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We study the longitudinal relaxation time T, for the nuclear spins of ortho-hydrogen molecules
in a para-hydrogen or a hydrogen deuteride (HD) matrix. Phonon-driven molecular reorientations
give rise to both a temperature- and concentration-dependent modulation to the electric-
quadrupole-quadrupole-induced electric-field-gradient couplings at ortho sites and provide an im-
portant mechanism of nuclear spin-lattice relaxation for experimentally accessible concentrations
and temperatures. The well-known ¢3/3 law for T, is recovered for the ortho-para system. We cal-
culate explicit distributions of relaxation rates as a function of concentration, temperature, and
magnetic field. These functions are then applied to ortho and para mixtures and HD. For both sys-
tems we find satisfactory agreement with experiment, including temperature and concentration

dependence that has been previously unexplained.

I. INTRODUCTION

This is the second in a series of papers with which we
intend to improve the theoretical understanding of the
nuclear spin relaxation properties of mixtures of ortho
and para hydrogen. Here we focus our attention on low
concentrations of ortho-hydrogen (o-H,) in a para-
hydrogen (p-H,) or hydrogen deuteride (HD) host. In the
first paper of this series,! we calculated the infinite-
temperature electric quadrupole-quadrupole (EQQ)
correlation functions for o-H, concentrations above
¢=0.2. In that paper, we demonstrated that it was
sufficient to consider only the EQQ interaction between
o-H,molecules for high concentrations. For high enough
ortho concentration, the local environment of all ortho
molecules is fairly similar, and each o-H, interacts rough-
ly equally with several neighbors. This strongly coupled
many-body interaction leads to frequent, mutually in-
duced transitions between the different states of the
molecular angular momentum or “molecular spin.” This
state of affairs is usually called “homogeneous broaden-
ing.” For low concentrations, however, the local envi-
ronment changes dramatically! from one o-H, site to
another, for ¢ <0.1. This spatial inhomogeneity is even-
tually enough to quench the homogeneous band formed
by the EQQ interaction. It is the purpose of this paper to
investigate this low-concentration regime, and to explain
what mechanisms are responsible for the relaxation that
is observed in experiments.?”’

Experiments measuring T'; for mixtures of o-H, and p-
H, have shown a rather surprising temperature and con-
centration dependence.? In studying low o-H, concentra-
tions, Buzerak, Chan, and Meyer2 have observed a tem-
perature dependence in 7T; which is completely unex-
plained by theory. Hardy and Gaines® have seen a spec-
tacular simultaneous temperature and concentration
dependence for T for o-H, in HD. For concentrations
c¢~10"*or less, T, can vary over an order of magnitude
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for the temperature in the range 1.2 < T <4 K while also
depending heavily on ¢. In an attempt to explain their
findings some researchers® have investigated a total relax-
ation rate I',,,; which tries to decouple the concentration
and temperature dependence on 7', and which takes the
following form:

1/T, =T =T(T)+Tyc), )

where ¢ denotes ortho concentration, and is valid if I'";
and I', are independent relaxation mechanisms. In Eq.
(1), we assume that I'; is due solely to phonons and TI'; is
dependent upon the EQQ interaction, usually with the as-
sumption that there is a homogeneous EQQ band. If the
form of Eq. (1) was valid, we would anticipate the ex-
istence of two regimes with I'; dominating for one and T,
for another with a small crossover regime between. We
would expect the crossover region to be small because of
the very strong temperature dependence of I',~T"7. Yet
this plausible picture is not borne out by the experimental
data of Hardy and Gaines.

The failure of Eq. (1) suggests that the phonons drive a
concentration-dependent relaxation mechanism. In this
paper we develop a model which includes the effects of
phonon-induced molecular reorientations and the resul-
tant modulation of an electric-field gradient (EFG) ex-
perienced at o-H, sites and show this to be an important
relaxation mechanism for low concentrations. Our basic
physical picture is the following. Consider a particular
reference 0-H, molecule in a dilute lattice. This molecule
experiences a time-dependent EFG due to the molecular
reorientations of its ortho neighbors. For a variety of
concentrations and temperaures this will involve many
such neighbors. These reorientations are not due to a
homogeneous band formed by the EQQ interaction, but
are induced by phonons and thus the associated reorien-
tation rate is strongly temperature dependent. In this pa-
per we will work out the consequences of this phonon-
driven modulation of electric-field gradients and gain in-
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sight into the temperature dependence of the nuclear spin
T, data for 0-H, in p-H, and HD hosts.

