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A new procedure for generating networks of Si atoms with the properties of amorphous Si is
presented. We have used ab initio molecular-dynamics simulations and a simple simulation pro-
cedure to produce cells with radial distribution functions, coordination defect concentrations, and
vibrational densities of states in excellent agreement with experiment. A comparison of our method
is made with other techniques and the conditions under which specific kinds of defects occur in
simulations (e.g., floating or dangling bonds) is discussed. Implications to calculations using sem-
iempirical angle-dependent potentials is briefly discussed. We have found that Brillouin-zone sam-
pling significantly affects interatomic forces, and that the final amorphous structures obtained are

dependent upon the sampling scheme used.

I. INTRODUCTION

An outstanding problem of solid-state physics is a reli-
able description of short-range order (SRO) in amorphous
and glassy semiconductors. Much effort has been devot-
ed to this area, but there is still considerable doubt about
many details of the structure of these important materi-
als. Ideally, one would like to possess coordinates of
atoms making up an amorphous structure. Such
knowledge is useful for many calculations of properties of
the amorphous matrix: a detailed theory of doping and
transport requires such detailed microscopic information,
for example. A route to improving our theoretical under-
standing of SRO is to employ careful molecular-dynamics
(MD) simulations which are to be related to specific types
of experimentally practical methods of fabrication of the
amorphous semiconductors. Also, since there are several
experimental approaches to making a-Si of high quality
(with few coordination defects), it is also likely that a
theoretical approach may produce networks much like
true a-Si, though the simulation procedure may not be
experimentally realizable. At present, experimental in-
formation about the microstructure is rather limited.
Frequently, amorphous samples are characterized by a
radial distribution function' (which as the name suggests,
contains no angular information about structure) ob-
tained from x-ray diffraction’ or other techniques. Some
other information is provided by probes like electron spin
resonance (ESR).> Of course the basic difficulty with
each of these methods is that detailed local information is
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averaged over the entire sample, and much of the infor-
mation concerning the local environment of atoms is lost
in this process. Here, we hope to enhance the under-
standing of these issues with a new efficient ab initio MD
technique,*”®’ and a new approach to simulating the
fabrication of a-Si. In this paper we restrict our attention
to Si, though the methods are applicable to any covalent-
ly bonded system.

Many investigators have considered MD simulations
with angle-dependent interatomic potentials’ (ADP).
Here, a semiempirical potential is constructed by fitting a
functional form to a selected database of experimental
data or ab initio calculations. Such potentials are con-
venient in part because the calculation of interatomic
forces is very efficient. This allows for the simulation of
hundreds or even thousands of atoms. In another study,8
we have recently examined several of these potentials,
and compared them to accurate interatomic forces ob-
tained from the ab initio total-energy-MD scheme of San-
key and Niklewski. It was found that all of the ADP’s
studied were only qualitatively accurate: forces were
often discrepant by amounts comparable to the magni-
tude of the exact interatomic force. The size of the errors
is not surprising. Most ADP’s are constructed by fitting
assumed functional forms to a limited amount of data:
usually there is an emphasis on the crystalline phase.
The relevance of this input to complicated disordered
structures is not obvious. Also, it is clear that the physi-
cal origin of the interatomic interactions is many body
and quantum mechanical. There is no ‘“‘representability
theorem” that the true interatomic interactions can be
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expressed by moderately simple functional forms with pa-
rameters determined from a small database.” How the
ADP errors manifest themselves in terms of the final
structures obtained from a simulation is an important
question. We have found that small differences in forces
can lead to qualitative changes in structure. To explain
the scale of discrepancies in forces among the different
techniques, we note that the characteristic force scale of a
highly disordered, nonequilibrium cell is of order 5
eV/A. For the several ADP methods investigated, it was
found that for such cells, typical errors were comparable
in magnitude to the exact force. In a more ordered envi-
ronment the absolute errors between ADP’s and the ex-
act forces was only a few tenths eV/A. However, based
upon our experience® with ab initio simulations, it is clear
that such errors are large enough to lead to spurious
minima in the total energy, and more coordination de-
fects than the more accurate MD methods. This is
relevant to one of the central problems of a-Si simula-
tions: the question of why investigators'® tend to obtain
structures with defect concentrations much higher than
the few percent experimentally observed in electronically
acceptable a-Si.>.

