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Abstract

SUBEDI, KASHI, Ph.D., April 2022, NanoScale and Quantum Phenomena Institute

Theory of Electronic Transport and Novel Modeling of Amorphous Materials (127 pp.)

Director of Dissertation: David A. Drabold

Amorphous materials have myriad applications. There are persistent challenges in

understanding their structure due to the absence of long range order. Ab initio methods are

useful tools to model these materials and determine their microscopic properties. To

utilize materials for technological applications, understanding of electronic transport is of

central importance. More specifically, for a heterogeneous system, determining

conduction-active sites in the network may provide an insight to engineer the material for

a desired application. In this dissertation, we describe and develop a novel method to

project electronic conductivity onto real-space grids and visualize conduction-active sites

in selected materials. To implement the method, we utilize the Kohn-Sham eigenvalues

and eigenfunctions obtained from hybrid functional calculations. We then apply the

method to study conduction mechanisms in insulating, semi-conducting, metallic and

mixed systems.

In this dissertation, we also describe atomistic modeling of two promising resistive

memory materials: amorphous aluminum oxide (a-Al2O3) and silicon suboxide (a-SiOx).

For the former case, we study the impact of transition metal Cu in a highly ionic host

a-Al2O3 and discuss its effect to electronic structure and transport in the material. We

reveal that the Cu atoms segregate and form a cluster or chain-like structure in the oxide

host. We find that such Cu-cluster/chain like network forms the major conduction-active

sites in the material. For the latter case, we present a-SiOx models with x = 1.7, 1.5 and

1.3 and study their structure and electronic transport. In our study, we find that the

decrease in x results in the complexity of the network with different tetrahedral structures

of the form SiSiyO4−y where y = 0 to 4. This results in different types of oxygen
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(O)-vacancy sites in the material. We propose that a-SiOx also has a potential as a

computer security device: physical unclonable functions (PUFs) due to the inherent

randomness in its structure, particularly for low x.

In the last section of the dissertation, we employ the building-block method to model

sodium silicate glasses among the most important glasses for practical application. We

provide a detailed study of structural, electronic and thermal properties with varying

concentration of modifier (Na2O) in the glass (SiO2). For the first time (to our

knowledge), we have computed the linear thermal expansion coefficient using first

principles and our results find close agreement with experiments.
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6.1 a), b), c): Conductivity projected on grids closest to crystallographic planes
010, 011 and 111 containing a vacancy as a 2D gray scale plot. The magnitude
of conductivity increases from white to black. The colored lines with small
spheres are just for guide to an eye representing different directions from the
vacancy. d), e), f): Variation of conductivity with distance from the grid
closest to the vacancy along different directions on planes 010, 011 and 111
respectively. θ and φ refer to the polar and azimuthal angles respectively. Color
of legends in d), e) and f) match with the lines shown in a), b) and c) respectively.112
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1 Introduction

1.1 Background

This dissertation is concerned with simulating of amorphous and glassy materials

that have technological importance. The work is focused primarily on transport properties

of electronic materials that have potential applications for the resistive memory devices

and physical unclonable functions (PUFs). The growth of the Internet of Things (IoT) and

neuromorphic computing has demanded memory devices with high data density and

reduced power consumption. The limitation of scaling of the conventional electronics due

to charge leakage [4, 5] has required non-volatile memory and the logic devices based on

new concepts and materials [6]. Non-volatile memory devices based on resistive

switching behavior have emerged as a promising alternative to the conventional Si-based

memory devices in terms of device simplicity, low power consumption, switching speed

and high density integration [7, 8, 9]. Several different devices have been proposed that

work on different physical concepts [10]. These devices function by switching the

conductivity of the material between high and low resistance states upon applying voltage

to the metal-insulator-metal (MIM) memory cell. Amorphous forms of insulating metal

oxides such as aluminium oxide [11, 8, 12], silicon oxide [13, 14], tantalum

oxide [15, 16], hafnium oxide [17] are among studied materials for resistive memory

devices. Beside metal oxides, chalcogenides [18, 19] are also promising for these

devices. With the growth of IoT, data confidentiality and authentication have become

equally important along with its storage. The current practice of providing a secure

memory or authentication using electrically erasable programmable ROM (EEPROM) or

static random access memory (SRAM) are usually expensive both in terms of design and

power consumption [20]. Using physical keys, commonly termed as PUFs, is a promising

alternative for secret key storage without any expensive hardware [21]. The PUF is a
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physical observable derived from inherent randomness of the structure such that each

physical realization of the PUF produces a stable and unique identifier. Such identifiers

are difficult to be cloned, guessed, stolen or shared. Amorphous silicon and carbon

nanotubes (CNTs) have been studied for PUF applications [22, 23]. Experimental

evidence has suggested that amorphous silicon suboxides are promising materials for the

PUF applications [24].

These computer technologies (resistive memory devices, conducting bridges RAM,

PUF devices) involve poorly understood conduction pathways, and the microscopic

understanding of such systems might be improved by a detailed atomistic study of the

flow of charge through the systems. For such heterogeneous systems, an answer to a basic

question “ what parts of the network are conducting” is important to optimize these

devices.

Sodium silicate glass is a prototype multi-component glasses that has many

applications in photonics, and bio-material engineering [25, 26, 27]. Despite their

importance, the atomic structure, thermal and mechanical properties of these glasses is

still not well understood. To fully exploit these glasses for practical applications,

fundamental insight about the atomic structure and their interactions is required.

1.2 Theoretical Study of Amorphous Solids

A widely accepted approach to model amorphous solids is the continuous random

network (CRN) proposed by W. H. Zachariasen [28]. The CRN model assumes that every

atom that is fully coordinated according to Mott’s ‘8- N rule’ [29], where N is the number

of valence electrons. Such a model possesses homogeneous disorder and absence of

ordered crystalline zones and voids. The model also assumes that there is an absence of

long range disorder in the network. Gutmann built the first computer CRN model in

1976 [30]. The CRN models are often successful for describing electronic and structural
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properties of the materials. Wooten, Winer and Weaire introduced an algorithm which was

able to produce experimentally plausible CRN models for amorphous column IV

materials based on a Monte Carlo bond switching scheme [31]. This method assumes a

priori information of the coordination environment of all atoms and the Monte-Carlo

moves needed that includes a Maxwell-Boltzmann factor. The method is limited to

handful of systems. These models are still used as the references for comparison with

other newer theoretical methods.

Molecular dynamics (MD) is now the standard approach to obtain atomistic models

of amorphous and glassy materials. It was introduced by Alder and Wainwright [32, 33] in

the late 1950s. It aims to study a system of interacting particles in a way as close to the

real world as possible and simulate its dynamics over a physical time scale that is relevant

to properties of interest. In this method, atoms are represented by the point particles and

Newton’s equations of motion are integrated numerically. The time step has to be chosen

to be tiny (≈10−15 fs) because of the natural time scale of atomic dynamics [34, 35]. A

system is heated at a temperature higher than the melting point so that it forgets its initial

configuration. The system is then quenched to obtain the low energy models representing

the given material. This method is commonly called as “melt-quench method”. This

method is not free from limitations. It ususally freezes in too many defects and may lead

to localized states in the gap that are rare or absent in real materials. The accuracy of the

MD approach depends upon the system size, the time scale and the quality of interatomic

forces to describe the interactions among the atoms in the system of electrons and ions.

The MD method is mostly used with two types of interactions, namely empirical and

quantum mechanical. Empirical potentials are generated by guessing a functional form

that mostly involve bonding (bending, stretching, etc.) and other interactions such as

electrostatic, van der Walls, etc. The functional form has free parameters which may be

tuned such that the experimentally observed properties are reproduced. The quality of
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potentials determine the accuracy and validity of the models. MD using empirical

potentials are computationally inexpensive and therefore larger models with thousands of

atoms can be simulated. Such approaches suffer severely from transferability issues (the

capability of correctly representing energetics of diverse configurations). Such potentials

are mostly focused on unary or binary systems. It is quite difficult to accurately predict the

correct potential for multi-component systems having complex structure. The quantum

mechanical interactions on the other hand involve detailed electronic structure

computations. The electronic Hamiltonian of a system with Ne electrons and Nn nuclei can

be expressed as:

H = −
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(1.1)

where indices i and j run over the electronic degrees of freedom (DOF) and I and J run

over nuclear DOF. Z represents the atomic number of a given nucleus. The first term in the

expression of H corresponds to the kinetic energy operator for electrons, the second term

corresponds to nuclei-electron interactions, the third term corresponds to electron-electron

interactions and the last term corresponds to nuclei-nuclei interactions. We have already

decoupled nuclear and electron degrees of freedom using the Born-Oppenheimer

approximation [36] that assumes nuclei are frozen in their equilibrium position in

electronic timescale. Directly solving the Schrodinger equation for a real many particle

systems is almost an intractable problem. The many-body problem was made simplified

by Dirac, Slater, Kohn, Hohenberg and Sham [37, 38, 39, 40] by treating the ground state

electron density {n(r)} instead of many-body wavefunctions. This approach is known as

density functional theory (DFT). This method uses the exchange-correlation energy

functional which is not known and different approximations are used for it. Modern

efficient and accurate implementations of DFT involving technical details that are

authoritatively discussed in reference [41].



23

1.3 Commonly Used Descriptors of Amorphous Solids

In order to interpret the atomic properties of amorphous materials, we require

mathematical ways to compute different quantities.

1.3.1 Structural Topology

The structure of amorphous materials underlies its other atomic properties. The radial

distribution function g(r) describes the atomic pair correlations as a function of distance

and is generally expressed as [42, 43]:

g(~r) =
1
ρN

∑

i

∑

j,i

δ(~r − ~ri)δ(~r − ~r j) (1.2)

where ρ = N/V is the number density. N and V represent the number of atoms and the

volume of the cell used. ~ri represents the position of ith atom with respect to the reference

atom. To obtain the radial distribution function g(r), we average g(~r) over the space:

g(r) =
∫

dΩ

4π
g(~r) (1.3)

This reduces to

g(r) =
1

4πρr2N

∑

i, j

δ(r − ri j) (1.4)

where ri j is the distance between atom i and atom j. The radial distribution function

contains structural information of the amorphous materials. For unary system, the first

peak provides information about the nearest neighbor bond length and coordination. The

first minimum gauges the extent of the short range order. Medium range order is

characterized by intermediate peaks beyond the first coordination sphere. For longer

distances, g(r) flattens out to unity. For multi-component systems, partial correlations are

used to compute the correlations between different atomic species and are expressed as:

dnαβ = 4πr2ρβgαβdr (1.5)
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where dnαβ is the average number of atoms with β species between distance r and r + dr

from the center α atom. ρβ is the number density of β species. To obtain the total radial

distribution functions, we need to obtain the weighted sum over the partial gαβ(r):

g(r) =
1

N2

∑

α, β

NαNβgαβ(r) (1.6)

where Nα and Nβ represents the number of atoms with species α and β respectively.

Experimental methods like neutron or X-ray diffraction are used to probe the structure in a

form of smooth function in reciprocal space known as the static structure factor S (q). The

radial distribution function can also be expressed as a Sine transform of S (q):

g(r) = 1 +
1

2πrρo

∫ ∞

0
q
[

S (q) − 1)
]

sin(qr)dq (1.7)

1.3.2 Electronic Structure

The electronic structure is mostly studied by the electronic density of states (EDOS)

which is still an appropriate concept that can be carried from crystalline to amorphous

systems. The EDOS is defined as:

g(E) =
1
N

N
∑

i=1

δ(E − Ei) (1.8)

where N is basis size and Ei is the eigenvalue of ith electronic (Kohn-Sham) eigenvector.