Other approaches to the low-concentration limit have
often involved the statistical theory of Harris® and Sung.’
Here one starts with the assumption that each molecule is
dominated by one or at most a few other molecules. One
then takes the local or effective field at a given site to be
additive, static, and dependent only upon the locations
and configurations of the other o-H, molecules in the lat-
tice. A given set of spin locations and orientations then
implies a spectrum. This is averaged over all possible
configurations and states to produce a spectral function
which is supposed to be responsible for nuclear relaxa-
tion. There are difficulties with this picture. First, the
statistical model is a theory based only on inhomogenous
broadening, and thus, if taken literally, can never lead to
the relaxation of the spins. That is, it is the transverse
fluctuations of the H, molecular angular momentum or
spin that induce the T'; nuclear relaxation. An inhomo-
geneous broadening of the molecular correlation function
with no real lifetime damping will not flip nuclear spins.
Also, the method is temperature independent, and thus
cannot explain the temperature dependence which has
been observed** in H, and more spectacularly® in HD.
Additionally, we will find that the assumption that “only
a few spins matter” is not valid for a wide range of con-
centrations and temperatures.

Another approach to the ortho-para problem was that
of Fujio, Hama, and Nakamura,'® who recognized the
importance of crystal-field effects on relaxation. These
authors used moment methods for all concentrations,
however dilute. This implicitly assumes the existence of
homogeneous broadening due to the EQQ interaction,
even for an isolated pair of molecular spins. But it is
clear that such a pair does not flip unless a transition is
induced by an external radiation field. Such a system is
not homogeneously broadened and moment methods are
not applicable.

Nakamura and Fujio also presented a paper about HD
with o-H, impurity.!! They compare their theory only to
experimental data at a single temperature T=1.2 K
however, and do not treat the strong temperature depen-
dence observed in the experiments at all. Also, the same
remarks of the preceding paragraph concerning moments
is applicable to this work as well.

The rest of this paper will be organized as follows. In
Sec. IT we introduce the model and its physical assump-
tions with an illustrative spin-1 analogy to the H, prob-
lem. Section III is concerned with formal issues: a
mean-field-theoretic formulation of the problem, means
of calculating T'; and related points. In Sec. IV, we ob-
tain explicit analytical expressions for the distribution of
relaxation rates for H, and compare to experiment. Sec-
tion V is an application of the results of Sec. IV to solid
HD, where we compare our theory to the experiments of
Hardy and Gaines.’

II. THE MODEL

There are four basic steps in the 7', or longitudinal re-
laxation of the nuclear spins. First consider a reference
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H, molecule. Molecules nearby the reference molecule
are changing between states of different m;. Second,
since the electric-field gradient at the reference molecule
due to another molecule depends on m; of the other mol-
ecule, the reference molecule experiences a time-
dependent EFG from other nearby molecules. This
causes transverse (dephasing) fluctuations in the molecu-
lar spin or molecular angular momentum of the reference
molecule. Third, these transverse fluctuations of the
reference molecule can cause the nuclear spin of the re-
frence molecule to flip. Fourth, the nuclear magnetiza-
tion may spread around by spin diffusion. Steps 1, 3, and
to some degree 4 are well understood, so most of the ex-
position in this paper will be concerned with step 2.

A. Physical aspects

We began by considering a reference o-H, molecule
embedded in a dilute para-H, or HD matrix. For some
concentrations and temperatures the characteristic cou-
pling frequency between the molecule and some other o-
H, molecules is greater than the molecular correlation
frequency y, which characterizes the rate at the molecule
is changing between states of different m;. These fluctua-
tions between m; states are due to some mechanism such
as phonons—not to the EQQ. Suppose that there are N
such “strongly interacting” (compared to y) o-H, neigh-
bors. Then if each neighbor changes molecular orienta-
tion with a rate y, the average time between major
changes in the local EFG at the reference site is 1/Ny.
Thus in our model,

YmM=Ny (2)

is of great importance: it provides an important broaden-
ing mechanism for the spectral functions responsible for
nuclear T relaxation, and leads to a concentration and
temperature dependence for T;,. We can easily form a
simple estimate for N, the average number of neighbors
of a given molecule for which the EQQ interaction is
greater than v,

N=4mV'2/3(T, /v ), 3)
[,=c*"Tgqq - )

I'goq is the EQQ coupling constant in the solid state;
Fgoo~0.83 K.