The first ab initio study of SRO in a-Si was performed
by Car and Parrinello (CP), using their plane-wave MD
method.!! The forces obtained by these authors were un-
doubtedly more accurate than the ADP-derived forces.
CP found a radial distribution function and vibrational
density of states in good agreement with experiment. As
CP point out, however, care must be exercised in the
comparison of their structures to experiment because of
the large (but unspecified) number of defects found in
their simulations. Finally, the simulation “‘algorithm” in-
troduced by CP is rather complex. It would be desirable
to develop a simpler method if possible.

An interesting general aspect of band-structure-based
MD studies is the question of the effects of Brillouin-zone
(BZ) sampling on interatomic forces which are expressi-
ble as an integral over the BZ. In Sec. IV we find that
forces are significantly dependent upon the BZ sampling
scheme to approximate this integral.

From the foregoing considerations, we believe that the
basic problems of performing MD simulations of a-Si are
(1) all existing calculations have employed forces which
are inaccurate to some degree, and (2) all investigators
performing simulations get far too many coordination de-
fects in their proposed structures. In Sec. IV we will
demonstrate that this is of crucial importance to the elec-
tronic properties of the simulated structure. We will
demonstrate that the use of ab initio MD in conjunction
with a new algorithm for simulating a-Si can yield net-
works with only (i) a few percent coordination defects
and (ii) radial distribution functions and (iii) vibrational
spectra in agreement with experiment. As to our
knowledge, this is the first simulation scheme which
simultaneously satisfies these three conditions.

The rest of this paper will be organized as follows. Sec-
tion II will present a new simulation scheme for produc-
ing networks with the properties of a-Si. In Sec. III we
analyze the results of this procedure and in Sec. IV com-
pare our work with other simulations.
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II. METHOD

All the simulations performed in this paper have used
the MD scheme of Ref. 4. Four major approximations
are used in this method: (1) Norm-conserving nonlocal
pseudopotentials of the Hamann-Schliiter-Chiang class.'?
(2) The Harris total-energy functional'® within the
Hohenberg-Kohn-Sham local-density approximation,'*
(3) a basis set of four orbitals per site. These consist of
one s orbital and three p orbitals. The basis functions are
solutions of the free atom pseudo-Schrodinger equation
with the additional boundary condition that the orbitals
vanish beyond a radial distance r, from the atom. This
procedure can be thought of as slightly exciting the orbit-
al from the free atomic ground state. In all applications
of the method, r, is chosen so that only atoms up to and
including third neighbors (in the diamond structure) are
included. For Si, this corresponds to an interaction range
of 10.6 A.* (4) Real-space matrix elements of the Hamil-
tonian and overlap are obtained from Lagrangian inter-
polation over finely spaced lookup tables which are calcu-
lated once and for all. For some of the three center ma-
trix elements, an angular momentum expansion is used to
approximate the matrix elements. These approximations
are both accurate and efficient.*> This MD scheme has
been tested in a wide range of bonding environments,
ranging from small molecules to bulk Si. Excellent agree-
ment has been obtained with more sophisticated
quantum-chemical calculations!® for microclusters and
their vibrational spectra,'® and the phase diagram of Yin
and Cohen!” for several phases of Si. Details of the
method and comparisons to other calculations can be
found in the literature.*> We emphasize that the MD
scheme we employ is entirely first principles: no experi-
mental input or adjustable parameters are used.

Our approach to simulating a-Si is motivated by two
facts. In a typical ““liquid-quench” simulation an investi-
gator starts with a “sample” of /-Si with some amount of
disorder. If the sample is truly representative of a liquid
phase, it must naturally be highly disordered. It is well
known that a rapid simulated quench from such a struc-
ture (rearrangement of atoms to obtain a local minimum
in the total energy) yields a disordered structure with
more than 15% coordination defects. On the other hand,
it is also clear that if one starts with a “small”” amount of
disorder (relative to ¢-Si), that a quench to find a total-
energy minimum must yield ¢-Si (with no defects). An
obvious procedure to investigate is thus the intermediate
regime, for which the sample we quench from is
sufficiently disordered that an energy minimization does
not lead to c¢-Si, but yields a sample with a reasonable
number of defects (a few percent). We have found that
the quenching of “incompletely melted” samples can
yield disordered networks with radial distribution func-
tions close to experiment and defect concentrations con-
sistent with ESR data. Since our ab initio method is very
efficient we have been able to try several approaches to
simulating a-Si. After examining these different ap-
proaches, we have fixed upon a procedure in which we
begin with a supercell in the diamond structure with one
vacancy, simulate heating this structure to a high kinetic



