat” allows us to obtain, with
a small number of iterations, the same dynamics as we
obtain with as many as 100 iterations per time step. An
analysis of the trajectories leads to the same conclusion.
In any case, the errors involved in using the thermostat
and a small number of iterations are much smaller than
the typical errors due to the truncation of the localized
wave functions, as can be seen by comparing with the
curves in Figs. 7 and 8.

IX. CONCLUSION

We have introduced and rigorously analyzed a practi-
cal scheme for computing total energies and forces from
the electronic structure with linear system-size scaling.
The essential approximation of the method is the use of
the electronic truncation radius R., which is completely
controllable, and we recover exact results in the large-R.
limit. An energy functional was introduced that allows
the calculation of the ground-state energy without the ne-
cessity of explicitly orthogonalizing the wave functions.
We tested the method on diamond and tetrahedral amor-
phous carbon and found close agreement with conven-
tional calculations. We have found that the most delicate
part of the calculation is connected with truncating the
Wannier-like representation of the electronic states, and
described the error accruing from this truncation. Two
schemes were discussed for performing dynamical simu-
lation, based on conjugate-gradient and Car-Parrinello
dynamics. Due to the difficulty in minimizing the en-
ergy functional, and the consequent errors in the ionic
forces, we found that a Nosé thermostat produces real-
istic simulations without staying exactly on the Born-
Oppenheimer surface. Reliable molecular dynamics can
be performed in this way with a small number of iter-
ations in the electronic energy minimization, therefore
preserving the advantages of the order-IV scaling.

The present approach has features which can be use-
ful in other contexts. For example, the unconstrained
minimization could be useful in any of the current
methods? to avoid explicit orthogonalization. Similarly,
the method to reduce the effects of the errors in the forces
can be used in current MD methods which rely upon ac-
curate electronic minimization at each step.? Finally, the
construction of Wannier (or Wannier-like) functions is
useful in itself.
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APPENDIX A: PROPERTIES OF THE ENERGY
FUNCTIONAL

In this appendix we will study the stability of the new
energy functional E. We will describe under what condi-
tions the energy functional E has a lowest bound (i.e., a
global minimum) or at least a local minimum at the cor-
rect position (i.e., the subspace of the occupied states).
We will also illustrate the features of the localized solu-
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tions, discussed in Sec. VI, with a simple example.

In this appendix we will work in terms of the eigen-
vectors of the Hamiltonian H (which, for the sake of
simplicity, will be non self-consistent). If the Hamilto-
nian is defined in an M-dimensional space (where M
will be the size of the basis set), we will define the set
{|¥:),i =1,..., M} as the (orthonormalized) eigenvectors
of H , with eigenvalues ¢;, which will be assumed to be set
in growing order. In that case, the correct band structure
energy equals the trace of H in the occupied subspace,
i.e., the sum of the N lowest eigenvalues of H.

As described in Sec. IV, our energy functional is de-
fined, for an arbitrary set of N nonorthonormal states
{Ixi),t =1,...,N}, by Eq. (21). To study the properties
of our functional, it is useful to express the states |x;)
in terms of the eigenvectors of H (this can be done since
the eigenvectors are a basis of the space in which His
defined):

M
i) =) Aijles), i=1,..,N. (A1)

i=1

Using this expression in Eq. (21) and taking into ac-
count that |1);) are orthonormal eigenstates of H, we can

express the energy functional E as

M M
E=2)¢-2) Y,
i=1 j

J
ij=1 k=1

N 2

ZA,-in,c—ajk] . (A2)

=1

From this expression we can already extract some of the
properties of the energy functional E

(i) E takes the correct value at the ground state of
the system; clearly, if the set of states for which E is

evaluated corresponds to the lowest eigenvectors of H,

then
‘Si j 9
ay= {8

and the value of our functional is the exact band structure
energy, Eq. (7):

j=1,..,N,

i=N+1,.,M, (A3)

(A4)

N
E = 2261;.
i=1

(ii) The functional E is invariant under unitary trans-
formations. If we apply a unitary transformation B on
the vectors |x;) to obtain another set of vectors

N
Ixi) = D Bijlxi)s i=1,..,N, (A5)
i=1

it is straightforward to see that the value of E evaluated
for the new set {|x})} equals that for the set {|x;)} (one
has to use the fact that B is unitary, so that BB = 1).