Van Kranendonk and co-workers!? have studied the
spin-phonon interaction in some detail and have pro-
duced a functional form y(I") giving the molecular reori-
entation rate as a function of temperature 7. On the ex-
perimental side, Conradi, Luszczynski, and Norberg’
have studied isolated o-H, in p-H, and other nonmagnetic
hosts and found that the Van Kranendonk model pro-
duces a satisfactory fit to their data. They evaluated the
free parameters in the theory to specify for very dilute o-
H, in p-H,. We will use their fit in our analyses. Van
Kranendonk finds that the temperature dependence is
given by y = AT for T <<®, with ®, a Debye tempera-
ture for the solid. For higher temperatures a more de-
tailed formula has been devised: for this we refer the
reader to the literature.'?
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B. A spin-1 analogy

To clarify our model and to motivate certain approxi-
mations later, we introduce a spin-1 analogue very simi-
lar in principle, but simpler in detail than the H, version
we will develop below. The simpler model has the advan-
tage of possessing exact solutions in interesting limits.
We consider a reference spin interacting with N “spins™
which have the sole effect of introducing a fluctuating
shift in the resonant frequency of the reference spin. We
begin by considering the dephasing of a spin-1 particle
due to a time-dependent local or effective field given by

N
0= 2 wigi(t) ’ (5)

i=1

where w; denotes the positive coupling of a reference spin
to another spin in a lattice, and £;(¢) is a stochastic pro-
cess with two values, +1, corresponding to the orienta-
tion of the ith spin being up or down. Of course, in this
model o(t) can only take on a discrete set of values. We
further assume that the processes §; are Markovian with
a rate y that one may think of as phonon induced. An
immediate consequence of requiring £(¢) to be Markovian
is that the time autocorrelation function for § is

G (t)=exp(—yt) . (6)

We note that the properties of correlation functions like
G are well-studied objects in the literature of stochastic
processes:!® £ is the well-known random telegraph signal.
As we show in detail elsewhere,'* for the model [Eq.
(5)] one can readily calculate the autocorrelation function
for S, (¢) (or in multipole language 4;,). We have
shown that for an arbitrary number interacting spins, N,
there exists an exact solution for the limits w; >>y, and
the opposite limits. For the H, problem we will be con-
cerned with the case w; >>y, which we now assume to be
the case for the rest of this section. Consider the time-
dependent autocorrelation function which is defined by

G(1)=6(1){(S, ()S_(0)) , @)

where ( ) denotes a temporal average, © is the Heaviside
step function and S is a spin operator in the usual nota-
tion. We have shown'* that the Fourier transform of
G (1) has the form
N
Glw)= 3 flo—Q;) . (8)
i=1
The function f is a Lorentzian with width Ny /2. We
emphasize that this result is not merely a consequence of
a scaling argument: we have demonstrated rigorously
that G () has the form indicated in Eq. (8), and that N is
precisely given by Eq. (3), the number of spins with cou-
plings larger than y. The frequencies at which G () has
its maxima, €;, are perhaps not unexpectedly just the set
of possible values of w(t¢) accounting for all possible
values of the &; (This result may be familiar to some
readers as the NMR spectrum of a chemically exchang-
ing nucleus in the slow exchange limit.)
Now consider the particularly simple example of iden-
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tical couplings: w;, =w, for all i. Then,

N
o(t)=w, 3 & . 9)
i=1 :
The locations of the poles on the w axis for G for this case
are obvisouly binomially distributed, and consequently
for N >>1 such a distribution is very well approximated
by a Gaussian. This is also an immediate consequence of
the central-limit theorem!® in its weakest form. The
Gaussian has width

N 172
3 of
i=1

(10)

o=

If we relax the rather stringent requirement of identical
; we see that a Gaussian is still a reasonable fit to G (o).
For example, we can calculate the second moment of the
distribution of effective fields. By squaring Eq (1),
averaging over spin configurations, and using the as-
sumption that the motion is pairwise uncorrelated (from
site to site), we recover the same width given in Eq. (6).
Thus, even if the w; vary, the expected width is the same.
If there are several couplings w; that-are comparable, the
distribution will be nearly centered at w=0. If this con-
dition does not hold, and one w; > J for j=£i, the center
of the spectral density will be shifted to the vicinity of
o=w;. Note that the shifted Lorentzian will retain its
width Ny /2, however.

III. FORMALISM

A. Mean-field theory

To implement the ideas presented in Sec. IT A, we find
it convenient to construct a mean-field theory. Invoking
the usual mean-field-theory rationale, we assume that the
effects of neighboring 0-H, spins can be well represented
by an effective field or effective Hamiltonian. This reduc-
tion of the true bilinear coupling to a simplified
“effective” form implies that correlations between pairs
of spins must be fairly weak. For high levels of dilution
this is a reasonable assumption. In this theory we will ac-
count for several interactions: (1) the static crystal field
intrinsic to the hexagonal close-packed (hcp) structure;
(2) electric-field gradients associated with defects (ortho
molecules); (3) magnetic effects (dependence on the fre-
quency of the experiment); and (4) molecular spin-phonon
effects (phenomenologically). Ortho molecules feel an
EFG from two sources: the axial crystal field and the
EQQ interaction from o-H, neighbors. The latter EFG is
in fact time dependent, since the molecular spin states are
constantly changing at each site because of the spin-
phonon process. In the dilute lattice it is reasonable to
assume that the spin-phonon rate is site independent.