42 MOLECULAR-DYNAMICS SIMULATIONS OF AMORPHOUS Si

temperature, and then let the system freely evolve under
Newton’s equation until the cell is very disordered. This
single MD run provides us with structures ranging con-
tinuously from the starting (diamond plus vacancy) cell
to a highly disordered configuration. Let “preparation
time” 7 denote the time (in fs) from the inital “heating”
of the ordered cell. We study metastable minima in the
total energy as a function of 7 by performing ‘“dynamical
quenching”*? to find local minima in the cell’s electronic
total energy for each of several 7. This procedure enables
us to understand the effects of the disorder of a given
starting structure on the local minimum that is
discovered by dynamical quenching. We start from a cell
with a vacancy to assure that the system does not quench
into the diamond structure. In detail, our procedure is
outlined in the following: (1) We start with a large super-
cell (for the results discussed in this paper a 64-atom sim-
ple cubic cell in the diamond structure with one vacancy).
The volume chosen is that of crystalline Si. (2) At a con-
stant volume, we simulate heating this cell to a high ki-
netic temperature 7, where T is defined by

kg T=(p?/2mg,) , (1)

where the right-hand side is the average kinetic energy of
the Si atoms in the cell. This heating is accomplished by
assigning each atom in the cell a velocity sampled at ran-
dom from the Maxwell-Boltzmann distribution, and re-
quiring the average kinetic temperature to be T at the be-
ginning of the free evolution. In these simulations we use
T =8000 K. (3) We allow the free evolution of the cell
for a time sufficient for the cell to acquire a highly disor-
dered liquidlike structure. (4) We use dynamical quench-
ing to find a local minimum in the configurational energy
for several different steps (7) in the cell’s evolution from
crystal to liquid. The efficacy of this method is discussed
in Sec. III.

III. RESULTS

To illustrate the results of this approach, we begin by
analyzing the behavior of R?(7), the mean-square devia-
tion of the atoms from their initial positions averaged
over the cell. As defined above, 7 is the time in fs from
the initial heating of the starting (diamond) cell. As one
expects for a diffusive process, R? is found to be quite
linear, as we illustrate in Fig. 1.

A standard (though incomplete) way of characterizing
structural disorder is to use the number density function
n(r)=4mprg(r), where g (r) is the usual radial distribu-
tion function, p is the average number density, and

S ntrar=n&) )

where N (R) is the sample-average number of atoms en-
closed in a sphere of radius R centered on an atom. It is
well known that amorphous silicon possess a n (r) with a
broadened second-neighbor peak, and either a weak or
nonexistent third-neighbor feature.>'* We note the in-
sensitivity of n (r) to structural details: structures with a
surprisingly wide variety of microstructure have similar
n(r). To illustrate the increasing disorder associated
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FIG. 1. R*) plotted against time step. This is the sample
averaged expected-squared deviation of the Si atoms from their
initial positions in a diamond lattice. Each time step is 2.07 fs.

with the melting process, in Figs. 2(a), 2(c), and 2(e) we
present n(r) for several different preparation times 7 in
the crystal to liquid evolution. Note that even after only
50 preparation time steps (7=~ 104 fs), the main structures
of n(r) are weak or eliminated. The results of simulated
quenching to convergence for three different 7 are indi-
cated in Figs. 2(b), 2(d), and 2(f).