(iii) The energy functional E has a lower bound if and
only if all the eigenvalues of H are negative (i.e., the
Hamiltonian is negative definite). If any of the eigenval-

ues are positive (suppose it is the highest level e5r), E
has no lower bound, since we can build a set of vectors
|x:) of the form

Ixi) = |%:)
Ixn) = nl¥m)

(G=1,..,N—-1),
(A6)

(which corresponds to an excited state of the system,
where the N — 1 lowest levels are occupied, and the Nth
electron has been promoted to the state with positive
eigenvalue, allowing this state |¢as) to have an arbitrary
norm 7) for which the energy functional diverges to —oco
as n — oo:

N-1
E:ZZei—(n4—21)2)eM——>—oo.

=1

(A7)

If, on the contrary, all the eigenvalues are negative, the
functional E clearly has a lower bound: the first term
in Eq. (A2) is constant, and the contribution from the
second term is always positive.

(iv) Since A is a rectangular matrix of dimensions IV x
M, not all the terms inside the brackets of Eq. (A2) can
be zero simultaneously, since it would mean that ATA =
1 (where 1 is the M x M unit matrix), which is not
possible. One can see that this term reaches its minimum
value when

N
ZAiink =6k, Jk=1,...,N

=1
and (A8)

A,’j=0, Jj=N+1,...,M,

in which case the states |x;) are just any unitary transfor-
mation of the N lowest eigenvectors of H and therefore
constitute an orthonormal basis of the occupied subspace.
The important result that we have sketched is that, if all
the eigenvalues of H are negative, E has a global mini-
mum; this global minimum, for which the value of F is
the ground-state band structure energy, is multiple and
is located at any orthonormal set of states that span the
occupied subspace of H (i.e., at the point defined by the
N lowest eigenstates of H and at any unitary transfor-
mation of this set).

(v) Even if some of the empty eigenvalues of H are
positive, the functional E has a local minimum for the
ground state of the system, provided that all the occupied
eigenvalues are negative. To prove this we can calculate
the value of the functional for a point in the neighborhood
of the ground state. Such a point can be expressed, in
terms of Eq. (A1), as

(A9)

A = b;j+eiy, J=1.,N
47 e i=

where ;; are small. The difference in the value of the
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functional E at this point and the ground state is, to
second order in &;;,

B N N
E—FEgs= —2 2126,]-}-6],)
=1 =1
N JM
Z ez - e'rn im ° (A].O)
=1 m=N+

Each term in this equation is non-negative if (1) the ener-
gies of the occupied eigenstates are equal to or less than
the energies of the empty eigenstates (which is always
granted by definition) and (2) the occupied eigenvalues
have negative energy.

At points where the second-order expansion (A10) van-
ishes, we must go to higher terms in ¢;;. This happens

when
I —Ejiy ] = 1, ...,N
gij = { 0, J=N+1,.,M, (A11)
in which case one can verify that
3 N [N 2
B Eps=—23e [z ek,sk,] (a12)
i=1 j=1 Lk=1

Again, this is non-negative if the occupied eigenvalues are
negative. Therefore, we have shown that the functional
E has a local minimum at the correct ground state of
the system if all the occupied eigenvalues are negative. If
some of the occupied states have positive eigenvalues, an
energy shift € & € —7 is necessary to make the functional
stable. This can be achieved by making the transfor-
mation h,, — hu, — 7Sy, on the Hamiltonian matrix
elements between the basis orbitals.

Furthermore, as an important consequence of point
(ii), if a set of states {|x;),i = 1,...,N} is a global (or
local) minimum of the functional E, all the unitary trans-
formations {|x}),z = 1, ..., N} are also global (local) min-
ima of E. The demonstration for a global minimum is
trivial, since the energy is the same for the two sets. For
the case of a local minimum, one can see that any point
in the proximity of the set {|x})} can be expressed as a
unitary transformation of some point in the proximity of
the set {|xi)}, so that if the latter is a local minimum
then the former is also a local minimum.