To set up a mean-field theory analogous to the spin-1
model, we first need to determine the eigenstates of an
isolated o-H, molecule in an arbitrary EFG. In general,
we may assume that the single-particle Hamiltonian takes
the form'®

H=V ,A,,—(2)'"?w0; 4, +AAp+A*4, ,, (1)
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where V, denotes the axial crystal-field splitting, w; is the
molecular Zeeman coupling,’® and A is the transverse
(complex) EFG coupling. For formal convenience we
will always use the irreducible multipole operators 4,
the operator equivalents of the spherical harmonics,
where «a is the usual spherical harmonic index (/,m). For
normalization conventions and a discussion of the use of
the multipole operators, see Ref. 16. Our assumption
that the axial crystalline field is much larger than typical
EQQ interactions eliminates m ==1 operators from Eq.
(11) because for V, >>w;, the doublet level is widely split
off from the singlet level, and we therefore restrict our-
selves to consider only transitions between the doublet
levels, In other words, we have truncated the Hamiltoni-
an to handle the crystal field for concentrations small
enough that it dominates the other interactions in the
problem. Diagonalizing Eq. (11) on the usual spin-1 basis
we easily find the eigenvalues ) and eigenvectors e;:

Q, =272V 4B, Q,=-2'%V,,

(12)
1 0
e =(14+]a )20 |, eg= 1],
a 0

where
a;=3"1"w,+B)/A ,
and
B=3|A1*+wj .

For comparison, we note that the bilinear EQQ Hamil-
tonian may be expressed as

HQQ= 2 an(lJ)Alm(l)AZn(]) ’ (13)
mn,ij

and the function F is fully discussed in Refs. 1 and 8.
Hg is easily converted into an effective single-particle
Hamiltonian for the site i:

Hoo()=3 A,(DOW,, . (14)
where v
Wa=2§Fmanﬂ( Aﬁ)j . (15)
j

As discussed above, we shall be concerned only with the
case of a=2+2, that part of the EFG which is time
dependent because of molecular reorientation at other
sites. By comparing Eq. (14) and Eq. (11) and using the
eigenstates of H; [Eq. (12)] to evaluate { 4z);, the aver-
age of the multipole operator over the states of Eq. (12),
we see that

TABLE 1. Values of stochastic variables.

State label & B
+ 2-172 (_:2;_)1/ze”(j
_ 2-172 (;)1/2‘_,”‘;‘
0 —2172 o
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A=Wy =23 [Fylij)§;+Fyplij)B;
J
J

where §; and [B; are complex stochastic variables specify-
ing the molecular orientation at site j and their values are
given in Table I. In obtaining the above equations we
have assumed that w; can be neglected, which is true at
all but the lowest concentrations. Even if it is not true it
makes only a small difference since it is constant (in-
dependent of site) and is reasonably small compared to
wg, the frequency of the experiment. We shall find that
most of the physics depends on |A| and its distribution
function.

B. Normal modes of the molecular spins

The simplest means of describing the nuclear relaxa-
tion of the system is to find the modes of the molecular
motions, i.e, we seek linear combinations ® of the
Heisenberg representation multipole operators A4, such
that by forming the Heisenberg equation of motion for ®,
one recovers a constant (depending on the local environ-
ment of the site) multiplied by ®. We therefore seek P
and Qg so that '

4
dt

(we have set 7i=1 throughout this paper). Straightfor-
ward algebraic manipulations lead to three nontrivial
modes X, X T, and Z where

X=2"12A4,,+2712AA4,,/|A|—2712A% 4,_,/|A|)
and (18)
Z=2"Y%AA,+A%A4,_,)/|A] .

=[®,H,]=Qe® a7

These modes have frequencies Qy =12/ 2!A|=QX¢ and

Q,=0. We point out two properties of these modes.
First, they have been calculated for the case of “no sym-
metry,””!5 meaning that a reference site experiences
large axial and transverse field gradients. Also, the utility
of working with the modes is that one avoids “interfer-
ence” between different relaxation mechanisms. This
leads to a simpler formula for T'; and a more transparent
treatment of the relaxation.