It is interesting to observe how sharp the changes are
in the quenched n (r) as a function of 7. Figure 2(b) clear-
ly indicates that for quenching after =104 fs, the struc-
ture obtained is rather ordered (we do not call it crystal-
line because the sample possesses four dangling bonds,
and many odd-membered rings). Certainly this structure
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FIG. 2. Number density function n(r) for nonequilibrium
cells (a), (c), and (e) with preparation time 7 of 104, 124, and 207
fs, respectively, and corresponding n for cells dynamically
quenched from structures (a), (c), and (e) illustrated in (b), (d),
and (f), respectively. The abscissa is in reduced units of @ =2.35
A.
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cannot be described as amorphous because of the very
strong third-neighbor peak in n(r). Remarkably,
quenching after only 20 fs of further time evolution pro-
duces a n(r) with the properties expected of a-Si [Fig.
2(d)]. This sample has four coordination defects: two
dangling and two floating bonds. Quenching from a yet
larger 7 leads to n (r) showing more disorder than is ob-
served experimentally (even the second-neighbor peak is
weak for quenching after =207 fs [Fig. 2(0]). Also, in
contrast to acceptable samples of real a-Si, there are far
too many defects for this sample (five dangling bonds
and nine floating bonds). Of course, all of the statements
we make depend upon the choice of 7=8000 K. A
lower temperature (but still well above the melting point)
would yield less diffusion, for example. A detailed study
of the T dependence of diffusion and implications to
structures is beyond the scope of the present paper.

In Table I we show the number of coordination defects
as a function of 7 for the quenched cells. The number of
coordination defects (with coordination defined by a dis-
tance of 2.7 A) increases monotonically with 7. Floating
bonds (associated with fivefold coordinated atoms) are
not observed until there is considerable disorder present
(r=124 fs). This is not surprising: in a rapid quench of
an overcoordinated system (such as a liquid), fivefold
configurations would be easily attainable. For a more
crystalline system, where most atoms are fourfold coordi-
nated, undercoordination (dangling) defects are more
likely. We also note that for the most disordered sample
studied (=207 fs), that there are almost twice as many
floating bonds as dangling bonds.

It is apparent from the radial distribution functions
that dynamical quenching after preparation time =124
fs yields a network in good agreement with experiment
[Fig. 2(d)]. In addition to the satisfactory radial distribu-
tion function, this sample has only four defects. This is
somewhat higher than the concentrations measured in
ESR experiments, but much better than the =15-25 %
observed for other simulations. Examination of the
bond-angle distribution for this cell shows that 67% of
the atoms have bond angles within 20° (x10°) of the
tetrahedral angle, and 83% were within 30°. The average
number of fivefold, sixfold, and sevenfold rings was found
to be 2.5, 16.5, and 32.0, respectively.

In an attempt to reduce the defect concentration fur-
ther, we simulated heating the four defect cell (two float-
ing and two dangling bonds) to an equilibrated kinetic

TABLE I. Coordination defects in quenched cells after
preparation time 7. Coordination is defined by a distance of 2.7
A.

7 (fs) Threefold Fivefold
100 44 0
120 2 2
160 5 4
200 5 9

* The cell started with four dangling bonds because of the vacan-
cy in the starting configuration.
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temperature of about 300 K. After 320 fs we observed
that the average kinetic energy of the cell was rising
above 400 K. This suggests that some configurational en-
ergy was converted into kinetic energy—which one might
expect from the ‘“conversion” of a defect into a
tetrahedral site. After 320 fs of free evolution, simulated
quenching was again applied to find a near local
minimum in the total energy. We found that two defects
had disappeared: we were left with a two defect (dan-
gling bonds) cell, with a corresponding defect concentra-
tion of about 3% (Fig. 3). The procedure of heating the
four defect sample is somewhat analogous to the pro-
cedure of “annealing” a real sample though, as usual,
care must be taken in using this interpretation because of
the difference in time scales between experiment and
simulation. In the two defect sample 73% of the atoms
are in a 20° spread about the tetrahedral angle, and 86%
are within a 30° range. Here, the average number of five-
fold, sixfold, and sevenfold rings was found to be 1.8,
17.5, and 25.1, respectively. It is clear from the larger
number of sixfold rings and the reduced number of
seven-member rings that the two defect sample is some-
what less disordered than the four defect sample. This is
also evidenced by the presence of a third-neighbor shoul-
der on the broad second-neighbor peak in n(r) for this
sample (Fig. 3).

