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Spatial decay of the single-particle density matrix in tight-binding metals:
Analytic results in two dimensions
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Analytical results for the asymptotic spatial decay of the density mafnixr’) in the tight-binding model
of the two-dimensional metal are presented. In various dimen&iitsis found analytically and numerically
that the density matrix decays with distance according to the powep(aw’)|r—r’|~ (P12,
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The computation of the ground-state properties of a Let us consider a tight-binding Hamiltonian defined on a
condensed-matter system from the electronic structure ddattice,
pends critically upon the computation of the single-particle
density matrix(DM). If one possesses the occupied eigen- N N
statesy;(r) of a single-particle Hamiltoniahl, then the den- H :Ei eili)(il+ ; tij )il (o
sity matrix at zero temperature can be expresseg(es’) .

=21 occupied/] (1) #i(r). The diagonal element of the DM, \ynere the orthonormal site basis (one electron orbital per
p(r,r), is the charge density. The electronic energy may baite) spans the Hilbert space of the state vectors. In the case
expressed as TpH), and in a simple case the electronic partanalyzed below, all the site energies=e and transfer inte-
of the interatomic forces may be expressed as Tgrals between nearest neighbdss=t, are constant through

(- paflaR), whereR is an atomic coordinate. Viewed in the lattice. The Bloch functiongk)=N""2%expfik-R;}|j)

the position representation, it is clear that the decay ofvith dispersions,=2t>2cosk,a) for the simple cubic lat-

p(r,r') determines hovocally one can formulate a calcula- tice (say, with lattice constana=1 and&=0) solve the

tion of the energy or forces. This is of special interest in€igenproblem for the Hamiltoniaf1). A

so-called “quantum ordel” methods in modern first- The object to evaluate is the density-matrix operapor,

principles computational condensed-matter physfcs. which can be written in the momentum representatiop as
The DM provides a means to differentiate between a me=3,|k)f(k|, with f, being the occupation probabilities for

tallic and an insulating state. A considerable body of workdifferent eigenstates. For an electronic system in thermal

has been devoted to computing the DM in various systemsquilibrium, these probabilities are the Fermi-Dirac factors

For insulators, it is well established that, far—r’|—o, fi="f(e)={1+exd(sx—u)/T]} "1, wherepu is the Fermi

p(r,r')~exp(Hyr—r’[).>* Recently, we have published level andT is the temperature. The matrix elements of the

detailed asymptotic expansions for insulators in one, twogdensity-matrix operator in the site ba$i§=<i|f)|j) are of

and three dimensiorsin metalsthe situation is less clear. special interest for obtaining the decay properties of the DM

Analytic results are available for the free-electron gas in anyn real space. These matrix elements can be written in terms

dimensionality D=1-3) and the DM exhibits a power-law Of the matrix elements of the Green’s function operator

decay with Gibbs ringing(from the abrupt cutoff at the G;;(e)={(i|(e—H) !|j) as

Fermi surface af=0).° Little is known about the “tight-

binding” case, except in one dimension where the mathemat- 1 (=

ics is trivial. One more “realistic” numerical calculation with Pij :Nj f(s)E d(e—e)explik-(Rj—Rj)}de

a density functional Hamiltonian has appeared for Al, which o K

produces a DM quite similar to the free-electron §#s this 1 0

Brief Report, we provide analytical asymptotic results for the =— —ImJ f(e)Gjj(e +i0)de. 2

decay of the DM in one dimension and, for the first time, in ™ o

two dimensions for special directions on a square lattice. The )
DM is found to decay generally ds—r’|~(®*D2for Jarge  The problem of the DM decay is thus partly reduced to the

[r—r'|, which coincides with the free-electron case. Numer-Problem of the evaluation of the off-diagonal elements of the
ics support this law for all three dimensions along variousGreen’s function operator in the site basis, which is known to
lattice directions. We provide detailed expressions for thd>e not at all an easy tadlsee, e.g., Ref. 8 and references
decay depending upon the parameters of the one-band tighfierein. After some standard algebraic manipulations and
binding model and the position of the Fermi level. The anaJntroducing auxiliary integratiorisee, e.g., Ref.)9 the ex-
lytic results are confirmed by direct numerical evaluation ofPression forG;;=G, for the simple cubic lattice can be
the DM. recast in the following form:
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. D
Gya(8)=—%fo explize/2}[] i*«, (2dz, (9

where the integersg, stand for the Cartesian projections of
the connection vectdr;—R;, andJ,(z) is the Bessel func-
tion.