The EDOS provides information concerning the electronic band gap and also the states

that are present near the Fermi-level which are always of key interest to transport and

optical calculations. The band gap is associated with electronic conductivity which

describes the transport properties in the material. Amorphous materials possess structural

disorder so that electronic states are not all extended as in crystals. The localization of the

electronic states is generally gauged by inverse participation ratio (IPR) [44] and is

defined as:

I(ψn) =
∑N

1 ani
4

(∑

ani
2
)2

(1.9)
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where ani are the contribution to the eigenfunction ψn from the ith projected atomic orbital

obtained from VASP. In our case, I ranges from 0 to 1. Larger I signifies that the states

are localized on fewer atomic sites, whereas the smaller I indicates states are evenly

distributed over many atomic sites.

1.3.3 Lattice Dynamics

The lattice dynamics of amorphous materials can be studied from the quantities such

as vibrational density of states (VDOS), vibrational IPR, etc. In this dissertation, we study

these quantities within the harmonic approximation using first principles methods. The

vibrational eigenfrequencies and eigenmodes are obtained by diagonalizing dynamical

matrix. The normalized VDOS and the partial VDOS are expressed as [45]

Z(E) =
1

3N

∑

n

δ(E − ~ωn) (1.10)

Zα(E) =
1

3N

Nα
∑

i∈α

∑

n

| en
i |

2δ(E − ~ωn) (1.11)

where ωn are the normalized eigenfrequencies (3N in total). Here, the sum over i is over

all the atoms belonging to the species α and en
i

corresponds to the displacement vector

(vibrational eigenstate) of atom i with Cartesian components en
iµ where µ = x, y and z. The

vibrational IPR is useful to understand the nature of the vibrations. Similar to IPR that we

defined for electronic structure, the vibrational IPR can be calculated from the

eigenvectors as:

I(en) =

∑N
i=1 |e

n
i
|4

(∑N
i=1 |e

n
i
|2
)2

(1.12)

The values of VIPR range from 0 to 1. For a given eigenmode, higher value signifies that

the vibrations are localized to few atoms and lower value implies that the vibrations are

evenly distributed among many atoms.



26

1.4 Dissertation Outline

The remainder of the dissertation is organized in the following way: In chapter 2, we

give a fairly self contained treatment of charge transport treated by DFT and significantly

extend these conventional methods. We spatially decompose electronic conductivity onto

real-space grids. In this method, we construct a Hermitian positive semi-definite matrix

which we call the conduction matrix. It has interesting spectral properties and maps the

computation of conduction paths onto a diagonalization. We apply the method to study

electronic transport in semiconducting, metallic and mixed systems. In chapter 3, we

model an aluminum oxide (a promising resistive material) with varying concentrations of

copper into it. We discuss its structural, vibrational properties and apply the method of

Chapter 2 to electronic transport. In chapter 4, we provide atomistic modeling of another

promising resistive memory material: amorphous silicon suboxide. We vary the

O-deficient sites in the material and study the structural topology of this material. We

compute conduction pathways in this material and introduce it as a promising candidate

for physical unclonable functions. In chapter 5, we utilize the building block method to

model sodium silicate glasses and study their atomic properties with focus on structural

topology and thermal expansion coefficients.
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2 Real-Space Projection of Electronic Conductivity

The work presented in this chapter has been published as Subedi, K. N., Prasai, K.,

and Drabold, D. A. Space-projected conductivity and spectral properties of conduction

matrix, Phys. Status Solidi B 258, 2000438 (2021).

2.1 Introduction

Practical calculation of electron transport in materials [46] always involves

assumptions and approximations. The most natural and oldest approach is to employ

Boltzmann’s equation [47], which is ideal for a crystalline system with relatively weak

impurity or thermal disorder. It describes the dynamics of the electron distribution

function that takes into account of external fields and scattering process. It can also

describe quantum interference effects by including the non-local terms into the collision

integral [48]. A different way of framing the problem is due to Kubo [49], who in 1957

computed the linear response (current) to an external electric field. The resulting

expression for the electrical conductivity, further approximated within a single-particle

picture of the electronic structure [50] is called the Kubo-Greenwood formula (KGF).

This was later generalized as the “Fluctuation-Dissipation theorem”, that mathematically

connects dissipative processes with equilibrium fluctuations [51]. The ultimate roots of

this work extend through time to Einstein and his work on Brownian motion and

diffusion [52].

In this chapter, we review the Kubo-Greenwood formula and discuss the background

materials on computing the spatial transport information from computer models of

materials. We then describe the method to compute space projected conductivity and

apply it to different systems: a low density phase of amorphous carbon, amorphous and

liquid silicon, amorphous silicon suboxide, and for a useful contrast, FCC aluminum. We

also discuss the conduction in terms of conduction eigenmodes.
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2.2 Kubo Formula

For calculations of charge transport in disordered systems, it is natural to adopt the

Kubo approach. Mott and Davis [53] and Moseley and Lukes [54] offered an appealing

physical derivation of the KGF that we tersely repeat here. Consider a system with an

applied (external) AC electric field E. The system absorbs photons from the

electromagnetic field, and this drives electronic transitions near the Fermi level, ǫF .

Associated with this field, there is an electric current density j. The Joule heat produced

by the electric field per unit time is Ωj · E, where Ω is the cell volume. The rate at which

energy is absorbed from electronic transitions is γ =
∑

i f ǫ f i(w f iPi − wi f P f ). Here ǫ f i is the

energy difference between initial and final states, w f i is the transition probability per unit

time between final state f and initial state i, Pi( f ) is the occupation probability of the initial

(final) state. Next, one assumes that γ = Ωj · E. By using Fermi’s Golden Rule to estimate

the transition probabilities, and defining the conductivity σ from the identification that

σE2/2 is the mean rate of energy loss per unit volume, one obtains the KGF for each

k-point k [49, 50] (written here in a form most convenient for our purposes):

σk(ω) =
∑

i, j

gi j(k, ω)
∑

α

∣

∣

∣pαi j

∣

∣

∣

2
. (2.1)

In the shorthand notation of Equation 2.1, we averaged over diagonal elements of the

conductivity tensor1 (α = x, y, z), i and j index Kohn-Sham orbitals (or other

single-particle states) ψi,k(x) with associated energies2 ǫi,k, pα is the momentum operator

and gi j(k, ω) = 2πe2
[

fi(k) − f j(k)
]

δ
(

ǫ j(k) − ǫi(k) − ~ω
)

/(3m2ωΩ), and f is the

Fermi-Dirac distribution. The matrix elements of the momentum operator are

pα
ji
= 〈ψ j|p

α|ψi〉. It is remarkable that this expression for the conductivity, which exactly

coincides with the paper of Greenwood [50], does not require an explicit expression for
1 This is devised for amorphous materials which are assumed to be isotropic, it is equally easy to

implement this method for a particular direction to explore anisotropy of conduction.
2 Since all such calculations depend upon excited states, it would be better to apply post DFT methods or

at least hybrid functionals, a point we do not explore in this chapter.
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the current density. By carefully deriving the current density j, one discovers that this

derivation, and also Greenwood’s, veil significant approximations involving the DC limit,

and more subtly, the spatial homogeneity of carrier density. We will not further dwell on

these technical issues here, and adopt the “standard” KGF (Equation 2.1). See for example

Equation 19 of reference [55] and associated discussion. For a full many-body picture see

reference [56, 57].

The Kubo formula has been heavily employed in liquids [58, 59, 60, 61], amorphous

semiconductors [62] and mixed systems [63, 64]. In its usual application, the KGF is

applied to a static disordered lattice. As such, it provides no information about thermal

disorder and its consequences to conduction. For applications of the KGF in disordered

systems, the electron-phonon coupling is large for localized single-particle states [65, 66],

especially those orbitals near the Fermi energy. In a room temperature thermal molecular

dynamics simulation, energy levels may fluctuate with a thermally-induced root mean

squared fluctuation σE >> kT [67, 68].

Above the Debye temperature, it is sensible to estimate the temperature-dependent

conductivity by undertaking a long constant-temperature MD simulation and averaging

the KGF over the trajectory. This appears to give reasonable results for the temperature

dependence of pure and hydrogenated amorphous silicon, and explains the high

temperature coefficient of resistance and functionality of doped a-Si:H as a material for

night-vision device applications [69].

Apart from the approximations mentioned earlier, there are many technical details for

properly using the KGF, including finite size effects and such details as the broadening of

the δ function in Equation 2.1. A recent review details many issues about the use of KGF

in hot condensed matter [70]. The KGF is a valuable tool, linking as it does transport

experiments to the quantum mechanics of materials, but in its usual implementation gives
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just one function (the AC conductivity) or one number (the DC conductivity). It provides

no spatial information about the conduction.

2.3 Computing Spatial Information About Transport

For heterogeneous systems, a basic question is: “what parts of the network are

conducting?” Some emerging computer memory technologies (resistive random access

memory (RAM) and conducting bridge RAM) involve specific conduction pathways, and

our microscopic understanding of such systems might be improved by a detailed atomistic

understanding of the flow of charge through the systems. Conducting Bridge RAM can be

made from many amorphous insulating hosts (such as GeSe3 or Al2O3, heavily doped with

a transition metal like Ag or Cu). These are technologically important electrochemical

devices for which basic questions arise about whether transport is simply through metal

filaments or a more intricate process involving transport through metal rich regions [71].

We have provided direct insight into this elsewhere [72, 71, 73, 74, 75]. Another example

of keen current interest is PUFs devices for computer security, made from amorphous

silicon suboxide materials, as we discuss on more detail in Sec. 2.6.4. Another example of

interest is conductance fluctuation in amorphous systems [76].

With this tool in hand, the idea might also be pushed in an “engineering direction” as

a common inverse problems of materials science: “what is the structure that I need to have

a particular conductivity?”, or “what is the structure required to have a particular

absorption of light of frequency ω, eg. for the design of waveguides?” The inverse

problem is always challenging: a robust tool of the form R→ ℘ (given coordinates what

is the conducting path) is required before we can handle ℘→ R (given the conducting

path we seek, what coordinates – structure – will yield it?).

Some exisiting schemes yield insight into the spatial character of conduction. A

principal message of the KGF is that the DC conductivity arises from transitions between
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states at or near the Fermi level. To obtain a non-zero conductivity, it is necessary that the

momentum matrix element not vanish between the relevant occupied and unoccupied

states (Equation 2.1). If two such states ψi and ψ j do not overlap, there is no contribution

to the conductivity: transitions between spatially non-overlapping orbitals are forbidden.

So, to the extent that there is a large overlap between the two states, there is likely to be a

larger momentum matrix element too. This is the idea behind a primitive approximation,

the “qi − q j” method that we use in reference [73]. An even simpler scheme is to compute

the charge density around the Fermi level [77] – it must be that the spatial conductivity

involves those parts of space where this charge density is large, but this totally ignores the

momentum matrix elements which lie at the heart of the KGF – these matrix elements are

a legacy of the current-current correlation function, and it is not desirable to neglect these

contributions. Other ideas related to spatial decomposition of conductivity have emerged

in the literature before, including a computation of current densities for a randomly

disordered system [78], using the methods of Baranger and Stone [79]. Also, within a

Landauer picture, the concept of transmission eigen-channels was introduced and later

implemented with non-equilibrium Green’s functions [80].