As a further test of the two defect sample we have cal-
culated the vibrational density of states (VDOS) by
Fourier transforming the velocity-velocity autocorrela-
tion function for a 400 fs MD simulation at an average
kinetic temperature of =300 K. The width of the struc-
tures in Fig. 4 is primarily an artifact of finite-time sam-
pling on the discrete Fourier transform.!” We note that
the calculated VDOS is in outstanding agreement with
the experimental data of Ref. 20. In particular, we ob-
serve that both the peak locations and structure are in
closer agreement with experiment than the VDOS ob-
tained by CP. This is due both to the difference in struc-
ture and to the CP use of the I' point in calculating in-
teratomic forces. Another contrast to the work of CP is
that we find seven-member rings to be much preferred to
the five-member rings, as one can conclude from the ring
statistics presented above. It is interesting to observe
that our VDOS is nonzero at w=0. This is, in part, an
artifact of the Fourier transform; it is also a consequence

n(r)

3 | AJ/\N/’ _

] 1

0 0.6 1.2 1.8 2.4 3.0
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FIG. 3. n(r) for the two defect cell, as discussed in the text.
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FIG. 4. The vibrational density of states for the two defect

cell obtained by Fourier transforming the velocity autocorrela-
tion function.

of some finite-temperature rearrangement and/or
diffusion of weak bonds and/or defects. For a sufficiently
long MD simulation, it is clear that the VDOS would
vanish at ©=0.

In order to accurately investigate the electronic density
of states in the region of the gap, it is necessary to use a
method which produces more accurate conduction bands
than the LDA. Provided that we restrict our attention to
structures that are not very distorted, an adequate tool is
an empirical tight-binding technique?! along the lines dis-
cussed by Fedders and Carlsson in their studies of defects
in @-Si.?? In this method, the overlap integrals vanish at
the second-neighbor distance in ¢-Si, and a Bethe-lattice
truncation is used to eliminate surface effects.?’

The two defect sample has a band gap of 1.3 eV after
about 0.2 eV was lost to band tailing of the valence band
and another 0.2 eV to band tailing of the conduction
band. Surprisingly, this (two defect) sample had three
states in the gap. Two of these states were normal three-
fold coordinated dangling-bond states with more than
50% localization on the back bonded site (that site miss-
ing a neighbor). The third defect state consisted of a cen-
tral atom with two normal neighbors and two other
neighbors at the quite large distances of 2.62 and 2.67 A.
The angle subtended by the neighbors was a surprising
164°. This state had about 25% of the charge on each of
the three atoms. These defects were reasonably well
separated spatially, and there was no difficulty defining
the spectral width of each of the defects.

The discovery of a structure such as this raises an im-
portant point: It seems quite possible that for true a-Si
many of the spectral features “in the gap” may be due
not to threefold or fivefold atoms, but to badly strained
fourfold coordinated atoms. Such defects would not give
rise to an ESR signal, but would still significantly
influence the electronic properties of a-Si. Determination
of the frequency of occurrence of such structures, and an
analysis of their implications to electronic structure are
underway.

For samples more disordered than the two defect cell,
we found that it was difficult even to define a gap. In the
case of the four defect sample [z (r) of Fig. 2(d)] with two
floating and two dangling bonds, we find more than four
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defect states in the region of “‘the gap.” None of these de-
fects were very well localized, and the floating-bond
states merged into the conduction band. The nonex-
istence of an obvious gap raises serious questions about
the experimental relevance of the many proposed disor-
dered structures with 15-20 % defects.'”

The agreement we have observed between the two de-
fect cell and experiment leads us to tentatively conclude
that the 64-atom simple cubic geometry is adequately
large to characterize the important features of real a-Si.
Thus, it seems that the supposed ‘“‘tradeoff” between ab
initio methods (with a small cell but accurate forces) and
ADP calculations (with much larger cell, but somewhat
inaccurate forces) is not relevant for simulating a quench
from a disordered cell. Of course, direct simulations of
epitaxial growth are another matter, and seem to present
a formidable challenge to ab initio methods at present.

IV. DISCUSSION

In this section we discuss some general features of
band-structure-based MD techniques, and compare to
some other simulations of a-Si. We first turn our atten-
tion to the ab initio methodology.

