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Spatial decay of the single-particle density matrix in tight-binding metals:
Analytic results in two dimensions
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Analytical results for the asymptotic spatial decay of the density matrixr(r ,r 8) in the tight-binding model
of the two-dimensional metal are presented. In various dimensionsD, it is found analytically and numerically
that the density matrix decays with distance according to the power lawr(r ,r 8)}ur2r 8u2(D11)/2.
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The computation of the ground-state properties of
condensed-matter system from the electronic structure
pends critically upon the computation of the single-parti
density matrix~DM!. If one possesses the occupied eige

statesc i(r ) of a single-particle HamiltonianĤ, then the den-
sity matrix at zero temperature can be expressed asr(r ,r 8)
5( i occupiedc i* (r 8)c i(r ). The diagonal element of the DM
r(r ,r ), is the charge density. The electronic energy may

expressed as Tr(r̂Ĥ), and in a simple case the electronic pa
of the interatomic forces may be expressed as

(2r̂]Ĥ/]R), whereR is an atomic coordinate. Viewed i
the position representation, it is clear that the decay
r(r ,r 8) determines howlocally one can formulate a calcula
tion of the energy or forces. This is of special interest
so-called ‘‘quantum order-N’’ methods in modern first-
principles computational condensed-matter physics.1,2

The DM provides a means to differentiate between a m
tallic and an insulating state. A considerable body of wo
has been devoted to computing the DM in various syste
For insulators, it is well established that, forur2r 8u→`,
r(r ,r 8);exp(2gur2r 8u).3,4 Recently, we have publishe
detailed asymptotic expansions for insulators in one, t
and three dimensions.5 In metalsthe situation is less clear
Analytic results are available for the free-electron gas in a
dimensionality (D51 –3) and the DM exhibits a power-law
decay with Gibbs ringing~from the abrupt cutoff at the
Fermi surface atT50).6 Little is known about the ‘‘tight-
binding’’ case, except in one dimension where the mathem
ics is trivial. One more ‘‘realistic’’ numerical calculation with
a density functional Hamiltonian has appeared for Al, wh
produces a DM quite similar to the free-electron gas.7 In this
Brief Report, we provide analytical asymptotic results for t
decay of the DM in one dimension and, for the first time,
two dimensions for special directions on a square lattice.
DM is found to decay generally asur2r 8u2(D11)/2 for large
ur2r 8u, which coincides with the free-electron case. Num
ics support this law for all three dimensions along vario
lattice directions. We provide detailed expressions for
decay depending upon the parameters of the one-band t
binding model and the position of the Fermi level. The an
lytic results are confirmed by direct numerical evaluation
the DM.
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Let us consider a tight-binding Hamiltonian defined on
lattice,

Ĥ5(
i

N

« i u i &^ i u1(
iÞ j

N

t i j u i &^ j u, ~1!

where the orthonormal site basisu i & ~one electron orbital per
site! spans the Hilbert space of the state vectors. In the c
analyzed below, all the site energies« i5« and transfer inte-
grals between nearest neighbors,t i j 5t, are constant through
the lattice. The Bloch functionsuk&5N21/2( jexp$ik•Rj%u j &
with dispersion«k52t(a

Dcos(kaa) for the simple cubic lat-
tice ~say, with lattice constanta51 and «50) solve the
eigenproblem for the Hamiltonian~1!.

The object to evaluate is the density-matrix operator,r̂,
which can be written in the momentum representation ar̂
5(kuk& f k^ku, with f k being the occupation probabilities fo
different eigenstates. For an electronic system in ther
equilibrium, these probabilities are the Fermi-Dirac facto
f k5 f («k)5$11exp@(«k2m)/T#%21, wherem is the Fermi
level andT is the temperature. The matrix elements of t
density-matrix operator in the site basisr i j 5^ i ur̂u j & are of
special interest for obtaining the decay properties of the D
in real space. These matrix elements can be written in te
of the matrix elements of the Green’s function opera
Gi j («)5^ i u(«2Ĥ)21u j & as

r i j 5
1

NE2`

`

f ~«!(
k

d~«2«k!exp$ ik•~Rj2Ri !%d«

52
1

p
ImE

2`

`

f ~«!Gi j ~«1 i0!d«. ~2!

The problem of the DM decay is thus partly reduced to
problem of the evaluation of the off-diagonal elements of
Green’s function operator in the site basis, which is known
be not at all an easy task~see, e.g., Ref. 8 and referenc
therein!. After some standard algebraic manipulations a
introducing auxiliary integration~see, e.g., Ref. 9!, the ex-
pression forGi j [Gna

for the simple cubic lattice can b
recast in the following form:
©2002 The American Physical Society01-1
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Gna
~«!52

i

2tE0

`

exp$ iz«/2t%)
a

D

i naJna
~z!dz, ~3!

where the integersna stand for the Cartesian projections
the connection vectorRj2Ri , andJn(z) is the Bessel func-
tion.