2.4 Theory

2.4.1 Spatially Projected Conductivity (SPC)

The KGF (Equation 1) gives the conductivity as a weighted sum of the modulus

squared momentum matrix elements. The sums on Latin indices are over single-particle,

for this paper, Kohn-Sham orbitals. The spatial dependence of the states is obviously

important, but only insofar as this modulates the momentum matrix elements. Thus, it is

desirable to rewrite the KGF expressing the matrix element quadratures as sums on a real

space grid to find a spatial decomposition. Suppressing the explicit dependence of σ on k
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and ω, we write

σ =
∑

i jα

∫

d3x

∫

d3x′ gi j

[

ψ∗i (x)pαψ j(x)
] [

ψ∗i (x′)pαψ j(x′)
]∗

(2.2)

Next, define complex-valued functions

ξαi j(x) = ψ∗i (x)pαψ j(x) (2.3)

on a discrete real-space grid (call the grid points x), and suppose, for simplicity, that the

grid is uniformly spaced in three-dimensional space with spacing h. Approximating the

integrals as sums on the grid, and obtaining the operation of pα from centered

finite-differences, we easily arrive at:

σ ≈ h6
∑

x,x′

∑

i jα

gi jξ
α
i j(x)
[

ξαi j(x
′)
]∗

(2.4)

We find it useful to introduce what we will call the conduction matrix Γ defined as:

Γ(x, x′) = h6
∑

i jα

gi jξ
α
i j(x)
[

ξαi j(x
′)
]∗

(2.5)

Γ is Hermitian and positive semidefinite. Note that Γ has the dimension of conductivity,

and we have summed out the Kohn-Sham orbitals, leaving only spatial dependence. It

follows from Equation 2.4 that σ =
∑

x,x′ Γ(x, x′) as h→ 0. We then define SPC as:

ζ(x) =

∣

∣

∣

∣

∣

∣

∣

∑

x′

Γ(x, x′)

∣

∣

∣

∣

∣

∣

∣

(2.6)

To obtain a real value for the scalar field ζ, the modulus operation is required: while the

full double sum is of course real, summing only one index of Γ yields a function that is, in

general, complex. ζ(x) is of interest as it is positive, and by construction indicates the

conduction-active parts of the system.3

3 Similar forms are possible for the SPC. If, for example only one of the matrix elements is computed on
a grid, then if φi j = h3gi j p

α
i j

, then for τ(x) =
∑

i jα φi jξ
α
i j

(x), |τ| also serves as an estimate for SPC, identical to
ζ as h→ 0.
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2.4.2 Spectral Properties of the Conduction Matrix

The eigenvalue problem for Γ reads: Γ|χµ〉 = Λµ|χµ〉, for which µ = 1, ng. ng is the

number of points in the spatial grid (thus for example, ng = n3 for n points in each

Cartesian direction in 3D). Diagonalization provides a spectral representation:

Γ̂ =
∑

µ |χµ〉Λµ〈χµ|, from which:

σ =
∑

µ

Λµ

















1 +
∑

x,x′,x,x′
χµ(x)χ∗µ(x

′)

















, (2.7)

Equation 2.7 introduces the concept of conduction eigenvalues and modes. The spectral

decomposition of σ of Equation 2.7 categorizes the conductivity into a finite and, in

practice, small (compared to the dimension of Γ ) set of conduction channels. Because of

trace invariance of Γ,
∑

µΛµ =
∑

x ∆(x), for ∆(x) = Γ(x, x). The “spectral form” for the

SPC is thus:

ζs(x) =

∣

∣

∣

∣

∣

∣

∣

∑

µ

Λµ















|χµ(x)|2 +
∑

x′,x′,x

χµ(x)χ∗µ(x
′)















∣

∣

∣

∣

∣

∣

∣

, (2.8)

and ζ(x) = ζs(x). 4

It is of interest to determine the value of an approximate ζs (eg. computed from only

a handful of the eigenvectors conjugate to the largest eigenvalues) to ζ. We discuss the

density of states of Γ below. For complex mixed conducting/insulating phases, we find

that the eigenvectors χ conjugate to extremal eigenvalues produce a remarkably compact

and efficient description of the conduction, often reproducing the full ζ with only a few

tens of eigenvectors, even though dim(Γ) is in the tens of thousands. For a metal (e.g.,

FCC Al), we again find a great accumulation of eigenvalues at Λ = 0 but with a significant

spectral tail unseen in less metallic systems. Thus, the high conductivity of a metal

4 If we took a “diagonal approximation” ∆(x), by omiting the second term on the RHS in Equation 2.7,
the eigenvalue Λµ would exactly give the conductance through channel µ. In such an approximation,
σ ∼

∑

µΛµ = Tr(Γ), a form reminiscent of the transmission eigenchannels [80], but notice that our full
expression for σ is not just a trace over Γ in contrast with the transmission matrix appearing in the Landauer
expression for conductance.
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accrues from integrating over this tail. The density of states of Γ is yet another way to

distinguish insulators, semiconductors and metals.

So far, we have computed the eigenvectors of Γ by exact diagonalization. However, it

is clear that this problem is ideal for a Lanczos technique [81]. A maximum entropy

reconstruction of the density of states of Γ is also under investigation [82].

2.5 Computational Details

2.5.1 Models

We used Vienna Ab initio Simulation Package (VASP) [83] code to carry out DFT

calculations. The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof

(PBE) [84] was used as the exchange-correlation functional. Brillouin zone sampling was

restricted to the gamma point (k = 0), and periodic boundary conditions were used

throughout.

A model of low density amorphous carbon (a-C) was examined with density 1.5

g/cm3 and consisted of 216 atoms [85].

An amorphous silicon (a-Si) model with 216 atoms (ρ = 2.33 g/cm3) was taken from

reference [86] and was relaxed using a conjugate gradient method. While relatively small

by current standards, this model is an excellent representation of the topology of a-Si, and

is 100% 4-fold, though some of the sites are strained. The a-Si model was then annealed

at 2000 K for 6 ps to create representative snapshots for liquid Si (l-Si).

We modeled a-Si suboxide (a-SiO1.3) in cells with 184 atoms and density 1.68

g/cm3 [87] that was obtained using a melt-quench scheme [88]. We began with a supercell

with a random initial configuration at the experimental density and desired stoichiometry,

which was then heated above melting point. The supercell was then cooled to room

temperature in successive steps. The final model was obtained by performing a relaxation

to minimize the forces acting on each atom to below ≈ 0.005 eV/Å.
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A cubic model of crystalline FCC Al (c-Al) with 500 atoms was constructed.

We use various values of grid spacing (h) throughout this chapter. We find that the

SPC is fairly insensitive to h, and have checked the results presented here by considering a

few different choices for h and verifying that the predicted SPCs were consistent.

2.5.2 Methods

To carry out the calculations, we employed Kohn-Sham orbitals computed with

VASP [89]. The ξ (of Equation 2.4) was obtained using finite central differences with δr =

0.05 Å. To estimate the SPC (ζ), we adopted a discrete grid with variable dimensions

depending upon the supercell employed. We selected a temperature of T = 1000 K for the

Fermi-Dirac distribution and approximated the delta function in gi j by a Gaussian

distribution with width 0.05 eV. The numerical value of the conductivity is sensitive to

these choices, the SPC plots far less so.

The extent of the localization of eigenvectors were quantitatively gauged by

calculating the IPR.

Iµ =

∑

x

(

χµ(x)
)4

(

∑

x

(

χµ(x)
)2
)2

(2.9)

The value of I lies between 0 and 1. Higher Iµ signifies that the eigenvector χµ is more

spatially localized.

2.6 Results and Discussion

2.6.1 Low Density Amorphous Carbon (a-C)

Carbon materials have produced two Nobel prizes in the last quarter century. a-C has

applications including protective coatings, radiation protection, electronic circuits and

bio-medical [90, 91, 92]. Carbon-based electronics is a major field of research in materials

science [93, 94, 95, 96]. Carbon in different forms such as carbon nano tubes (CNTs) are
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being studied for PUF applications [97]. Carbon-based electrodes are used as

electrochemical sensors for biological applications [98].

Amorphous carbon (a-C) at low densities (<2 g/cm3) consists primarily of sp2 sites,

with some sp and sp3 sites. Bhattarai et al. have shown that a-C at low densities (ρ =

0.92-1.6 g/cm3) exhibits sp2 configurations with ≈66-81%, sp chains with ≈14-33% and

sp3 configurations with ≈ 0-9% [85]. The presence of sp2 and sp configurations may

render the materials electrically conductive and optically absorbing. Intuitively, it is clear

that the connectivity between the sp, sp2 and sp3 subnetworks might also play a role in

conduction. For densities below 1 g/cm3, it has been shown that the material consisting of

warped and wrapped regions of amorphous Graphene, with considerable ring

disorder [99].

In this sub-section, we discuss SPC in low density a-C (1.5 g/cm3) and also provide

spectral information from the conduction matrix by diagonalizing it. We discretized the

supercell into 40 × 40 × 40 grid points (h = 0.355 Å) and obtained the conduction matrix

Γ(x, x′) which has dimension of 64000. The conductivity path was obtained by calculating

space projected conductivity at each grid point as discussed in earlier section

(Section. 2.4.1). The SPC is projected as an isosurface (yellow blob) in left plot of

Figure 2.1. As a technical exercise, we also compare the results to the diagonal

approximation ∆(x). The isosurface in the left plot shows that SPC is due to both sp and

sp2 configurations in the network. It reveals active participation of sp chains in the

network that form a clear connected conducting path and follow sp2 configurations to a

pentagonal ring. Pentagonal and the hexagonal ring structures that are connected with sp

chains form the other active sites for conduction. These rings are highlighted in the middle

plot of Figure 2.1 that show only those atoms contributing significantly to conduction.

The arrows indicate the continuous conduction path along the C atoms displayed in the

left plot. Very few sp3 configurations appear as SPC sites. As a consequence, they do not
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Figure 2.1: a-C: Left and right correspond to the SPC (ζ) and the diagonal approximation
∆(x) projected on grids as an isosurface plot (yellow blobs) respectively. The middle plot
corresponds to the structural topology of the network in one region of the supercell that
forms a continuous conduction path. The straight and the curved lines with arrowhead are
guides to the eye to indicate the conduction path. The colored spheres represent C atoms
with different configurations; Red (sp3), blue (sp2), green (sp) and purple (singly bonded).

contribute to charge transport, as expected. In order to provide a simpler picture of the

conduction, we projected ∆(x), the diagonal approximation of ζ, as an isosurface in the

right plot of Figure 2.1. ∆ is primarily centered on the atomic sites and shows discrete

path. The isosurface blobs show that ∆ picks almost the same sites that are active in ζ. So,

∆ qualitatively provides a similar picture of the conduction path as ζ displayed in left plot

of Figure 2.1 for a-C.

Next we discuss the spectral properties of conduction matrix, Γ(x, x′), for a-C by

diagonalizing it as discussed above (Section 2.4.2). The density of states (DOS) from the

eigenvalues and the extent of the localization of the eigenvectors measured by IPR (I)

were calculated and are displayed in Figure 2.2.