In order to simulate an infinite system, band-
structure-based schemes use supercells. Here, one
chooses a particular large unit cell with the geometry of
one of the Bravais lattices, and performs calculations for
the infinite system composed of the unit cell repeated
through the lattice vectors of the Bravais net. To do this
properly, one needs to choose a cell large enough that lo-
cal microstructures of a disordered system may be stud-
ied without intercell correlations being a significant fac-
tor. Also, there are energy bands associated with the
“artificial periodicity”’ of the supercells. In a MD simula-
tion, interatomic forces depend upon an integration
throughout the BZ of the supercell bands. Despite this,
it is common practice to approximate the bands as flat.
This is the effect of the I'-point approximation, in which
total energies and interatomic forces are calculated with a
sampling of only the I' point in the BZ. The rationale
underlying this approximation is that for a large enough
supercell (for supercell dimensions greatly exceeding in-
teratomic spacings), the band curvature is negligible.
This is certainly true asymptotically. However, we have
recently shown that significant errors in forces may be at-
tributed to inadequate treatment of band curvature.® For
a highly disordered 54-atom cell (cell “L” discussed in
Ref. 8), a bandwidth of =0.1 eV was found for the super-
cell bands. We expect that the discrepancy in forces
found for the 54-atom cell should be somewhat larger
than for the 63-atom geometry we employ. In order to
assure the accuracy of forces for the 63-atom cell we have
used four Monkhorst-Pack?* (MP) special points in the
BZ for computing total energies and forces. Earlier ex-
perience with the 54-atom cell® suggests that this leads to
small (=2%) errors in the highly disordered cell L. This
is to be compared to 10-12 % errors for the use of the I'
point. The differences between the I'-point method and
the use of special points can also be viewed as evidence
that finite-size effects are relevant, since, for a large



5140

enough cell, the I" point must be adequate.

To illustrate the effect of using one special MP point
(four, taking the star of k into account as we must for a
system with no point-group symmetry) versus the I
point, consider a simple s-only tight-binding model with
nearest neighbor (NN) interactions. The dispersion E (k)
is well known to have the form?*’

E(k)=E;+ 3 cos(k:‘R)T(R), 3)
NN cell

where the first term can be regarded as a “single-cell”
term, and the second arises from nearest-neighbor-cell
correlations. It is obvious that the use of k* =0 in a BZ
average maximizes the intercell correlation part of the
dispersion, whereas, by construction, a single MP special
point minimizes this contribution (giving zero in this
case). Thus, at least for this simplified case, it seems that
in addition to estimating BZ averages more accurately,
the use of a single MP point minimizes intercell correla-
tions which is presumably desirable for extracting prop-
erties of the “infinite system.”

The effect of the I'-point approximation on the melting
of ¢-Si is also revealing: examination of R*(¢) using the
I'-point scheme shows a super-linear behavior, charac-
teristic of partially ballistic trajectories of the atoms. The
same calculation for four special points gave a more
linear R2. To explain this, we note that for small devia-
tions from the diamond structure, there should be a force
which tends to restore the atoms to their initial positions.
Thus, the difference in diffusion can be understood: the
energetically favorable nature of the diamond structure is
due entirely to the “band-structure” term in the total in-
teratomic force. If this force is calculated without proper
regard for the k& dependence of the bands, there is an
inaccurately small restoring force acting on the atoms,
and the diffusion is therefore erroneously large. Related
conclusions on the importance of k sampling have recent-
ly been reached by Jank and Hafner®® using the linear
muffin-tin orbitals method.”’” Fernando et al.?® have
studied the effects of partial occupancy of electronic state
near the Fermi level in Na and also observed that the I'-
point approximation needs to be interpreted with care in
metallic systems.

As we briefly reported elsewhere,® the importance of
proper BZ sampling was strikingly indicated in simula-
tions involving a 32-atom (bce) cell. Rapid quenching of
a partly melted sample using only the ' point yielded a
structure with a radial distribution function resembling
experimental a-Si, and two dangling bonds. This struc-
ture proved to be unstable, however: When further simu-
lated quenching was performed with four MP special
points, the sample became crystalline. From this we con-
clude that the I'-point method can lead to a spurious
minimum in the configurational potential energy of the
system. As expected, these effects are more drastic in the
smaller supercell. This is a rather explicit demonstration
that inadequate sampling of the BZ can lead to a ““false
disorder.” Since the errors in forces for the ADP’s are
much larger than the error from I'-point sampling, we
expect that such false disorder should be an even greater
difficulty for the ADP-based simulations.