The modes X, X' of Eq. (18) describe the effects of the
intermolecular EQQ coupling, which in turn modulates
the intramolecular nuclear dipole-dipole interaction to
cause spin-lattice relaxation. The nuclear-molecular in-
teraction may be expressed most elegantly in multipole-
tensor form as

m=2 m=1
H,,=w, 2 B2mA;m_'§“wc 2 BlmAIm . 19)
m=-2 m=—1
A, and B, are multipole operators: A4, refers to molec-
ular spins, B, to nuclear spins. In this equation,
0;=3.62X10°> sec”! and »,=7.15X10° sec”! denote
the dipolar and spin-rotation couplings, respectively. For
the case of temperatures above about 1 K (where the
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effects of the nuclear spins on the molecular spins may be
neglected), T, is given by

T '=603[Gx(2wy)+G,(2wy)] , (20)

where G4 denotes the real part of the frequency auto-
correlation function of the mode ®, w, is the frequency of
the experiment (the Larmor frequency of the H nuclear
spins), and the zero-frequency mode’s correlation func-
tion G is a Lorentzian of width ¥. Another remark is in
order concerning Eq. (20). We have calculated T, for a
single crystal of H, rather than the powder sample that is
usually studied. For a qualitative understanding of the ¢
and T dependence that is reasonable. Physically, the
mode X gives the relaxation due to intermolecular EQQ
interactions driven by the phonons, while Z describes the
relaxation of the nuclei only by phonons including
changes in the molecular state at the nuclei’s site only.

C. Spin dynamics of 0-H, molecules

As we explained in Sec. III B, a calculation of T re-
quires the time evolution of the modes. In order to verify
that the autocorrelation function of mode X has a two-
component structure as we expect from our spin-4 analo-
gy, we use the equation of motion for X to obtain a solu-
tion for X (2):

X(6)=X(0)exp [—ifo’dt'nx(t') ] . 21)

Similar formulas in other contexts were developed long
ago by Kubo.!” It is a worthwhile pedagogic remark to
note that X (¢) would be significantly more complicated if
we had not chosen to work with the modes of H,. We
have calculated X (¢) using Eq. (21) for a computer simu-
lated Qy(2) for o-H, spins diluted in a simulated hcp lat-
tice at concentration ¢ and molecular correlation frequen-
cy v.7!* We obtain

Gx(n=0(1)e 7" [ “dr'cos [f’*"dz"nx(t") L@
t

(The presence of the factor e "' can be traced to the
effects of phonons directly on the reference site.) We find
that the Fourier transform Gy(w) of Eq. (22) has a struc-
ture similar to that depicted in Fig. 1. We note that there
is, of course, a distribution of couplings in the hcp lattice
due to the spatial disorder of dilution. For ¢ <<1 there is
a wide variety of such couplings and the distribution
function for the couplings is therefore very broad. Still,
the temporal and spatial average of the coupling A is
zero, and those molecular spins which are not dominated
by a single other spin can be expected to have most of
their Gy spectral density centered about w =0, by analo-
gy with Sec. II B. While the average is zero, there may be
considerable fluctuation about the mean. To quantify
these notions we find that an analysis of a distribution
function for couplings due to other o-H, is useful.

D. Distribution function for EFG couplings

In this section we calculate a distribution characteriz-
ing the EFG felt at a reference site due to other ortho
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FIG. 1. Schematic representation of spectral function Gy(w).
Note the two-component structure. The central feature is due
to undominated spins, the tail is due to spins with one dominant
neighbor.

neighbors. This density is important for calculating T';,
and for obtaining distributions of relaxation rates for the
nuclear spins. Throughout this section we will follow the
procedure and nomenclature of Ref. 18 to estimate this
distribution. From Eq. (16) we observe that

|A?=4| 3 Fyo(E; +Fpu(IB; +F,,(DBF D 2. 23)
J

Expanding this into a double sum, using the assumed sta-
tistical independence of the stochastic variables §;,5; at
sites i, and averaging over spin orientations, we obtain

x242[|F20(j)|2+'Fzz(j)!2+!F2—2(j)|2] . (24)
J

It is straightforward to use the method of Ref. 18 to cal-

culate p(x)dx, the probability that frequency squared

coupling x is in the range [x,x +dx]. Following Ref. 18,

we see that an integral representation for p (x) is

3/10

p(x)=—;27~1mfo°°dte*""” , (25)

where z is a complex constant. Expanding the second ex-
ponential in a Taylor series, integrating term by term,
and simplifying, we see that

o

plx)=—2x 3 (—8/p¥1)
T I=1

Xsin(Iy)I'(31/10+1)/1! (26)

with ¥~37/20+tan"1(0.510) and 8~7.280, and we
have introduced a dimensionless variable y =I"/ 2x. r,is
defined in Eq. (4). Approximate results are given for &
and 3 because these involved a numerical quadrature.