The DOS in Figure 2.2 reveals an overwhelming fraction of eigenvalues very near Λ

= 0. These states are mostly localized as represented by the values of I shown by the

scattered red dots. We find a few eigenvalues significantly shifted from Λ = 0 in the

spectrum; only eigenvectors corresponding to these extreme eigenvalues are important to
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Figure 2.2: a-C: Logarithmic spectral density of states of Γ-matrix. The left scale represents
the DOS of the eigenvalues displayed in a log scale (solid black line) and the right scale
corresponds to the extent of localization of eigenvectors measured as IPR (I) (red circles).
Large I implies a spatially localized eigenvector of Γ.

the DC conductivity. To better have an estimate of the number of such eigenvectors, we

calculated the spectral form of SPC, (ζs), defined in Equation 2.8, from the largest 75 and

100 eigenvectors, and these are displayed in Figure 2.3. Both isosurface plots in

Figure 2.3 show almost the same path as ζ that is displayed in left plot of Figure 2.1. This

shows that 75-100 eigenvectors suffice to obtain the conduction path in a-C.

To see how a few eigenvectors conjugate to the largest eigenvalues contribute to

transport see Figure 2.4. We see that from Λµ|χµ|
2, these extremal eigenvectors either form

a short channel or lie within spatially separated parts of the network. The eigenvector

corresponding to the second largest eigenvalue (left plot in Figure 2.4) picks out mostly



39

Figure 2.3: a-C: Spectral form for SPC (ζs) projected on grids as an isosurface plot
(yellow blobs). Left and right plots correspond to the ζs from the sum of last 75 and 100
eigenvectors respectively. Same cutoff for the isosurface has been used in both plots and
the left plot in Figure 2.1. Same color code is used to describe atoms as in Figure 2.1. ζs

from extreme 75-100 eigenvectors is equivalent to ζ and is sufficient to essentially exactly
determine the SPC in a-C.

Figure 2.4: a-C: Eigenvectors projected on grids as an isosurface plot (yellow blobs). Left
and right plots correspond to the second largest (Λµ = 22.04 S/cm) and the largest (Λµ =
31.98 S/cm) eigenvalues respectively (ref Figure 2.2). Same color code is used to describe
atoms as in Figure 2.1.

the sp sites. The sp2 configurations which are adjacent to the sp configurations are other

active sites for this eigenvalue. The extremal eigenvector selects both sp2 and sp sites.
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Both eigenvectors pick more or less the same sp2 sites in the network that are the active

sites for the conduction as shown by ζ displayed in left plot of Figure 2.1.

The physical conclusion is that sp chains play an important role in electronic

transport in phases of carbon that possess them. The SPC that emerges reveals charge

transport through interconnected sp-chains and sp2 rings. It is expected that the the

relative fraction of these conducting constituents is strongly density, impurity and sample

preparation dependent.

2.6.2 Amorphous Silicon

Amorphous silicon (a-Si) plays an important role in technological applications, such

as thin-film transistors, photovoltaics, infrared imaging devices, and active-matrix

displays [100]. Being an electronic material, understanding the conduction mechanisms is

of obvious importance. In this sub-section, we discuss the conduction-active sites in the

material and also discuss the spectral properties of the conduction matrix Γ. The supercell

was partitioned into 42 × 42 × 42 grid points (h = 0.39 Å) and the Γ-matrix was obtained.

The SPC at each grid was then calculated and is displayed as a heat map plot in Figure 2.5.

Earlier works on the electronic bandtails (Urbach tails) of a-Si have shown that the

valence tail states are built from chains or clusters of Si atoms with bonds shorter than

average and conduction tail states are due to chains of Si atoms with longer

bonds [101, 102, 103, 104]. It is therefore to be expected that these tail states (and gap

states due to badly strained fourfold sites or coordination defects) will play a role in

conduction.

Figure 2.5 displays the SPC for a-Si. Analysis of the SPC shows special weight for

atoms with bonds shorter than 2.32 Å, and longer than 2.43 Å (the average bond length is

about 2.35 Å). The heat map shows that the SPC also sits at strain defects (4-fold atoms

with large variation in bond angles or bond lengths from tetrahedral symmetry. The
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Figure 2.5: a-Si: SPC (ζ) projected on grids as heat map plot (labeled by colorbars on left
of the plot) scaled with maximum value in each plot. The size of the hot spheres is scaled
with the magnitude of the SPC value. The colored spheres represent Si atoms with different
bonding environment; The blue and heliotrope colored spheres represent 4-fold coordinated
Si atoms with one and two very long Si-Si bonds respectively. The green colored spheres
represent typical Si atoms with “normal” bondlengths. The bond cutoff distance of 2.72 Å
was chosen.

conduction involves all the states near the Fermi level (ǫF), thus involving tail states (of

long and short bond structures) and of course defect states near ǫF . We diagonalized Γ to

understand the spectral information of the conduction eigenvalues and the eigenvectors.

The DOS of the eigenvalues and the extent of localization (I) of the eigenvectors were

calculated and are displayed in Figure 2.6.

Figure 2.6 shows a very large accumulation of eigenvalues near Λ = 0. Much about

the transport can be obtained from only a few extremal eigenvalues and conjugate
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Figure 2.6: a-Si: Logarithmic spectral density of states of Γ-matrix. The left scale
corresponds to density of states (DOS) of the eigenvalues displayed in a log scale (solid
black line) and the right scale corresponds to the extent of localization measured as IPR
(I) (red circles).

eigenvectors of Γ to approximatethe SPC of the material. We plot |χ|2 for the largest two

eigenvalues in Figure 2.7. We find that these eigenvectors select out specific sites in the

network. The eigenvector corresponding to the second largest eigenvalue (left plot in

Figure 2.7) picks the atomic sites with short-bonded Si atoms with maximum bond length

of 2.32 Å. The eigenvector corresponding to the largest eigenvalue picks entirely different

parts of the network. This eigenvector follows a path among those atoms that form

adjacent strain defect sites [105], nominally 4-fold but with one or two long bonds shown

in blue and heliotrope respectively), and also involves filaments of slightly long Si-Si

bonds with minimum bond length of 2.43 Å. This calculation reinforces the predicted
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short-bond (long-bond) association with valence (conduction) tails, and shows an

interesting “conduction mixing” of the defects and tail structures (long and short bond

subnetworks). In a system with dangling (3-fold) or floating (5-fold) configurations,

yielding states near ǫF , we would expect these sites to also participate in the resulting ζ(x).

The defect-rich phases including dangling and floating bonds (as well as nominally

4-fold structures “strain defects”) are present in a-Si and it is important to explore the role

of defects in conduction. There is no doubt that such defects will play a role, as their

electronic energies are well known to be in the gap, and for dangling bonds especially,

near the middle of the gap. We speculate that there may be interesting SPC linkages

between such defects and the filamentary structures associated with the Urbach tails [102],

perhaps reminiscent of the sp-ring “mixing” of a-C. Conductivity will certainly depend on

delocalization that accrues from mixing/banding between defect state: such effects are

included in our computations.

Figure 2.7: a-Si: Eigenvectors projected on grids as an isosurface plot (yellow blobs). Left
and right plots correspond to the second largest (Λµ = 0.26 S/cm) and the largest (Λµ = 0.34
S/cm) eigenvalues respectively. For atoms, the color code is same as used in Figure 2.5.
Since the atoms picked by the eigenvectors that are adjacent to each other are separated
by the periodic box, we shifted the coordinates to make these atoms include in the same
side of the box to make the connectivity clear. The left panel emphasizes short bonds, right
panel long bonds and defects.
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2.6.3 Conductivity Fluctuations in Liquid Silicon

Liquid silicon (l-Si) is a metal in contrast to a-Si or c-Si which are tetrahedral

semiconductors. Although it is metallic, the first neighbor atomic coordination number is

between 5-6 [106], hinting at a prevalence of covalent bonds in the liquid state of Si and

differentiating it from other metals in terms of structural topology [107]. In the liquid

state, thermal fluctuations cause the structure to continuously change and so too the SPC

in the network. To model the liquid metal, we annealed the a-Si model at 2000 K for 6 ps.

The thermal fluctuations induce fluctuations in the Fermi-level (ǫF) and also the electronic

gap associated with it. The fluctuation of the frontier of highest occupied molecular

orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and the Fermi-level with

simulation time is provided in Figure 2.8 for a brief time interval.

From Figure 2.8, we see that the minute gamma-point gap opens and closes with time

due to the thermal fluctuations. We chose four configurations as shown by different

markers in the inset plot of Figure 2.8 where such feature exists. For these snapshots, we

find that the coordination environment does not drastically change within the network for

this short time interval. A majority of the Si atoms are 5-fold and 6-fold coordinated (≈

56-57%); 4-fold and 7-fold coordinated Si atoms account for ≈ 33-35% of the total

coordination. 8-fold coordinated Si atoms account for 5.1% - 9.7% of the network. For

each of these configurations, we obtained the SPC on a 40 × 40 × 40 grids (h = 0.41 Å)

and these are displayed as heat-map plots in Figure 2.9.

The heat-map plot of SPC shows that the fluctuation in the energy levels results in

slight variation in the SPC. For all models, we find that the SPC is quite extended

indicating the metallic character of the material. All coordinations seem involved in the

conduction, suggesting a truly delocalized metallic form of conduction. We also picked

four temporally separated snapshots at simulation times 1.95, 3.15, 4.35 and 5.55 ps to

capture the variation of the conduction path on longer time scales. The SPC for each of
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Figure 2.8: l-Si: A snapshot showing fluctuations of energy levels near the Fermi-level
(units in eV) plotted against simulation time. The inset plot shows a specific region (shown
by the curly brace) with closing and opening of the electronic gap. The markers correspond
to the time step for the atomic configurations that were selected for the SPC calculations.

these snapshots is displayed on grids as a heat map in Figure 2.10. The dominating

regions appear in different parts of the cell for these snapshots, an expected kind of “local

conductance fluctuation” as the Si atoms diffuse in the liquid state and continuously

change their local bonding and thus local electronic structure. The variation in the

conduction path is displayed, and colored spheres in each plot of Figure 2.10 indicate the

fluctuation in the local atomic environments. We find that, within the top 6% of SPC

values in Figure 2.10(a), one of the conduction paths is along the chain with 4-fold, 5-fold,
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Figure 2.9: l-Si: SPC (ζ) projected on grids as a heat map (labeled by colorbars on left of
each subplots) for atomic configurations at that are temporally close to each other shown
by the marker signs in the inset plot of Figure 2.8. a), b), c) and d) correspond to the
atomic configurations shown by star, triangle, square and the plus signs in the inset plots of
Figure 2.8 respectively. Atom color represent Si with different instantaneous coordination
as labeled as shown at the top of the figure. The cutoff distance of 3.10 Å is used to define
the coordination.

6-fold, 7-fold coordinated Si atoms in the middle region of the network. Similarly, in

Figure 2.10(b), we find a continuous path along 4-fold, 5-fold, 6-fold, 7-fold, 8-fold Si

atoms where four of such 6-fold coordinated atoms contributing to the path. In

Figure 2.10(c), there exists a conduction path along a chain of five Si atoms that are all

6-fold coordinated. We also find the conduction path along the chain of 4-fold, 5-fold,
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Figure 2.10: l-Si: SPC (ζ) projected on grids as a heat map plot (labeled by colorbars on
left of each subplots) for configurations at intervals of 1.2 ps. a), b), c) and d) correspond
to the SPC plot at simulation time 1.95, 3.15, 4.35 and 5.55 ps respectively. Atoms color
represent Si with different coordination environment and we adopt the same convention as
in Figure. 2.9. The cutoff distance of 3.10 Å is used to define the coordination. Note the
spatial fluctuation in the heat maps over these snapshots.