Starting from this point, we are able to proceed analy
cally further only in the particular case of a square latt
(D52) along the main diagonal,nx5ny[n ~and in the one-
dimensional case as well!, when the integral overz can be
taken exactly:10

E
0

`

exp$ iz«/2t%Jn
2~z!dz

5
1

p
Qn21/2~122e2!1

i

2
Pn21/2~122e2!, ~4!

if the energy belongs to the band region 0,ueu,1, where
e[«/4t. The functionsPn and Qn are the associated Leg
endre functions of the first and second kinds, respectiv
The expression for the DM can then be recast as

rn5~21!n
2

pE21

eF
Qn21/2~122e2!de, ~5!

where eF[m/4t is the dimensionless Fermi level and th
zero-temperature case is implied. If the Fermi level l
above the band, i.e.,eF>1, all the states are occupied at ze
temperature and the DM isrn5dn0 , just reflecting the com-
pleteness of the basis set. This property, together with
even character of the integrand in Eq.~5!, allows us to re-
write the expression for the DM~for n.0) in the form

rn5~21!n
2

pE0

eF
Qn21/2~122e2!de, ~6!

and consider for definiteness onlyeF.0.
The integral in Eq.~6! can be simplified in the asymptoti

limit of large n→` by using the asymptotic expression f
Qn21/2(cosf),10

Qn21/2~cosf!.A p

2n sinf
cosS nf1

p

4 D , ~7!

wheref5cos21(122e2), so that

rn.
~21!n

2p3/2n1/2E0

f0A sinf

12cosf
cosS nf1

p

4 Ddf, ~8!

with f05cos21(122eF
2). The final step revealing the explic

asymptotic dependence of the DM onn can be made if the
Fermi level lies not far from the midband point andf0!1.
In that case, the first term of the integrand in Eq.~8! can be
expanded inf, resulting in

rn.~21!n
A2

p3/2n
E

0

c0
cosS c21

p

4 Ddc, ~9!
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with c05Anf0. All the nontrivial dependence onn is now
in the upper limit of the integral, the latter being proportion
to the Fresnel integralsC(x) andS(x),

rn.~21!n
1

pnA2
@C~A2nf0 /p!2S~A2nf0 /p!#,

~10!

and in the asymptotic limitA2nf0 /p→`,10

rn.~21!n
1

~pn!3/2A2f0

cosS nf02
p

4 D . ~11!

As follows from Eq.~11!, the DM decays according to th
power lawr i j }uRj2Ri u23/2, at least along the main diago
nal in the square lattice.

All the analytical results presented above can be verifi
by direct numerical analysis. In Figs. 1~a!–1~c!, we show the
dependence of the DM versusn along the diagonal@1,1# in
the square lattice for different positions of the Fermi lev
The exact numerical results~open circles! have been ob-
tained by both direct summation over the first Brillouin zo
in Eq. ~2! ~over 108 points! and by integration of Eq.~5!
~both methods give identical results!. The approximate ana
lytic results according to Eqs.~9! and ~11! are given by the
crosses and pluses, respectively. Good agreement bet
the exact and approximate dependences is evident, eve
the relatively large values of the Fermi-level position f
away from the midband region@see Fig. 1~c!#. The solid

FIG. 1. The dependence of the absolute value of the DM,urnu,
on the lattice indexn along the main diagonal@1,1# in the square
lattice @Rj2Rj5(nx ,ny)[(n,n)# for a tight-binding model of a
crystalline metal at zero temperature and various positions of
Fermi level,eF5m/4t, as marked in~a!–~c!. The open circles rep-
resent the exact numerical result obtained from Eq.~2!. The crosses
and pluses correspond to the approximate results obtained by u
Eqs. ~9! and ~11!, respectively. The straight solid lines show th
power-law dependencern}n23/2.
1-2
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straight lines in Fig. 1 corresponding to the power lawurnu
}n23/2 confirm the same law for the DM decay.

In order to verify the power-law decay of the DM alon
other directions in the simple square lattice, we have ca
lated the DM numerically for these directions and ha
found the same asymptotic behaviorrn}n23/2. The results
for directions@1,0# and @2,1# and different positions of the
Fermi level are presented in Figs. 2~a!–2~c!.

For the special case that the Fermi level lies exactly at
band center,eF50, note that for the main diagonal@1,1#, the
DM vanishes forn.0 @see Eq.~6!#. The behavior is also
different in other directions: foreF'0 the dependence
changes fromrn}n23/2 to rn}n22 @see the dashed lines i
Figs. 2~a! and 2~b!#. Figure 2~c! shows how this change oc
curs for the direction@2,1# wheneF→0.