In order to illustrate the consequences of the localiza-
tion of the wave functions on the solution, as discussed
in Sec. VI, we will consider a ring with four orbitals, la-
beled from 1 to 4. Orbitals 1 and 3 have on-site energy
€4 = —5 eV, and orbitals 2 and 4, have eg = —4 €V,
and the first-neighbor hopping is V = —1 eV. We con-
sider the half filling case, i.e., four electrons. We have,
therefore, two occupied wave functions, |11) and |¢2),
shown schematically in Fig. 15(a). As we have discussed,
any unitary transformation of these eigenstates has the
same energy. Therefore there exists an infinite number
of solutions, all with the same energy, since the number
of unitary transformations that one can perform is in-
finite (corresponding in this case to all the continuous
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FIG. 15. Scheme of the wave-function solution of the
four-atom ring. We show the weight of each wave function
on the orbital of each atom for (a) eigenvectors; (b) Wannier
functions; (c) and (d) two equivalent localized solutions (re-
stricted to be localized to three atoms, and centered on atoms
1 and 3).

set of rotations of the two vectors). This is reflected in
the fact that, if we look for the solution minimizing the
energy functional Eq. (21), we find different solutions
with the same energy depending on the initial vectors
used in the minimization. Analytically, we can build the
Wannier-type solution as the sum and difference of the
two eigenvectors:

) = ¢ (1) + [¥2) (A13)

b2) = = (1) + lta)). (A14)
where c is a normalization constant. These functions,
shown in Fig. 15(b), are centered on atoms 1 and 3,
respectively, and are symmetric. We now impose a local-
ization range on the solution: we build one wave function
centered on atom 1 and the other on atom 3, and we al-
low them to spread only to the neighbor atoms (i.e., the
first function is zero on atom 3, and the second is zero on
atom 1). We minimize the energy functional subject to
the localization constraint, and find that there are only
two equivalent global minima, shown in Figs. 15(c) and
15(d). Either of these two solutions is reached regardless
of the initial choice of vectors used in the minimization,
which means that these are the only global minima. The
localized solutions clearly resemble the exact Wannier-
type solutions shown in Fig. 15(b). Note that, when
a localization cutoff is imposed, the solution that mini-
mizes the energy breaks the symmetry, as we can see in
Figs. 15(c) and 15(d). Note that, even though each of
the localized wave functions does not obey the system
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symmetry, nevertheless, the total charge density has the
correct symmetry. For instance, atoms 1 and 3, which
should be equivalent by symmetry, have the same charge,
and the same is true for atoms 2 and 4.

APPENDIX B: CONNECTIONS TO DENSITY
MATRIX METHODS

In this section we provide alternate derivations and
discussions of the density matrix (DM) approach to
electronic-structure calculations.2”:?® In this method for
solving the electronic-structure problem, the orthogonal-
ity constraints are translated into idempotency condi-
tions on the DM p. A functional is then introduced
which possesses a minimum for idempotent p and min-
imum band energy. We discuss the properties of this
functional and its connection to other work in this Ap-
pendix.

Calculations using the DM as a variationally deter-
mined object were done by McWeeny,®! in which an al-
ways idempotent DM was varied to minimize an energy
functional. McWeeny also introduced the concept of the
“purification transformation:” a mapping which takes a
nonidempotent matrix into a more idempotent form. The
form of this map f:p; = pit1 is piy1 = 3pZ — 2p3, which
converges to an exactly idempotent matrix as 7« — oco. Ef-
fectively this map has a “fixed point” for idempotent p.
McWeeny showed that this sequence is just the steepest
descent minimization of the quantity Tr(p? — p)2. Smith
and Gay®? used the DM as a variationally determined
object in solid state electronic-structure calculations on
a Wannier function basis. They also introduced a suc-
cessive approximation scheme for computing p.