6-fold coordinated Si atoms where three of such 5-fold coordinated Si exist in the chain.

In Figure 2.10(d), we find one of the conduction paths along six Si atoms with 5-fold,

6-fold, 7-fold, 8-fold coordinated Si atoms forming a chain where three of them are 5-fold

coordinated. So,the SPC calculations from these snapshots show that the most

conduction-active sites in l-Si are 5-fold and 6-fold coordinated. We also find Si atoms

with 4-fold, 7-fold and 8-fold coordinated forming the other sites of conduction. It would
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be of interest to properly analyze these fluctuations with suitable space-time correlation

functions.

2.6.4 Amorphous Silicon Suboxide: Application for Finite ω

Optical materials are critically important, and there is always a demand for novel

optically functional and transparent materials. Electromagnetic waves of different

frequencies may be absorbed by different parts of the inhomogeneous material. Having a

priori information on the absorption-active sites/regions in the material could be helpful to

engineers, for example, to design wave-guides or other optical devices. Optical PUFs are

an ongoing research topic for computer security applications [108].

Silicon suboxides, a-SiOx (0 <x <2), have complex structures and two different

pictures of suboxide structure are mainly discussed: “random mixture” [109] and “random

bonding” [110]. The former model suggests the segregation of Si in silica separated by the

interfacial boundary and the latter model suggests a continuous random network of

tetrahedral units of SiSiyO4−y where y = 0 to 4. The complexity of the network makes the

material electronically interesting and of course span amorphous silicon to amorphous

silica.

If one imagines starting in a-SiO2, a superb insulator, one can imagine a process of

randomly depleting O atoms from the network. If x is close to 2, O-vacancies will be

widely separated with little conduction. As O depletion proceeds, more and more hopping

will accrue and the conduction paths will be determined by the locations and electronic

structure associated with the O-vacancy sub-network. The electrical conductivity

therefore has a stochastic character depending on the existence and details of a hopping

pathway involving the vacancies.

In this chapter we look very briefly at an “AC version” of this, and show that light

absorption is very sensitive to wavelength, and in particular, show that different “vacancy
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subnetworks” contribute to the absorption. This suggests that an “optical PUF” might be

possible for the silicon suboxide materials. We limit the discussion to a qualitative

indication of how different parts of the network participate for two different wavelengths,

and we note for completeness that to really carry out such calculations realistically better

excited states should be computed with more intricate methods.

Figure 2.11: a-SiO1.3: SPC (ζ) projected on grids as isosurface (yellow blobs) plots.
Left and right plots correspond to ~ω = 0.62 eV and 0.76 eV respectively. Multcolored
spheres refer to Si atoms within the conduction-active region having different coordination
environment shown as legends at the top of the figure. Top 3.7% SPC values are included
in both plots. The gray colored spheres represent Si and O atoms that lie outside the
conduction active region for the given cutoff. The small size spheres represent O atoms.

In this subsection, we discuss light absorption in a-SiO1.3 at two frequencies. To

enable this, we calculated the space projected conductivity on 40 × 40 × 40 grids (h =

0.39 Å) for two different wavelengths with λ = 2000 nm and λ = 1600 nm. The SPC for

both cases are displayed in Figure 2.11. It is of interest that the absorbing parts of the

models are qualitatively different, and more to the point, the computation predicts which
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parts of the matrix will absorb light of a specified wavelength. The isosurface plots in

Figure 2.11 show that the absorption meanders along adjacent O-vacancy sites in the

network since different frequencies pick out different paths ℘ in the network. As such,

changing the frequency and changing the path makes it likely that external observables

such as absorption, will also change, making the system potentially attractive for PUF

applications.

2.6.5 FCC Aluminum

So far we have discussed conduction in non-crystalline semiconductor materials. In

this sub-section, we consider FCC aluminum (c-Al), a metal, with a focus on the spectral

properties of the conduction matrix Γ. Γ(x, x′) for the 500 atoms Al cell was obtained on a

42 × 42 × 42 grids (h = 0.48 Å) so that dim(Γ) = 74088. Γ was exactly diagonalized to

obtain eigenvalues (Λµ) and the eigenvectors (χµ).

Figure 2.12 shows the density of the states (DOS) of the conduction eigenvalues and

the extent of the localization of the conjugate eigenvectors (I). The DOS in Figure 2.12

shows that a majority of the eigenvalues lie near Λ = 0. This is clear from the inset that

shows the evolution of the conduction eigenvalues in increasing magnitude where only the

last 24088 among 74088 eigenvalues have magnitude greater than 10−9 S/cm. Even in a

metal, most eigenvalues of Γ are effectively zero. In contrast with our previous examples,

the spectrum shows the presence of an extended tail in the DOS that reveals a signature of

metallic conduction in Al. This is supported by the inset plot where the eigenvalue

increases in a linear fashion at different regimes. The inset also provides a tentative picture

of the transition from an insulating to conducting spectral character near the high-Λ end of

the spectrum between indices 60000-67000. Beyond index 67000, we observe that the

density of eigenvalues increases in a more quadratic manner. The presence of the tail in

the DOS requires many eigenvectors to be considered to obtain the conduction path in Al
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Figure 2.12: c-Al: Logarithmic spectral density of states of Γ-matrix. The left scale
corresponds to density of states (DOS) of the eigenvalues displayed in a log scale (solid
black line) and the right scale corresponds to the extent of localization measured as IPR (I)
(solid red circles). The inset shows the magnitude of conduction eigenvalues in ascending
order.

(which is of course fully delocalized through the cell). A small spectral gap appears near

Λµ = 1.3 S/cm from a physical origin that we have not yet determined. The other

difference we find is the localization of the conduction eigenvectors where the modes are

more extended for Al compared to what was observed in a-Si and the low density a-C

model.

Figure 2.13 shows the conduction eigenvalues (Λµ) plotted against IPR (I). We see

that for small IPR, there exists a fairly clear inverse relation between eigenvalues and the
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Figure 2.13: c-Al: The correlations of the eigenvalues with IPR (I) shown by the scattered
plots as heatmap. The colorbar at the central top of the figure refers to the magnitude of
eigenvalues.

IPR. We also see Λµ near zero for low IPR. The eigenvectors corresponding to such

eigenvalues can involve many sites, but always without forming any connected pattern and

therefore corresponds to the non-conductive structures.

To visualize the conduction (really to see how a metallic conducting continuum

emerges from this theory), we projected the conductivity from all the eigenvectors

weighted by their eigenvalues and this is displayed as a heat map plot in Figure 2.14. The

electrons in c-Al are highly delocalized, as a result, the projected values are essentially the

same throughout the cell as shown in Figure 2.14. This is, of course, quite different from

the semiconductors like a-Si and low density a-C where only some parts of the material

serve as the conduction-active sites in the network that we discussed in the earlier

subsection.
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Figure 2.14: c-Al: Conductivity projected on grids weighted by the eigenvalues from all
eigenvectors as a heat map plot (labeled by colorbars on the left) scaled with maximum
value. The spheres represent Al atoms.

The other interesting property we find in the spectrum of the DOS in c-Al (refer

Figure 2.12) is the presence of the degenerate eigenvalues towards the large Λ end of the

spectrum. This is absent in the spectrum of a-Si and even the low density a-C. The

degeneracy is surely a manifestation of the degeneracy present in the electronic levels,

accruing in turn from the crystalline symmetry5. To visualize the conduction channel

formed by the family of such degenerate eigenvalues, we projected the eigenvectors onto

real space grids. Figure 2.15 shows the projection of eigenvectors for one of such family

of the degenerate eigenvalues as a heatmap plot. The left plot shows that the eigenvectors

5 Only the k = 0 point is used to sample the Brillouin zone, perhaps reasonable for a 500-atoms cell for
this application, though in general this would be a doubtful approximation for a metal with its Fermi surface
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split into four conduction channels within the supercell. The diagonal channels possess an

inversion symmetry at the center of the supercell. The middle and the right heat maps

correspond to the eigenvectors for other two eigenvalues in the family which direct along

different directions, namely along x and y direction.

Figure 2.15: c-Al: Isosurface plots for eigenvectors corresponding to the degenerate
eigenvalues (Λµ = 1.0013 S/cm). The isosurface plot displayed as a heat map (labeled by
the colorbars on left of each subplots) includes the values within 0.001 times the maximum
value on the grids. Al atoms are represented by gray spheres in each plot.

2.7 Conclusions

We presented a method to compute a conductivity projected onto real space grids and

we analyzed the spectral properties of the conduction matrix for a representative systems.

For low density a-C, we find that the sp2 and sp configurations form active conduction

sites. The conduction path is formed between the sp chains and the pentagonal or

hexagonal graphene rings in the network. For a-Si, we find SPC is distributed at nearby

atomic sites at different parts in the network suggesting the possibility of hopping

mechanisms for the electronic conduction. For a-Si, we find that the extreme eigenvectors

pick atomic sites with different topology, involving tail states and strain defects for this

4-fold WWW model. We also studied fluctuations in the energy levels in liquid Si and

provided the conduction path for few configurations. We showed that the 4-fold, 5-fold,
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6-fold and 7-fold Si atoms form the conduction sites in the l-Si. We showed that

diagonalization of Γ(x, x′) provides essential information about the nature of the

conduction eigenmodes in different materials and helpfully categorizes the “paths”

according to eigenvalue. From the spectrum of DOS of conduction eigenvalues, we

always find a very large weight near Λ = 0. So, for materials like a-Si and a-C, only a few

eigenvectors are sufficient to define the conduction path. For c-Al, we find that despite a

significant accumulation of eigenvalues near Λ = 0, there is a spectral tail in the density of

states and the channels corresponding to these states are extended. So, for metals, many

eigenvectors are necessary to describe the conduction. We also observe a degeneracy in

the conduction eigenvalues in the DOS of c-Al absent in the amorphous systems. We

analyzed eigenvectors for one such degenerate eigenvalue near the extreme side of the

spectrum and showed that these eigenvectors form a well defined conduction channel. We

also provided an example of a silicon suboxide (a-SiO1.3), where we projected the SPC for

(ω > 0) and showed that the O-vacancy sites form the major sites of conduction in such

material.

It is not easy to extract quantitative conductivities for amorphous solids.