Starting from this point, we are able to proceed analyti

cally further only in the particular case of a square lattice

(D=2) along the main diagona#,= »,=v (and in the one-
dimensional case as wgliwhen the integral over can be
taken exactly®

J explize/2t}J%(z)dz
0

1 2 I 2
:;QV71/2(1_26 )+§PV*1/2(1_26 )1 (4)

if the energy belongs to the band regior< ¥|<1, where
e=¢gl4t. The functionsP, and Q, are the associated Leg-
endre functions of the first and second kinds, respectivel
The expression for the DM can then be recast as

2 (e
pv:(_1)V;J\71QVfl/2(l_262)d61 (5)
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FIG. 1. The dependence of the absolute value of the Qiy],

on the lattice indexv along the main diagongll,1] in the square
yI'attice [R;—R;=(¥x,vy)=(»,v)] for a tight-binding model of a
crystalline metal at zero temperature and various positions of the
Fermi level,eg= w/4t, as marked infa)—(c). The open circles rep-
resent the exact numerical result obtained from @y.The crosses

and pluses correspond to the approximate results obtained by using
Egs. (9) and (11), respectively. The straight solid lines show the

where eg=pu/4t is the dimensionless Fermi level and the power-law dependenge, v~ 32
zero-temperature case is implied. If the Fermi level lies

above the band, i.eez=1, all the states are occupied at zero with ¢o= v o.

temperature and the DM js,= 6,4, just reflecting the com-

pleteness of the basis set. This property, together with th

even character of the integrand in H§), allows us to re-
write the expression for the DNfor »>0) in the form

2 (er
p=(-172] "0, p1-2e90e ®

and consider for definiteness ondy>0.
The integral in Eq(6) can be simplified in the asymptotic
limit of large v— by using the asymptotic expression for

Q v— 1/2( Cosd))ilo

a a
Q,-1/2(COSP)= 1/ 57 sin¢co{ v+ Z)’ (7)

where ¢=cos }(1—2€%), so that

(-1

fdbo sing N T
Pv= 5 2,112 Vl—cos¢°0 v+ g

with ¢0=COS_1(1—26|2:). The final step revealing the explicit
asymptotic dependence of the DM encan be made if the
Fermi level lies not far from the midband point agd<<1.
In that case, the first term of the integrand in Eg).can be
expanded inp, resulting in

\/E o

do, (8

p,=(-1)"
2312, ) o

o
cos( P+ 7

de,

9

All the nontrivial dependence on is now
in the upper limit of the integral, the latter being proportional
fo the Fresnel integral§(x) andS(x),

1
p=(— 1)”7\/5[C(\/2u¢0/77)—8( Vvl m)],
(10

and in the asymptotic limit/2v¢q/7— ,1°

T
p,=(—1)" Vo~ Z)' (11)

e
()20

As follows from Eq.(11), the DM decays according to the
power lawp;;=|R;—R;| ¥ at least along the main diago-
nal in the square lattice.

All the analytical results presented above can be verified
by direct numerical analysis. In Figs(al—1(c), we show the
dependence of the DM versusalong the diagondll1,1] in
the square lattice for different positions of the Fermi level.
The exact numerical result®pen circley have been ob-
tained by both direct summation over the first Brillouin zone
in Eq. (2) (over 1¢ pointg and by integration of Eq(5)

(both methods give identical resylt'he approximate ana-
lytic results according to Eq%9) and(11) are given by the
crosses and pluses, respectively. Good agreement between
the exact and approximate dependences is evident, even for
the relatively large values of the Fermi-level position far
away from the midband regiofsee Fig. 1c)]. The solid
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FIG. 3. The dependence of the absolute value of the Qiy],

FIG. 2. The dependence of the absolute value of the DM, on the lattice indew: (a) along the directiof1,0,0] in the simple
on the lattice indexv: (a) along the directiorf 1,0] in the square . pic lattice[R; — R; = (vy,0,0)=(»,0,0)] and (b), (c) along the
lattice [R; —R;=(v,0)=(,0)] and (b), (¢) along the direction girection[1,4,1] in the simple cubic latticéR;—R;=(vy, v, ,v,)
[2,1] in the square latticgR;—R;=(2vy,»,)=(2v,»)] for the  —(,, 5 1)] for a tight-binding model of a crystalline metal at zero
same model as in Fig. 1. The results are obtained numerically frorﬂamperature and various positions of the Fermi levek w/8t, as
Eqg. (2). The straight solid and dashed lines show the power-lawmarked. The results are obtained numerically from B The
dependencep, = »~¥? andp,= v, respectively. straight solid and dashed lines show the power-law dependences

p,ov 2 andp, v~ 32 respectively.

straight lines in Fig. 1 corresponding to the power g
« v~ confirm the same law for the DM decay.