We have numerically evaluated Eq. (26) and find that it
provides an excellent approximation for p (x) even quite
near x =0. Experience with the dipolar lattice and ma-
nipulations involving stationary phase (not rigorously
applicable to our integral) suggest that p(x) is not analyt-
ic at x =0, with p (x) decreasing faster than any power as
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x —0. Numerical evaluation of Eq. (26) indicates that for
any ¢ <<1 the distribution function has the form shown
in Fig. 2. We find empirically that x.,,, the most prob-
able value of x satisfies xmpz9l“31. Also, p(xmp)
=~1/16x .

It is worthwhile at this point to interpret some of the
formalism we have developed. As we indicated in Sec.
III C, our correlation function Gy(w) should have the
general character illustrated in Fig. 1. We have per-
formed numerical simulations based on Eqgs. (21) and (22)
to justify this, and have also developed the spin-1 analo-
gue to make the physical origin of the two features of
Fig. 1 comprehensible. Undominated spins contribute to
the central part of Gy (w); spins with a single neighbor (or
small cluster) with a much larger than “typical” splitting
(which we can interpret as being those spins with cou-
pling near the most probable x) have their individual con-
tributions to the total Gy shifted by an amount compara-
ble to the dominant coupling. The distribution function
p (x)dx provides information concerning what fraction of
spins are dominated and undominated. By analogy with
the spin-1 case we assign a width of order

N 172
> IA(i)IZ) . 27

i=1

o=

For configurations with a dominating [A(i)|2>>xmp, cor-
responding to the tail of p (x), we make the rather coarse
assumption that for such a configuration Gy(®) is ap-
proximately

Gy =603y /(Y3 +u?), (28)
where u =(12x)""?—w. Such a functional form is cer-
tainly not an exact representation of dominated contribu-

tions to Gy, but we believe that it retains essentially the
right physics.

0.06

0.04}-

Xmp p(x)

0.02}1-

o} ! ]
0 20 40 60

x/xmp

FIG. 2. Distribution function p (x) for low concentrations. p
is plotted in reduced units of X =x /X ;. X, is defined in Sec.
I D.
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IV. DISTRIBUTIONS OF RELAXATION RATES

Many workers have observed nonexponential recovery
of the magnetization in experiments on H,. Such effects
can be explained by noting that any experiment measures
a distribution of relaxation rates, a consequence of the
dispersion in the characteristic recovery times for spins in
different environments. In this section we will obtain ex-
plicit functional forms for the distribution of relaxations
rates =T !. We start with the observation that the
dominated and undominated regimes lead to different
kinds of relaxation.

A. Undominated regime

As we discussed in earlier sections, an appreciable frac-
tion of the o-H, molecules in the lattice are not dominat-
ed by one other molecule, but feel the effects of many
comparably. Such spins contribute a central component
to the composite X autocorrelation function, with a width
given by Eq. (27). Such spins have squared coupling x ly-
ing near x,,, (otherwise they would be dominated). The
undominated central part of Gy(w) is essentially temper-
ature independent. To see why, consider a particular un-
dominated reference spin. The center of the line for this
spin is near ®=0. Now by analogy with the spin-1 prob-
lem [Eq. (8)] where G () consists of 2V spikes, Gy(w)
consists of a very large number (order 3") of spikes with
width near Ny. In the spin-1 case it was possible to cal-
culate exactly where in the line the spikes occurs. This is
not easily done for the H, problem. However, in princi-
ple the features of Gy(w) are similar to G (w). Since each
of the 3" spikes has the same integrated intensity it is
easy to see that the spikes overlap considerably to very
low temperatures simply because there are so many of
them and because of the additional broadening of the
spike by the many-site process compared to consideration
only of the direct phonon process. It is reasonable to as-
sume a Gaussian representation for this central com-
ponent from the analysis from the spin-J case, and be-
cause in the absence of information other than a width,
the Gaussian is the only functional form justified by in-
formation theory.!” We give this Gaussian a width

8~[p(xmp)]~'2~12T, . (29)
In the low-frequency limit, this produces [using Eq. (20)]
r=(m/8)"w}/T, , (30)

which gives a T, close to experiment. This result is actu-
ally quite encouraging, since there is a factor of order
unity uncertainty which enters into the choice of the
width 8. In fact perfect agreement with experiment* is
obtained if we take a width f& instead of &, with
f=0.77. This procedure is also consistent with our
simulations explained in Sec. III C. Because of statistical
noise, especially for N >>1, we found it difficult to extract
quantitative results from the simulations, and the necessi-
ty of calculating numerical Fourier transforms made this
even more difficult. Nevertheless, the existence of a cen-
tral was clearly indicated even for low temperature. The
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width of the simulated Gy(w) was also qualitatively in ac-
cord with Eq. (29). We see, therefore, that our model is
capable of explaining the well-known ¢/ behavior of T,
and that this temperature-independent mechanism is a
manifestation of the undominated central part of Gy ().