Electron-phonon couplings are not included in static lattice computations and such

temperature dependence is hardly a small effect. This is probably one reason why there

are more computations of electrical conductivity in liquid metals, where dynamical effects

(changes in electronic structure and therefore conduction due to atomic motion) are

treated with Born-Oppenheimer dynamics. Also, in principle, methods producing accurate

excited states perhaps employing hybrid functionals should be employed, and doubtless

make a significant different in the numerical value of the conductivity. However, we

emphasize that the qualitative character of the SPC is far less sensitive to these effects than

the numerical value of the conductivity, and the method offers a fairly robust picture of

conduction activity in complex materials.
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3 Structural Origins of Electronic Conduction in

Amorphous Copper-doped Alumina

The work presented in this chapter has been published as Subedi, K. N., Prasai, K.,

Kozicki, M. N. and Drabold, D. A. Structural origins of electronic conduction in

amorphous copper-doped alumina, Phys. Rev. Materials 3, 065605 (2019)

3.1 Introduction

Non-volatile memory devices based on resistive switching characteristics have been

studied since the late 1960s [111]. In these devices, application of an external bias

potential across an electrolyte changes the electrical conductivity of the electrolyte by

changing its structure. This process is reversible and can be performed in the time scale of

nanoseconds. Three types of resistive random access memory (RRAM) devices have been

studied in detail [10] and these include RRAM based on oxygen vacancies, RRAM based

on thermo-chemical effects and RRAM based on the electro-chemical metallization. The

later class of devices are also called conducting bridge random access memory or

CBRAM. The CBRAM devices are composed of a thin solid electrolyte layer placed

between an oxidizable anode (eg. Cu, Ag or TiN) and an inert cathode (eg. W or Pt). The

Cu, in its ionic state, is converted into the conducting “filament” by the applied field: the

ions are reduced by electrons flowing from the cathode to leave them in their metallic

form, although other counter ions (e.g., OH-) may also be involved in this process [112].

With the application of a reverse bias, the connectivity of the cluster can be destroyed, and

the device is put into a highly electronically resistive state. The details of the mechanism

of CBRAMs have been described elsewhere [113, 114]. The performance of CBRAM

devices has been studied with several materials as the solid electrolyte which include

chalcogenides [18, 19], insulating metal oxides [8, 11, 12, 14, 15, 115, 116] and bilayer
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materials [117, 118]. CBRAM devices have demonstrated excellent performance in terms

of operational voltage, read/write speed, endurance and data retention. Among the host

materials reviewed for CBRAM devices, alumina (Al2O3) shows particular promise. It has

a high dielectric constant, large band gap, and its amorphous phase is highly stable

[119, 120]. The experimental results for CBRAM devices based on Cu alloyed with Al2O3

have shown that the cell exhibits highly controlled set and reset operations, fast pulse

programming (10 ns) at low voltage (<3 V) and low-current (10 µA) with 106 cycles per

second for the writing speed [8].

In this chapter, we use AIMD to generate atomic models of a-Al2O3:Cu and

investigate the microscopic origin of electronic conduction in this material. The work

presented in this chapter shows that an increase in local Cu-concentration can result in

stable conducting pathways due to the strong tendency of Cu atoms to cluster in the ionic

host. This would lead to a highly stable low resistance state (LRS) for high copper

concentration, which does indeed seem to be the case for copper-alumina devices [8]. We

study the electronic properties for these models and are able to crudely estimate the local

concentration of Cu above which CBRAM device switch to the LRS. We present the

numerical computation of conduction-active parts of the network by computing the

space-projected conductivity and show that the strong electron-lattice coupling for

electron states near the gap leads to interesting and substantial thermally induced

conductivity fluctuations on a picosecond time scale.

The rest of the chapter is organized as follows. Section 3.2 describes computational

details used to create the structures and also the details of our method to obtain the SPC.

Section 3.3 includes results where we discuss structural, electronic and vibrational

properties of the models in different subsections. Section 3.4 provides the conclusions.
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3.2 Computations

3.2.1 Model Generation

In this work, we use AIMD to generate four atomic models with the composition of

(a-Al2O3)1−nCun with n = 0, 0.1, 0.2 and 0.3. We used a density of 3.175 g/cm3 for

a-Al2O3 [121, 122]. For the Cu-doped models, we referred to the literature [123] to make

an initial guess, then carried out a zero-pressure relaxation to correct/optimize the result.

For each model, we began by taking a cubic supercell of 200 atoms with randomly

initialized positions of the atoms. Plane wave density functional calculations were

performed using the VASP package and PAW [124, 125] potentials within the local

density approximation (LDA) [126] using periodic boundary conditions. We used a kinetic

energy cutoff of 420 eV and the Γ-point to sample the Brillouin zone. A time step of 1.5 fs

was used and the temperature was controlled by a Nosé-Hoover thermostat throughout.

We performed a melt-quench simulation with a starting temperature of 3500 K. After

annealing the “hot liquid” for 7.5 ps at 3500 K, we cooled each model to 2600 K at a rate

of 0.27 K/fs as discussed in reference [127] followed by equilibrating it for 10 ps. Each

model was then quenched to 300 K at the same cooling rate 0.27 K/fs and further

equilibrated for another 10 ps. Zero pressure relaxations were used to determine the final

densities for Cu-doped models. The final force on each atom is no more than 0.01 eV/Å.

The initial and final densities are provided in table 3.1.

3.2.2 Spatial Projection of Electronic Conductivity

To compute the SPC, we use equation 2.6 in chapter 2. We used VASP [83] and

associated Kohn-Sham orbitals ψi,k. We divided the supercell into

36 × 36 × 36 (dimΓ = 46656) with grid-spacing of width ≈ 0.4 Å. We used an electronic

temperature of T = 1000 K for the Fermi-Dirac distribution. We approximated the δ
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Table 3.1: Initial and Final Densities of a-Al2O3:Cu Models

Cu content Mol. Formula ρin (g/cc) ρ f (g/cc)

0% (Al2O3)1.00Cu0.00 3.175 3.175

10% (Al2O3)0.90Cu0.10 3.58 3.75

20% (Al2O3)0.80Cu0.20 3.78 3.99

30% (Al2O3)0.70Cu0.30 4.53 4.82

function in the expression of gi j (of Equation 2.1) by Gaussian distribution of width 0.05

eV.

3.3 Results and Discussion

3.3.1 Bonding and Topology of the Models

As a test of validity of our models, we compute the total radial distribution function,

g(r), on a-Al2O3 models and compare with experimentally measured neutron scattering

g(r) from reference [128]. A plot showing these two g(r) is presented in Figure 3.1 and

shows that the models capture the structural order upto 6 Å reasonably well. We also

compute the structure factor, S (q), on our models at 2600 K and compare it with S (q)

measured on l-Al2O3 [129]. The plot shows that these two S (q) show a satisfactory

agreement, especially on the positions of peaks at 1.8 Å−1, 2.8 Å−1, 4.7 Å−1. The bottom

left plot in Figure 3.1 presents the partial g(r) computed on models of a-Al2O3. The peaks

at 1.81 Å, 2.78 Å and 3.17 Å correspond to the geometrical bond distances for Al-O, O-O

and Al-Al pairs respectively; these results are in agreement with similar earlier works

[130, 131, 132]. The bottom right plot in Figure 3.1 shows the partial S (q) corresponding

to Al-Al, Al-O and O-O pairs computed on a-Al2O3 models. We see that the first peak in

the total S (q) occurs at 2.8 Å−1 due to the partial cancellation arising from Al-O
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correlations. For doped models, the computed g(r) are plotted in Figure 3.2 and shows
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Figure 3.1: g(r) and S (q) of a-Al2O3: (a) g(r) computed on models are compared with
measured g(r). (b) S (q) computed on models are compared with measured S (q). (c) and
(d) partial g(r) and partial S (q) respectively for Al-O, O-O and Al-Al pairs

that the position of first peak remains largely the same as undoped a-Al2O3 suggesting that

Al-O bond remains unaltered. As the concentration of Cu increases, a hump

corresponding to Cu-Cu correlation appears and grows at r ≈ 2.44 Å. The relative

sharpness of Cu-Cu hump, even for the lowest concentration of Cu, provides a hint that Cu

atoms are probably clustered. Indeed, a visual inspection of the models, shown here in

Figure 3.3, clearly shows the strong tendency of Cu-atoms to cluster.

It is significant that Cu strongly tends to cluster. A study by Dawson and Robertson

[133] asserts that the Cu-Cu interactions become more favorable with increasing Cu

content. We study the average coordination number around Cu atom at different
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Figure 3.2: Total g(r) computed from the models of a-Al2O3:Cu at various concentrations
of Cu. The hump appearing in Cu-doped models, indicated by arrow, originates from Cu-
Cu correlation.

Cu-concentrations as shown in table 5.1. We take the first minima in partial g(r) as the

cutoff distance to define the coordination number. The increase in Cu-coordination by Cu

and the decrease in Cu-coordination by Al and O supports the segregation of Cu from the

host and formation of cluster.

Table 3.2: Average Coordination Numbers around Cu Atoms for 10%, 20% and 30% Cu
Models.

Cu content(%) Cu-O Cu-Cu Cu-Al

10 1.15 5.1 3.0

20 0.68 6.85 2.45

30 0.48 8.27 1.78
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Figure 3.3: Final relaxed a-Al2O3:Cu models. Top plots (from left) represent for 0%, 10%
Cu and bottom plots (from left) represent for 20% and 30% Cu. Atoms color: Al (gray),
Cu (blue) and O (red).

3.3.2 Electronic Structure

3.3.2.1 Density of States and the Localization

Alloying with copper in a-Al2O3 is expected to have effects on electronic properties

which are of interest for applications of these materials in CBRAM devices. We

investigate these effects by examining the density of Kohn-Sham eigenstates (EDOS) and

their spatial localization. The localization is gauged by computing the inverse

participation ratio (IPR) using Equation 1.9. Figure 3.4 shows the computed EDOS and
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IPR as a function of Cu-concentration. We find a decrease in HOMO-LUMO gap with

increasing Cu-concentration; at Cu-concentration 20% and 30%, The EDOS is continuous

across the Fermi level. The states that fill-in the band gap are quite extended as indicated

by small values of IPR around the Fermi level in Figure 3.4. The mean IPR values around

the gap declines monotonically with Cu-concentration. To physically interpret the
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Figure 3.4: Electronic density of states (EDOS) and the inverse participation ratio (IPR)
computed from a-Al2O3:Cu models for different concentrations of Cu. The black curve
represents EDOS and red vertical lines show IPR. The Fermi level is shifted to zero in all
plots.

connection of the HOMO-LUMO gap and he extent of localization with electronic

conductivity (σ), let use rewrite Equation 2.1 for the dc conductivity (T = 0 K) in the form

of Mott and Davis [53]:

σdc =
2πe2

~Ω

m2
| Dǫ f

|2N2(ǫ f ) (3.1)
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where Dǫ f
is a matrix element of ∇α between Kohn-Sham states near the Fermi level and

N(ǫ f ) is the density of states. For small gap, one expects more states near the Fermi

level. The magnitude of matrix elements Dǫ f
for extended states would be higher than the

localized states. So, the conductivity could be crudely linked with the HOMO-LUMO gap

of the material and the extent of localization of the Kohn-Sham states.

By projecting the electronic states onto atomic sites, we observe that the states near

the Fermi level for the doped models consist of Cu-orbitals. An example of the site

projected EDOS, for 20% Cu, is plotted in Figure 3.5. It is quite interesting that at 20%

and 30% Cu-concentrations, Cu levels almost uniformly fill the host a-Al2O3 gap. The Cu

does not form an impurity band, as one might naively suppose from experience on

heavily-doped semiconductors. We see that models with higher Cu-concentration produce

states near Fermi level that yield an essentially metallic form of conduction. This is

qualitatively different than the case of Ag in GeSe3 [134], wherein the Ag atoms do not

cluster and do not introduce states in the optical gap of the host. We observe that electron

states in the gap are filled mostly by 3d, 4s and 4p orbitals of Cu.