In order to verify the power-law decay of the DM along
other directions in the simple square lattice, we have calcu-
lated the DM numerically for these directions and have

found the same asymptotic behaviey= v~ %2 The results e : - ;
for directions[1,0] and[2,1] and different positions of the ent directions for various positions of the Fermi level. The
k ' results are shown in Figs(&-3(c), from which it is clear

Fermi level are presented in Figsag-2(c). éhat indeed the DM asymptotically satisfies Efj3) andp,,
Xy

pij=p,~ V_(D+1)/20<|Rj—Ri|_(D+1)/2. (13)

In order to check Eq(13) for D=3, we have calculated
numerically the DM for the simple cubic lattice along differ-

For the special case that the Fermi level lies exactly at the ~_,
band centereg= 0, note that for the main diagonfdl,1], the
DM vanishes forv>0 [see Eq.(6)]. The behavior is also
different in other directions: forez~=0 the dependence
changes fronp,< v~ %2 to p,> v~ ? [see the dashed lines in

Figs. 2a) and 2b)]. Figure 2c) shows how this change oc- the direction[1,1,0] and p v 2 along the[1,1,1] direc-

curs for the directiorf 2,1] when eg—0. . Srve T A i
The analysis of the DM decay in different dimensions cantIon [see the dashed line in Fl_g(lB]. Flgure dc) demon
) o . strates how the new asymptotic behavior appears when the

be performed analytically fob=1 and numerically folD

~ : ; . Fermi level approaches the midband position
t?]g .c';gztb¥v§elr(())otl(er?]tpg;eatt?rnee-?r:;nierlrtzlgﬁjs[)i)n?é;tcear?]'blg .The above analytical_and r]umerical results h.ave been ob-
taken exactly, resulting in thé following expression for thetaInGd for very 5|mple. tight-binding models.. This of course
DM (| /21| si)' leaves open the question abo_ut the generality of our findings.
: In order to answer this question, at least to some extent, we
have calculated the single-electron DM for a realistic model
(12) of fcc aluminum(500-atom supercell with the box side of
' 20.25 A) using an approximate density functional Hamil-
tonian in the local density approximatidisee Ref. 7 for
This expression has the correct limits for a fully occupiedmore detail. The results are presented in Figs. 4 and 5. The
(n=2t) and an empty &= —2t) band, viz.,p,=45,, and  real-space contour plot for the DM in th&0Q plane for the
p,=0, respectively, and shows the power-law degay conventional cubic unit cell is shown in Fig. 4. From this
«p~1 Bearing in mind the decay law,>=» 2 found for  plot, we can see the isotropic metallic nature of the bonding,
D=2, we can infer that the generalized law in all dimensionsin contrast to the case of semiconductors with covalent bond-
is ing (cf. Fig. 3 in Ref. 7. The spatial decay of the DM along

Similar to the 2D case, the midband location of the Fermi
energy brings additional symmetry to the problem which can
change the asymptotic behavior of the DM along certain di-
rections. For example, i&-=0, thenp,=0 for v>0 along

1
=—sin
Py P

T W
V(Sln 2t+ 5
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FIG. 5. Spatial decay of the real-space density matrix for Al
calculated for different angular directions, as markedro angle
refers to the bond directionin the{100 plane for the conventional
\ cubic unit cell. The solid circles represent calculated values of the

density matrix for the free-electron gas model with the same elec-

FIG. 4. Contour plot of the real-space density matrix for Al tron density as for Al. The solid line shows an’ dependence.
calculated in the{100 plane for the conventional cubic unit cell ) _D+DR2 i g o
(thex-y axes are parallel to the bonds matrix, p;;|R;—Rj| , in tight-binding models of

metals in different dimensions at zero temperature. The main
, L ) . result is the analytical asymptotic dependence of the density
different directions in the same symmetry plane for Al iS mayrix versus distance along the main diagonal in the square
shown in Fig. 5, together with the data calculated for thejayice[see Eq(11)]. Apparently, the sharp cutoff induced by
free-electron gas modetwith the electron density being the e Fermi-Dirac distribution at zero temperature in the inte-
same as that for Al i.e., 0.185 &). It is clearly seen that gration over the energy spectrum, independently of the shape

the DM for Al decays in a very §i£nilar fashion to that for the o the density of states, results in the power-law decay of the
free-electron gas model, i.eacr <. Therefore, these results density matrix in crystalline metals.

support the generality of our model calculations.
In conclusion, we have presented analytical and numerical D.A.D. thanks the National Science Foundation for sup-
arguments supporting the power-law decay of the densitport under Grant Nos. DMR 0081006 and DMR 0205858.
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