We should make a few further remarks concerning the
undominated regime. It is clear that the undominated re-
gime cannot survive to arbitrarily low concentrations of
0-H,, since at some point phonons become more impor-
tant than the intermolecular interaction, and we have
essentially the case of an isolated spin, already treated in
detail in Ref. 15. Since all of the spins in the undominat-
ed regime have similar spectral densities Gy (w), they uni-
formly produce a T near that derived above, and their
contribution to P(I'), the distribution function of relaxa-
tion rates!is temperature independent, and strongly
dependent upon the concentration.

B. Domination by a single neighbor

For spins with their spectral densities centered in a fre-
quency range corresponding to the tail of the distribution
of couplings, we use the assumed functional form Gy of
Eq. (28). The expression we derived for T'; [Eq. (20)] pro-
vides a relation between the relaxation rate I" and cou-
pling x for which we know the distribution function.
Thus to compute P(I")dT for the dominated regime re-
quires a transformation of p (x)dx to P(I")dI". The dom-
inant term of Eq. (20) is the Markovian (first) term: we
neglect the molecular reorientations due to spin-phonon
interaction acting directly at a reference site. This ap-
proximation is valid if the parameter N >>1. For isolated
molecules (very dilute ortho concentration: ¢ <5X 1074
the second term must be included. To obtain P(T"), we
solve Eq. (20) for x. Using the standard procedure for
changing variables in a probability density,'* we obtain

dx _

dar

PO =p(x ) |2 4 pix ) 31)
=p(x4 dr pix_ ’

where

2, W, =(6w§7’MF_1~7’i4)1/2 ’

(32)

and p is given by Eq. (26). Note that this probability den-
sity has concentration, temperature, and field depen-
dence. Also, for some values of these parameters the dis-
tribution can become very broad. For example, for any
low concentration (where the undominated mechanism is
not primarily responsible for relaxation) and high tem-
peratures, P(I") is so broad that it is difficult to give one
meaningful number to characterize T;. On the other
hand, our theory clearly predicts a much better defined
average rate for high fields and low temperatures. For
large magnetic fields (wy>>T",) the distribution of rates
can display additional structure: a peak near
637 5 /4] which is a manifestation of configurations
with (12x)'2<<2w,. We illustrate these points in more
detail in Fig. 3. Inspection of Eqgs. (31) and (32) shows
that configurations for which w3/3=x relax anomalously

x. =1271Quwytw,
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FIG. 3. Two illustrations of P(I'), both for ¢=5X1074
v,=4.8 MHz. (a) MCF y=7.2X 10’ (T~2 K), (b) MCF
y=10° (T'~4.4 K). The principal peak is due to configurations
with (12x)!/2 << 2w, (see text).

fast at a rate of order
I‘max=6w§l"q_3/5y’2/5 . (33)

This may be traced to a resonant effect between the mag-
netic field and the coupling to the local environment.
Such configurations are represented by a sharp “blip” in
the remote tail of P. The naive calculation of an average
over all rates I is rendered meaningless because the in-
tegral is completely dominated by the small, perhaps al-
together negligible fraction of spins which decay at a very
fast rate. In an experiment, such spins may not be detect-
able at all, or may appear as a rapidly decaying com-
ponent of a free induction decay (FID). Thus to use Eq.
(31) to calculate a T'; to compare to experiment, one usu-
ally has to avoid the anomalous component. We have
used Eq. (31) to calculate T; leaving out the anomalous
part, and find satisfactory agreement with experiment for
concentrations less than about 3X 1073 (see Fig. 4).
Theory and experiment begin to disagree at this concen-
tration, as the undominated regime becomes important,
and produces a dominant temperature-independent
mechanism of relaxation.

At this point we summarize the consequences of our
model in various limits. The present theory contains two
relevant dimensionless parameters, p,=y/ 'y and
P2=wo/T,. The first measures the importance of the
molecular correlation frequency ¥ compared to typical
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FIG. 4. Theory and experiment for mixtures of o-H, and p-
H,. Data are from Refs. 3 and 7. Theory, solid curve; data,
solid circles.

EQQ couplings, the second sets the scale of the nuclear
Larmor frequency compared to the EQQ.

For p, >>1 where the direct phonon process (phonons
causing molecular reorientations at the reference site)
dominates the Markoff process we have introduced, T is
given by consideration of completely isolated molecules
as discussed in Ref. 15. For p; >>1 the discussion of the
purely isolated molecule pertains for any p,.