3.3.2.2 Charge Analysis on Cu Atoms

The formation of Cu-cluster in a-Al2O3 matrix leaves the Cu atoms in different

charge states depending on the local environment of these Cu atoms with O and/or Al

atoms. We performed Bader charge analysis [135] to calculate net charge on these atoms

and an analysis for 20% Cu-doped model is shown in Figure 3.6. The charge state of the

Cu atoms (shown in color in Figure 3.6) can be explained by a simple analysis of the first

neighbors around the Cu atoms. Among all the Cu-atoms shown in the figure, only five Cu

atoms have exclusively Cu neighbors and are neutral in nature; the rest of the Cu are

neighbors with at least one Al or O atoms. When a Cu atom is a neighbor with Al or O

atoms, bonding or charge transfer occurs. A Cu atom bonded with O atoms is positively
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models with 20% Cu. (a) Site projected EDOS (b) Orbital projected EDOS. The Fermi
energy is shifted to zero.
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Figure 3.6: Net Bader charge on Cu atoms calculated from a-Al2O3:Cu models with 20%
Cu-concentration. A color code displayed on top is used to represent the charge state.
Charge state of zero, shown by green, represents a neutral Cu atom; the charge values are
in units of electronic charge. All Cu-atoms are shown in color. Light gray atoms represent
Al and O atoms within the first cutoff distance of Cu atoms

charged, whereas a Cu atom bonded with Al atoms is slightly negatively charged and can

be understood in terms of difference in electronegativities of Cu and Al. When a Cu atom

is bonded with both O and Al atoms, it is charge neutral. The charge compensation likely

to happen in such bonding. The Cu atoms shown in green are therefore almost metallic in

nature and are likely to form a conducting channel for the current to flow in the network.
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3.3.2.3 Thermally Driven Conduction Fluctuations

In this section, we discuss relatively dramatic thermally-induced fluctuations in the

HOMO-LUMO splitting and consider the electronic conduction mechanisms6. We

illustrate with one of the conducting models (including 20% Cu) and performed MD at

1000 K for 24 ps. The fluctuation of the frontier HOMO and LUMO levels with time is

provided in Figure 3.7. η(t) is the HOMO-LUMO splitting through the course of the MD.

The model reveals a large thermally driven fluctuation in the value of the HOMO-LUMO

gap with time. As we discussed earlier in Section 3.3.2.1

So, for dc conduction to occur, there needs to be finite density of states at the Fermi

level (to enable electronic transitions, as from Fermi’s Golden Rule) and non-vanishing

matrix elements | Dǫ f
|2 as in Equation 2.1. We expect more available states near the Fermi

level for the system with small gap, thus the conductivity σ(t) can be very crudely linked

to η(t) (small η =⇒ large σ) in the spirit of Landau-Zener tunneling [136, 137]. We

provisionally interpret the small gap (small η) instantaneous configurations as low

resistance states, and the large gap configurations as high resistance states.

It is therefore interesting to visualize the conduction-active parts of the network for

these different states. We selected two snapshots (shown by orange arrows in Figure 3.7),

one representing a small gap (low η) and the other large gap (high η) from the simulation

and obtained the SPC. The variation of the HOMO-LUMO gap due to thermal fluctuations

has also been studied in Boron-doped a-Si at 600 K, where it was observed that with

addition of hydrogen to the network, there occurs a thermal modulation of HOMO and

LUMO states causing the HOMO and LUMO states to be overlapped at a certain interval

of the thermal simulation representing highly conducting configuration [138]. This

computation makes it clear that the DC conductivity is difficult to accurately estimate,

6 Here and elsewhere in this chapter, electronic time evolution refers only to variation in Kohn-Sham
eigenvalues/states on the Born-Oppenheimer surface – no attempt is made to solve a time-dependent Kohn-
Sham equation
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Figure 3.7: Fluctuation of HOMO, LUMO and HOMO-LUMO gap (η) with time for 20%
model at 1000 K. η(t) is represented by black line with its values given by right axis of the
plot as shown by arrowhead in the plot.

since to handle the large electron-phonon coupling for states near the Fermi level, long

MD averages at constant temperature would be required (within an adiabatic picture for

which one simply averages the Kubo formula over a trajectory.

3.3.2.4 Space-Projected Conductivity

We investigated SPC by computing ζ(x) as described in section 2.4 in chapter 2 in

our models. SPC values are evaluated at coarse 3D grid points inside the supercells. A

graphical representation of SPC values in 3D grid points overlaid with the atomic
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configuration is shown in Figure 3.8. This figure shows the SPC computed on two models:

one with large η and the other with and small η. We include 12% of the highest local

contributions to SPC in each plot. The SPC reveals that the conduction path is primarily

along interconnected Cu atoms. A few O atoms in the vicinity of Cu atoms also

participate in the conduction whereas Al atoms do not show any role in the conduction.

We see that the SPC for the large gap snapshot is disconnected so that ζ(x) appears to be

localized in certain region whereas the SPC with small gap forms an interconnected chain

for the conduction. For these two particular structures, we observed the local

configurations as shown by the enclosed circles of Figure 3.8 where the Cu atoms come

closer to form short bonds and form a closed network. This shows that the connectivity

among Cu atoms determines the conductivity of the system. Besides the structural

difference, the type and the number of clusters also affect the HOMO-LUMO gap. It has

been shown that an alternation of the HOMO-LUMO gap occurs between even and odd

numbered isolated clusters due to electron-pairing effects and particularly large gap for

cluster size 2, 8, 18, 20, 34 and 40 which are also called as magic clusters [139]. At this

temperature, the diffusion of Cu atoms may cause the change in the bonding environment

of Cu atoms resulting in the variation of the gap with time.

3.3.3 Ion and Lattice Dynamics

Since the ion and lattice dynamics are of key importance for applications, we discuss

these in this section.

3.3.3.1 Ionic Motion

As a representative example, the 20% model was annealed at different temperatures

800 K and 1000 K for 15 ps, and the resulting ion dynamics were studied by calculating

the mean-squared displacement (MSD) for each atomic species as:
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Figure 3.8: Overlaying SPC values (orange transparent spheres) with atomic configuration:
On the left, large gap (high resistance) state of a-Al2O3:Cu model with 20% Cu. On the
right, small gap (low resistance) state of the same system. Color nomenclature: blue- Cu
atom, red- O atom and gray- Al atom. The bond length of cutoff 2.6 Å is chosen. Circles
with same color represent same part of local configurations. There is a factor of about 104

between the conductivities of the two conformations.

〈

r2(t)
〉

α
=

1
Na

Nα
∑

i

〈

| ~ri(t) − ~ri(0) |2
〉

(3.2)

where Nα represents the number of atoms of species α, ri(t) represents the position of

atom i at time t, and the 〈 〉 represents an average on the time steps and/or the particles.

The connection between mean-squared displacement and the self-diffusion coefficient is

given by Einstein’s relation
〈

r2(t)
〉

= A + 6Dt (3.3)

where D is the self-diffusion coefficient, A is a constant and t is the simulation time.

Figure 3.9 shows the mean-squared displacement for the corresponding species. Clearly,

Cu atoms are more diffusive than Al and O atoms. On taking the snapshots of the position

of atoms (figures not shown here), we find that the Cu atoms do not diffuse into the host

matrix but diffuse within the Cu clusters and thus the Cu clusters become stable at these

range of temperatures. We then calculated the self-diffusion coefficient for each species

using Equation 3.3. The diffusion coefficient for Cu at 800 K and 1000 K are obtained to
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Figure 3.9: Mean-squared displacement at 800 K and 1000 K for 20% Cu model.

be 9.95 × 10−7cm2/s and 6.248 × 10−6cm2/s respectively. Cu is relatively static in a-Al2O3

compared to chalcogenides [140].

3.3.3.2 Lattice Dynamics

Here, we study the lattice dynamics of these Cu-doped systems by the means of

VDOS, species projected VDOS and the vibrational IPR. The dynamical matrix is

obtained by displacing each atoms by 0.015 Å along ±x, ±y and ±z directions. The VDOS

and partial VDOS are obtained by using Equations 1.10 and 1.11 respectively. We

approximate the δ function in VDOS expression by a Gaussian distribution function of
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width 10 cm−1. Among the 3N eigenmodes, we neglect the first three translational modes

with frequency very close to zero..
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Figure 3.10: Normalized total and partial vibrational density of states for 10% and 30% of
Cu models.

Figure 3.10 shows the total and partial VDOS for 10% and 30% Cu content. The

lower vibrational modes correspond to the Cu atoms. The higher frequency modes are

unsurprisingly dominated by O atoms. To study the localization of the vibrational

eigenstates, we calculated the vibrational IPR for each species. From Figure 3.11, we see

that the higher modes corresponding to the O atoms are more localized compared to the

lower modes for both concentrations of Cu. The lower eigenstates corresponding to Cu for

10% Cu model are quite localized compared to the 30% Cu model. The vibrational states

for aluminum are mostly extended for both models.
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3.4 Conclusions

In this chapter, we studied realistic models of a-Al2O3:Cu, and showed that the Cu

atoms have a strong propensity to cluster in the ionic a-Al2O3 host. We observed a

continuous filling of the optical gap by Cu levels, especially at 20% and 30% models. As

the Cu-concentration increases (and Cu-Cu connectivity increases), the Cu levels band to

enable metallic conduction. We observed the opening and closing of the HOMO-LUMO

gap at an elevated temperature, and projected electronic conductivity into real space and

visualized the conduction-active parts of the network. We showed that the connectivity of

Cu atoms play a significant role in the electronic conduction. We studied the diffusion of

Cu atoms in a-Al2O3 at different temperatures and observed that the Cu atoms do not
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diffuse easily into the a-Al2O3 in contrast with relatively covalent chalcogenides like

GeSe3 [140]. We discussed the harmonic lattice dynamics of the models by calculating

vibrational density of states and the vibrational IPR and showed that the lower vibrational

modes correspond to Cu atoms and the higher modes correspond to O atoms.

The results presented in this chapter on a-Al2O3:Cu show an interesting contrast with

similar study performed on GeSe3:Ag [141]. We find that the properties of Cu in the oxide

host (in this case, a-Al2O3) contrast with that of Ag in chalcogenide (in case of [141],

GeSe3). The Ag atoms do not form a cluster in the GeSe3 and no uniform filling of the

optical gap is observed. In other words, one has to electrochemically work hard to draw

Ag atoms together to form a cluster in GeSe3. So, the electronic conduction is likely to

occur by hopping process in GeSe3:Ag whereas the conduction in Al2O3 is most likely

through the interconnected Cu atoms in the network. We observed that Cu in a-Al2O3

exhibits different charge states (negative, neutral and positive) whereas the charge state of

Ag in GeSe3 changes from neutral when isolated to ionic (positive) near the trapping

center sites (host atoms) [142].
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4 Electronic Conduction in Amorphous Silicon Suboxides

The work presented in this chapter is in preparation for submission Subedi, K.,

Kozicki, M. N. and Drabold, D. A. Ab initio study of structural and transport properties

in silicon suboxides

4.1 Introduction

Silicon suboxide (a-SiOx) is a desirable electronic material because it can be cheaply

produced, has great physical and chemical stability and natural compatibility with modern

CMOS technology. a-SiOx thin films are also used for fabricating light-emitting

silicon-based structures [143]. The structure of silicon sub-oxide is complex and the

experimental evidence mostly supports two different structural models: “random

mixture” [109] and “random bonding” [110]. The former model proposes regions of pure

Si and silica (SiO2), separated by small interfacial boundaries whereas the latter model

suggests a continuous random network of tetrahedral units of SiSiyO4−y where y = 0 to 4.