Li, Nunes, and Vanderbilt,?” and, independently,
Daw?® have shown how to exploit the McWeeny purifica-
tion transformation to produce a linear scaling algorithm
for electronic computations in solids. In their method
they assume an orthonormal basis set, and propose an
energy functional E = Tr[(3p? — 2p%)(h — u)], for chemi-
cal potential . We call this the LNVD functional in what
follows. Note that the trace of the LNVD functional is
taken in the whole Hilbert space, i.e., the space spanned
by the basis set, and not only the occupied space, as in
our functional Eq. (21).

First, we provide a new derivation of the LNVD density
matrix functional, and show how to convert the nonholo-
nomic idempotency constraint into holonomic form, to
obtain the form of the DM functional from a variational
calculation. We need a functional which (1) minimizes
the band energy Tr(ph), (2) has this minimum when p
is idempotent, and (3) occupies exactly N states. Con-
dition (2) is easily written as a holonomic constraint if
we note that, if the basis is orthonormal, it is equiva-
lent to pu, = Y, purpr,- We therefore apply the usual
Lagrange method which is ideally suited for a holonomic
constraint optimization problem, and therefore define the
auxiliary functional

B=2 [Tr(ph) — u[Tx(p) - N]

- Z A/\V [pAU - Z p/\o'pau:’]
Av o

for A,, Lagrange multipliers, with u the chemical po-
tential and NV the number of electrons. Unconstrained
variation of p, such that 6E/dp,, = 6E/§A,, = 0, im-
plies that the matrix of Lagrange multipliers satisfies

(B1)

h+A—Ap—pA=0. (B2)

Since, at the solution, p is idempotent and commutes
with H, a solution to Eq. (B2) is A = —(h — u)(2p —
1). While this is only rigorously exact for the correct
density matrix, it can be used even for p deviating from
the correct solution, in a fashion similar to the discussion
in Sec. IV for our orbital formulation. Substituting this
A into Eq. (B1) yields the LNVD DM functional.

As currently implemented, the DM method requires
initial guesses for the chemical potential u and the DM.
The former requires some global information about the
density of states which is readily obtained by using
recently proposed statistical methods.?®> This method
yields an efficient order-N guess for the Fermi level. Sim-
ilar methods can be used to estimate the full density
matrix when used with approximate (polynomial) repre-
sentations of the density operator.

Next we prove that this DM functional possesses a lo-
cal minimum at the correct ground state. Let p be the
correct density matrix and § be a small, arbitrary matrix.
We study the energy of the proposed DM functional for
small variations § about the exact p and determine con-
ditions for which E has a local minimum. We compute

AE = E(p+6) — E(p)- (B3)
Simple manipulations show that to second order in § we
have

AE = 4 Tr[6%(1 — 2p)(h — p)]

+ 2Tr[5(1 — 2p)5(h — p))]. (B4)
There exists a unitary transformation U which simulta-
neously diagonalizes h and p. By trace invariance, we
may evaluate AF in this diagonal representation to ob-
tain

AE = 4 ZSZV(I —2ny)(€a — 1)

+23782,(1 - 2n,) (ea — ), (BS5)

where €, are eigenvalues of h and n, are the eigenvalues
of the DM (the occupation numbers), and 6 = UTU.
The DM calculations are implemented at fixed p, which
implies some N. For any such case, there exists a correct
density matrix p about which we study the effect of the
arbitrary perturbation. For variations about this p, we
clearly have AE > 0, since éﬁu > 0 always, and for e, > u
the occupation numbers n, are zero, whereas for ¢, < u
the occupation numbers n, are 1. Note that this p is
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not the physical DM unless u = €p, the Fermi energy.
Nevertheless, this argument establishes the existence of
a local minimum in a ball around p suited to a specific
. In practice, e must be found by varying p until the
correct N is obtained.

It is possible to express our orbital-formulated func-
tional in the language of the DM. Using the lowest-
order approximation for the inverse of the overlap ma-
trix, S~ = (2 — §), our energy functional takes the form
given by Eq. (21). Substituting the expressions for H
and S, we obtain

E=2|Y 2Ry hyu — (RsR),, hu |, (B6)
or #V
E = 2Tr[(2R — RsR)h], (B7)
where we made the identification that
Ry =) CpiCui (BS)

i,0cc

Here, R is a trial DM which coincides with the exact DM
p only when E is a minimum, or equivalently when the
localized orbitals x; can be expressed as a linear combi-
nation of only the occupied states of the Hamiltonian.