For the case p; <<1 the Markoff process dominates
and parameter N introduced in Sec. IIT A is large com-
pared to unity. For p, <<1 the undominated central pro-
duces a temperature-insensitive T, proportional to ¢3/3,
For p, >>1 experiments sample Gy(w) in the “extended
tail” in the terminology of Fig. 1. It is easy to calculate
an approximate average I' [average over P(I')]. The re-
sult is

(I')~88.08w3T; "y 3/ . (34)

We note parenthetically that for w, large enough
Gy(w)~wg %, but because the EQQ coupling for some
configurations is much larger than any experimentally ac-
cessible fields, we do not expect this behavior to be ob-
served. Note also that Eq. (34) provides a theoretical
justification for the existence”® of a T;~c ™! regime
which has been conjectured.

V. NUCLEAR RELAXATION OF HD

The distribution functions for I' obtained in the
preceding section can be used to lend insight into the per-
sistently vexing problem of relaxation of HD with small
concentrations of normal-H, impurity. Here, the only
efficient means for the relaxation of the H nuclear spins
to the lattice is through spin diffusion (between HD mole-
cules) to a relaxation center (o-H,) which is in good
thermal contact with the lattice. One of us?! has recently
developed a detailed theory for such relaxation. To apply
the distributions calculated above to HD, we first need to
slightly generalize Ref. 21, where it is assumed that all re-
laxation centers have an identical magnetization relaxa-
tion rate to the lattice. The results are easily extended to
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a distribution of rates P(I"). One finds that the thermali-
zation is exponential with rate R and

R=c [dT P(T)T/(1+£T/v) . (35)

Here, £ is the parameter of Ref. 21 (not a stochastic vari-
able), and v characterizes the hopping frequency (magne-
tization transfer rate) between the H nuclear spins of HD
molecules. We have evaluated the integral of Eq. (35) nu-
merically, using P(T") from Egs. (31) and (32), and have
found rather good agreement with the temperature and
concentration dependence of the data of Hardy and
Gaines (HG) for concentrations below ¢ =102 (see Fig.
5). We have found that our model provides best agree-
ment with experiment if we subtract 5X 107> from the
normal H, concentrations reported by HG. We agree
with Honig and co-workers® that these concentrations are
a bit high, but we find less satisfactory agreement for the
suggested reduction of 8.5X 107> proposed in Ref. 6.
Given the uncertainties in these estimates, our reduction
is reasonable.

We observe that our model consistently overestimates
T, for the higher two concentrations of Fig. 5. We attri-
bute this to the importance of the temperature-
independent EQQ central (see Fig. 1) for the higher con-
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FIG. 5. Comparison of HD relaxation data with theory.
Data are from Ref. 5. We illustrate experiment and theory with
a subtraction of 5X107° from »n-H, concentrations reported in
Ref. 5 (dashed line), and the theoretical predictions using the
concentrations originally given in Ref. 5 (solid lines). Circles,
squares, and diamonds refer to normal concentrations
H,=0.0001, 0.00028 and 0.0063, respectively, according to
Hardy and Gaines.
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centrations. In Fig. 5 we have included only the
temperature-dependent part.

It is straightforward to obtain an asymptotic represen-
tation of Eq. (35) for low temperature if we assume that

wy>>T >y, , (36)

a condition which follows from requiring that the center
of Gx(w) be well separated from the region of x corre-
sponding to the undominated spins. In that case, we ap-
proximately obtain

T !'=15.33c%w,(vy ) *TEGow0 ¥ (37

using an angular average value of £=5.5. Thus for low
temperatures and high fields, T, ~ 7 ~7/>. This behavior
is relevant for the data which we examine in this paper.
We note that the agreement between theory and experi-
ment is particularly good for the lowest concentrations.
This is not surprising: this model is essentially rigorous
for the dilute limit. It is not unreasonable to regard the
present work as the natural extension of the solution'®
given for isolated molecules. We also observe that all of
the remarks of the preceding section concerning dimen-
sionless parameters p; hold for HD as well, provided that
spin diffusion is taken into account.

We should also point out that, perhaps surprisingly,
that it is somewhat easier to account for the HD data
than the H, data, because the rapid spin diffusion en-
countered in HD makes averages over distributions of re-
laxation rates more meaningful than for H,, where the
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very rapid component of distribution of rates is possibly
altogether unobservable. In fact the temperature depen-
dence in Eq. (37) arises because of Eq. (35). A simple
average rate would be temperature independent.

A further point is that one must be careful in applying
this model to very low temperatures where Pake doublet
effects become important, i.e., where the nuclear spins
have an important effect on the molecular spins.

VI. CONCLUSION

We hope that the present paper has helped to explain
the NMR properties of different isotopic combinations of
hydrogen. The theory presented has succeeded in ex-
plaining the temperature and concentration dependence
of longitudinal relaxation without the introduction of free
parameters.
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