In order to examine the finite-temperature effects of BZ
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sampling further, we ‘“heated” the two defect cell to a
moderate kinetic temperature ( ~300 K), and let the cell
freely evolve from identical initial conditions for the I
point and MP sampling schemes. For both cells we mon-
itored the type and number of nontetrahedral sites as a
function of time step. Results for the two cells were
significantly different: in the cell using MP sampling it
was found that instantaneous floating defects were quite
rare; the dominant defect was always of dangling type.
In the I'-point cell floating defects were much more com-
mon. This result suggests that more accurate forces tend
to favor threefold defects. It also implies that the small
differences in interatomic forces calculated with the MP
and I'-point method lead to significant differences in
finite-temperature properties of the amorphous matrix.

We also stress that the effects we describe here depend
upon the geometry of the supercell: since the I'-point ap-
proximation is better for a larger cell, it is hard to com-
pletely decouple the pure “size” effects from BZ sampling
artifacts. At this point, all we can say about cell size is
that to make intercell correlations negligible, we have to
choose the cell size much larger than the size of struc-
tures we want to examine. For the simulations we
present here for the 64-atom simple cubic geometry, we
note that there are no direct interactions between an
atom in one cell and its image in another, as the image of
any given atom is at a distance exceeding 2r,, the max-
imum interaction range of the pseudoatomic orbitals.

In general we note that there are difficulties in compar-
ing experiment and simulation for the systems we study.
Other authors'® have rightly pointed out that the relevant
time scale for epitaxial growth or other methods of fabri-
cating a-Si is a time scale which is several orders of mag-
nitude longer than the MD time step. Since many atoms
need to be included to gain a realistic description of a
structure, it is clearly impossible to run a simulation long
enough to truly simulate the growth process. The situa-
tion for quenching I-Si is every more murky. It is difficult
or impossible to experimentally fabricate a-Si with ac-
ceptable electronic properties in this way. In agreement
with others,'® we have found a large number
(=15-25 %) of defects in quenches from the liquid. We
therefore conclude that the high defect concentration for
liquid quenches is primarily a consequence of the quench
rate, and not necessarily the inaccuracies of the ADP
forces.

Newly developed methods for making a-Si, including
laser annealing and ion implantation may be much closer
to the time scale we are compelled to work with. In ion
implantation, for example, ¢-Si is bombarded with ener-
getic Si ions which disturb the crystalline matrix. The
““lattice” then rapidly “cools” the cascading atoms. This
experimental method of making a-Si is perhaps closest to
the simulation scheme we use, where a few atoms (with
particularly large initial velocities) quickly diffuse away
from their equilibrium (crystal) positions, and the system
is then suddenly ‘‘cooled” with the dynamical-quenching
method.

V. CONCLUSION

We have provided a simple recipe for generating net-
works of Si atoms with the known experimental proper-
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ties of a-Si. Throughout the calculation we used accurate
forces calculated from the MD scheme of Sankey and
Niklewski, and always included a reasonable treatment of
the curvature of supercell bands with four MP special
points in the BZ. We observe that for the initial condi-
tions indicated in Sec. II, there is a sharp transition from
a rather ordered structure to an amorphous structure for
a quench from preparation time 7= 124 fs. Annealing of
our best sample so obtained led to a two defect sample
which is, to the best of our knowledge, unique in satisfy-
ing structural information from experiments [z (r)], the
VDOS and defect concentrations (from spin resonance).
We find a new weakly bonded fourfold defect in a-Si
which produces a level in the gap.

Future developments on this approach should include
the use of larger supercells to verify that intercell correla-
tions are unimportant, the study of microvoids (which are
very important in real a-Si), and further examination of
the relationship of our method to experimentally accessi-
ble techniques for making a-Si. It would also be useful to
examine the effects of ensemble averaging on our results.

All cells discussed in this paper are available upon re-
quest.”’
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Note added in proof. Since this paper was accepted, we
have performed additional calculations relevant to the in-
terpretation of BZ sampling artifacts. Briefly, we found
that much of the error in the I'-point sampling method
derived forces was due to the treatment of hands crossing
at the Fermi surface. A complete discussion is given in
Ref. 8. This observation in no way affects the results of
this paper, except for the interpretation of why the I'
point and special point schemes differ.
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