The stability of our orbital procedure is proven in Ap-
pendix A. We note that direct use of the DM form of the
functional [Eq. (B7)] would not yield a convergent proce-
dure to estimate the DM, although when implemented in
orbital language the method is very robust. The reason
for this apparent discrepancy is that by construction, the
orbital method involves IV electrons (the rank of H is V).
No such constraint is explicitly built into the functional
of Eq. (B7), in which the overlap, Hamiltonian, and R
are of dimension M. To see this more clearly, note that
the functional derivative of Eq. (B7) gives

6F
SR [2 - (Rs+ sR)]h (B9)
which for negative definite A and an orthonormal basis
vanishes only for R = 1, i.e., a solution producing uni-
form weighting of all the states, which is of course un-
suitable for projecting out a part of the spectrum of H
or R. In other words, F is stationary for a nonidempo-
tent R. The LNVD functional overcomes this difficulty
at the expense of introducing a more complex functional
and the introduction of a chemical potential determined
ex post facto.

The LNVD functional can be derived by using combi-
nations of the possible functionals described in Sec. IV,
where we showed that different Taylor polynomial ap-
proximations to $~! yield a hierarchy of functionals with
minima coinciding with the Kohn-Sham minima. Pro-
vided that the Hamiltonian is negative definite and the

truncation is made at an odd order, the global minimum
of the functional is identical to the Kohn-Sham minimum.
It is easy to see that any linear combination of two such
polynomial approximations to S~! also leads to a solu-
tion if constructed so that the approximation for S~ re-
duces to the unit matrix when S = 1. The first two Tay-
lor approximants to S~ are 71 (S) = 1+(1—-S) =215
and 73(S) = 1+ (1 — S) + (1 — )% = 31 — 35 + S2.
The LNVD functional is just 3m; — 2m, = 35 — 252. Of
course there are many other such combinations which
have the same property, so that the LNVD functional is
not unique. It is, however, the polynomial DM functional
involving the lowest possible powers of p while meeting
the necessary stability criteria.

We may view the LNVD method as stemming from an
alternate approximation for S™! ~ 3§ — 252. This is
worthwhile, since we have made no assumptions that the
basis is orthogonal, and can simply rewrite the functional
implied by this form for S~! to obtain a DM functional
appropriate for a nonorthogonal basis set. In particular,
we have

Tr(S™'H) ~ Tr[(3S — 2S5%)H]. (B10)
Using the definition of R [Eq. (B8)], the definitions of
H and S in terms of h and s, and trace invariance, it is
easy to see that Eq. (B10) may be rewritten as

Tr[(3RsR — 2RsRsR)h]. (B11)

While we have not studied the stability of this functional
in detail, we have found it to be stable in simple test
cases. The same generalization of the LNVD functional
for nonorthonormal basis sets has recently been derived
by Nunes and Vanderbilt®3 following a more fundamental
approach.

In terms of computational efficiency, there are some
advantages to the orbital formulation. (i) The number of
electrons is fixed by the construction of our functional.
The localized orbitals x; may always be expressed as a
linear combination of the eigenvectors ;. Our conjugate-
gradient search iteratively removes those parts of the x;
which are associated with eigenvectors conjugate to un-
occupied eigenvalues. Thus, so long as the x; are linearly
independent [so that rank(h) = N], we are bound to com-
pute the correct energy of an N-electron system when we
are at the minimum of the functional, so no chemical po-
tential constraint is needed. (ii) An additional advantage
of our scheme is the possibility of making a physical guess
for the x;’s. A natural guess in a covalent system is to
construct bonds. In ¢-Si, for example, this yields much
better convergence than simply starting with a random
guess for the orbitals, which is effectively equivalent to
the simple starting guess of p,, = §,,/2 used by LNVD.
(iii) Finally, this method may be viewed as an effective
way to find Wannier functions, which are useful in many
ways for constructing physical quantities.
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