The analysis of the DM decay in different dimensions c
be performed analytically forD51 and numerically forD
53. First, we look at the one-dimensional~1D! system. In
the case of zero temperature, the integrals in Eq.~2! can be
taken exactly, resulting in the following expression for t
DM ( um/2tu<1):

rn5
1

pn
sinFnS sin21

m

2t
1

p

2 D G . ~12!

This expression has the correct limits for a fully occupi
(m52t) and an empty (m522t) band, viz.,rn5dn0 and
rn50, respectively, and shows the power-law decayrn

}n21. Bearing in mind the decay lawrn}n23/2 found for
D52, we can infer that the generalized law in all dimensio
is

FIG. 2. The dependence of the absolute value of the DM,urnu
on the lattice indexn: ~a! along the direction@1,0# in the square
lattice @Rj2Rj5(nx ,0)[(n,0)# and ~b!, ~c! along the direction
@2,1# in the square lattice@Rj2Rj5(2ny ,ny)[(2n,n)# for the
same model as in Fig. 1. The results are obtained numerically f
Eq. ~2!. The straight solid and dashed lines show the power-
dependencesrn}n23/2 andrn}n22, respectively.
23310
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r i j 5rn}n2(D11)/2}uRj2Ri u2(D11)/2. ~13!

In order to check Eq.~13! for D53, we have calculated
numerically the DM for the simple cubic lattice along diffe
ent directions for various positions of the Fermi level. T
results are shown in Figs. 3~a!–3~c!, from which it is clear
that indeed the DM asymptotically satisfies Eq.~13! andrn

}n22.
Similar to the 2D case, the midband location of the Fer

energy brings additional symmetry to the problem which c
change the asymptotic behavior of the DM along certain
rections. For example, ifeF50, thenrn50 for n.0 along
the direction@1,1,0# and rn}n23/2 along the@1,1,1# direc-
tion @see the dashed line in Fig. 3~b!#. Figure 3~c! demon-
strates how the new asymptotic behavior appears when
Fermi level approaches the midband position#.

The above analytical and numerical results have been
tained for very simple tight-binding models. This of cour
leaves open the question about the generality of our findin
In order to answer this question, at least to some extent,
have calculated the single-electron DM for a realistic mo
of fcc aluminum~500-atom supercell with the box side o
20.25 Å) using an approximate density functional Ham
tonian in the local density approximation~see Ref. 7 for
more detail!. The results are presented in Figs. 4 and 5. T
real-space contour plot for the DM in the$100% plane for the
conventional cubic unit cell is shown in Fig. 4. From th
plot, we can see the isotropic metallic nature of the bondi
in contrast to the case of semiconductors with covalent bo
ing ~cf. Fig. 3 in Ref. 7!. The spatial decay of the DM alon

m

FIG. 3. The dependence of the absolute value of the DM,urnu,
on the lattice indexn: ~a! along the direction@1,0,0# in the simple
cubic lattice@Rj2Rj5(nx ,0,0)[(n,0,0)# and ~b!, ~c! along the
direction @1,1,1# in the simple cubic lattice@Rj2Rj5(nx ,ny ,nz)
[(n,n,n)# for a tight-binding model of a crystalline metal at ze
temperature and various positions of the Fermi level,eF5m/8t, as
marked. The results are obtained numerically from Eq.~2!. The
straight solid and dashed lines show the power-law depende
rn}n22 andrn}n23/2, respectively.
1-3
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different directions in the same symmetry plane for Al
shown in Fig. 5, together with the data calculated for
free-electron gas model6 ~with the electron density being th
same as that for Al, i.e., 0.185 Å23). It is clearly seen that
the DM for Al decays in a very similar fashion to that for th
free-electron gas model, i.e.,r}r 22. Therefore, these result
support the generality of our model calculations.

In conclusion, we have presented analytical and numer
arguments supporting the power-law decay of the den
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FIG. 4. Contour plot of the real-space density matrix for
calculated in the$100% plane for the conventional cubic unit ce
~the x-y axes are parallel to the bonds!.
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matrix, r i j }uRj2Ri u2(D11)/2, in tight-binding models of
metals in different dimensions at zero temperature. The m
result is the analytical asymptotic dependence of the den
matrix versus distance along the main diagonal in the squ
lattice @see Eq.~11!#. Apparently, the sharp cutoff induced b
the Fermi-Dirac distribution at zero temperature in the in
gration over the energy spectrum, independently of the sh
of the density of states, results in the power-law decay of
density matrix in crystalline metals.
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FIG. 5. Spatial decay of the real-space density matrix for
calculated for different angular directions, as marked~zero angle
refers to the bond direction!, in the$100% plane for the conventiona
cubic unit cell. The solid circles represent calculated values of
density matrix for the free-electron gas model with the same e
tron density as for Al. The solid line shows anr 22 dependence.
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