SiOx is extensively studied intrinsic material for resistive devices [144, 145, 146]. Two

different approaches to conduction mechanisms in SiOx resistive devices have been

discussed: field-driven diffusion of the metal ions from metal contacts into the material

[147, 148] and formation of conduction pathways by silicon-rich regions in the material

[149, 150]. The devices have been understood at the macroscopic level but the

fundamental microscopic aspects of conduction mechanisms in bulk SiOx is unclear. The

actual mechanisms of how oxygen vacancies affect the electronic properties of the

material is still not fully understood. Beside memory storage, the security of the data is

important. As we introduced in Chapter 1, PUF is a promising concept of securing the

data without using any expensive hardware. The performance of the PUF device depends

critically on the merits of the material employed. For better PUF quality, a significant

variation in the structure is required. The inherent randomness in the structure of a-SiOx
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makes it a promising candidate for PUF devices. To improve these devices, understanding

the structure, stability, electronic and transport property is needed. More specifically,

visualization of the conduction-active parts of the network within the bulk material is of

central importance.

In this chapter, we aim to understand the underlying complexity in the structural

topology and the associated microscopic properties of a-SiOx. We propose that the

inherent complexity of this material has its possibility for the ideal PUFs application along

with the resisitve devices. The rest of the chapter is organized as follows: We first use ab

initio methods to simulate silicon-suboxide models with varying stoichiometry and

identify the structural topology. We then provide detail study on electronic properties and

visualize the most probable conduction sites in the material for a selected models.

4.2 Computational Details

4.2.1 Generation of Atomistic Models

Our calculations are based on AIMD simulations performed using VASP [83]. We

generated three atomic models of a-SiOx with x = 1.7, 1.5 and 1.3. For each model, we

constructed a cubic supercell with random initial atomic positions, fixing the volume and

the number of atoms to reproduce experimental density [151] according to desired

stoichiometry (summarized in Table 4.1). The generalized gradient approximations

(GGA) of Perdew-Burke-Ernzerhof (PBE) [84] was used as the exchange-correlation

functional. A plane-wave basis set was used with a kinetic energy up to 400 eV to expand

electronic wave-functions during MD simulations. For static calculations, larger cutoff of

520 eV was used. The calculations were performed using a single k-point (Γ) and periodic

boundary conditions were employed through out.

We followed the quench-from-melt scheme [88] to generate our models. For each

model, the initial configuration was heated at 4000 K for 10 ps. After annealing, we
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cooled this “hot liquid” to 2000 K at a rate of 0.20 K/fs and then equilibrated at 2000 K for

6 ps. We further cooled each model to 1000 K at the same rate and equilibrated it for next

4.5 ps. Each model was then quenched to 300 K followed by equilibrating it for another 6

ps. The temperature was controlled by a Nose-́Hoover thermostat [152, 153, 154] and

timestep of 1.5 fs was used during all MD runs. We fully relaxed each model using the

conjugate gradient method as implemented in VASP to obtain low energy structures. We

used the force tolerance of 0.005 eV/Å during the relaxation.

Table 4.1: System Stoichiometries and Densities for SiOx Models

Mol. Formula NS i, NO ρ (g/cc) L (Å)

SiO1.7 70, 119 1.99 14.78

SiO1.5 74, 111 1.87 15.07

SiO1.3 80, 104 1.68 15.69

4.3 Results and Discussion

4.3.1 Structural Topology

We study the structural topology of the models by calculating the pair-correlation

functions and local-coordination environment of atoms. To our knowledge, the total pair

correlation function, g(r) for a-SiOx has not been determined experimentally.

The left plot in Figure 4.1 shows g(r) for the obtained a-SiOx models. The first

well-defined peak at ≈ 1.64 Å corresponds to Si-O correlations. There is a hump at ≈ 2.39

Å that grows with decrease in x. This growing hump corresponds to Si-Si correlations that

is shown by the inset in left plot of Figure 4.1. The second major peak at ≈ 2.66 Å mainly

comes from O-O partial correlations. The first peak in g(r) shows that the intensity of

Si-O correlations decreases with decrease in x which causes reduction of SiO4 tetrahedral
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Figure 4.1: LEFT: Pair correlation function g(r) with inset showing the partial g(r) due
to Si-Si bonding. RIGHT: Local coordination environment for Si atoms (frequencies
expressed in percentage). The inset plots correspond to the correlations that belong only
to that model. The first index of the label represents Si and the second index represents O
atom.

structure. To gain further insight into the topology of the models, we performed local

coordination analysis around Si atoms based on the nearest distance for each atomic pairs

displayed as histogram bars (frequency in percentage) in the right plot of Figure 4.1. The

histogram bars in the right plot of Figure 4.1 show that the continuous random tetrahedral

units of SiO4, SiSiO3, SiSi2O2 are present in all models. The dominant SiO4 and SiSi3O

units decrease with decrease in x. The SiSi3 and SiSi4 are observed only with small x

shown as inset plot in the right plot of Figure 4.1. This provides a signature of Si rich

regions in the network with low x. These non-stoichiometric oxides possess large number

of O-deficient sites in the network which are well known defects in metal oxides as

O-vacancy sites. The formation of O-vacancy sites in a-SiO2 has been studied in earlier

works [155, 156, 157]. In these calculations, O-vacancies were created by removing one

or more O atoms from a-SiO2. The stable O-vacancies after relaxation are shown with

different shapes; Y-structure, member ring or a chain for di-vacancy or tri-vacancy sites.
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Figure 4.2 provides visual representation of distribution of these sites in the network for

a-SiOx models with low x (here x = 1.3). The inherent randomness in the structural

topology of the SiOx, (here for eg. with x = 1.3) can have potential applications for the

PUF devices. Figure 4.2 shows that O-vacancy sites which are closer to each other form a

Figure 4.2: Relaxed structure for a-SiOx model with x = 1.3. The color of Si atoms
correspond to the coordination of Si in the network within the first nearest distance for
each atom pairs. The color code is same as the right plot of Fig. 4.1. The O atoms are
colored gray.

member ring or a chain in some parts of the network. With further decrease in x, one

expects more Si-rich regions in the network. The previous work by Hirata et al. [158] has

shown the phase separation between Si and SiO2 for x =1.0. The Si-rich regions in the

network for low x could significantly impact on electronic conduction in the material and

are of obvious importance to any device applications.
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4.3.2 Electronic Structure

The electronic properties of the models are studied by detailed understanding of

electronic structure in a material. We discuss the properties in different subsections.

4.3.2.1 Density of States and Localization

Figure 4.3: LEFT: Electronic density of states (EDOS) and the inverse participation ratio
(IPR) for a-SiOx models. RIGHT: Electronic density of states projected on to each orbital
of each atomic species for a-SiOx models.

The states near the Fermi-level are analyzed by calculating the total electronic

density of states (EDOS) and projected EDOS due to each atomic species as shown by left

axis in each plot of Figure 4.3. It is apparent that the EDOS near Fermi-level increases

with decrease in x. The models with x = 1.7 and 1.5 show clear band gaps indicating that

these sub-oxides are non-conducting. The further decrease in x (here x = 1.3) shows the

presence of defect states pinned very close to the Fermi level. The EDOS projected on

atomic sites (refer to right plot in Figure 4.3) shows that electronic states from Si atoms

(shown by blue lines) in each plot pile up near the Fermi-level with decrease in x. So, the

electronic states from under-coordinated Si (with O atoms) atoms play crucial role to
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enhance the conductivity in a-SiOx models. The extent of localization of these electronic

states is further gauged by calculating IPR. The IPR is shown by red colored vertical

dropped lines labeled on right axis in each plot in Figure 4.3. For all models, the states in

the valence and conduction tail regions are localized. The defect states pinned very close

to Fermi-level for x = 1.3 are also localized, so one would predict electronic conduction

primarily by hopping mechanisms between these localized states.

4.3.3 Conduction Active Parts of the Network

The electronic conductivity of a-SiOx is influenced by the variation of its structural

topology. In order to correlate conduction with the structure, we computed SPC for the

obtained models. Figure 4.4 shows iso-surface plots of SPC (yellow colored blobs) for

a-SiOx models where the SPC values up to 0.04 times the highest SPC value are displayed

in each plot. The occupancy of the states was estimated assuming that the Fermi-level lies

at the midpoint of HOMO and LUMO levels (intrinsic case). From Figure 4.4, one can see

that the O-vacancy sites play a key role for electronic conduction. We also find that a few

Si atoms with strained SiO4 tetrahedral structure also form active sites for charge trapping

and hence contribute to SPC (orange colored spheres in left and middle plot of Figure 3).

However, such sites are rare compared to the O-vacancy sites. For x = 1.7, majority of

O-vacancy sites are far from the Fermi-level, and they do not contribute to the conduction.

The conductivity is localized within a few O-vacancy sites and is scattered without

forming any connected pattern. For x = 1.5, we find the Si atoms with dangling bonds are

other charge trapping sites. With reduced x ( here x = 1.3), the O-vacancy sites form a

member ring and are connected as a chain (although short) as seen at the bottom right and

top right regions (periodic boundary conditions) in the right plot of Figure 4.4. This

connected network appears to form a conducting channel where the conduction is likely to

occur by the trap-assisted tunneling (TAT) mechanisms, thereby enhancing the
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conductivity. It should be noted that the electronic states that are considered in the

calculations are few (refer to Figure 4.4) due to finite size effects. So, the SPC is mostly

qualitative, nevertheless, it clearly shows that the conductivity sites are the O-vacancy

sites connected to form a member ring or a chain. To crudely model doping, we then

shifted the Fermi-level towards the valence and conduction tail-regions where

comparatively more states are available than the intrinsic case. We chose the model with x

= 1.3 where we find more Si-rich regions. Figure 4.5, shows iso-surface plots for this

model showing SPC values where values up to 0.04 times the highest values are

displayed. The left and right plot corresponds to the valence-tail and the conduction-tail

region respectively. Because the density of deep states is relatively low in the mid-gap

region, the conduction zones are not well connected. By this “poor man’s doping”

(moving the Fermi-level into tail states), we see enhanced conductivity.

Figure 4.4: Iso-surface plots showing SPC (yellow colored blobs) for intrinsic a-SiOx

models. From left to right representing for x = 1.7, 1.5 and 1.3 respectively. The Si atoms
within the conduction-active region are color coded same as in right plot of Fig. ??. The
conductivity values up to 0.04 times the highest value are considered in each plot. The
remaining Si and O atoms are shown by gray color, O atom being represented by small
spheres. The order of the magnitude of SPC is different in each plot.

The iso-surface plots (LEFT and RIGHT) in Figure 4.5 show that conduction-active

path is primarily along the connected O-vacancy sites. It is apparently clear that not all
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Figure 4.5: Iso-surface plots ( yellow-colored blob) showing SPC for x = 1.3 model with
shifted Fermi-level. LEFT: Valence-tail region (Fermi-level at ≈ -2.0 eV) and RIGHT:
Conduction-tail region (Fermi-level at ≈ 2 eV). The cutoff up to 0.04 times the highest
value is considered. Same color code description used in Figure 4.4.

O-vacancy sites form a connecting path, and therefore may only serve as charge trapping

centers for electrons in the material. We observe the conduction through different vacancy

clusters in the network for both p-doped and n-doped regions. The formation of

di-vacancy and tri-vacancy clusters have been studied for silica where these vacancies

exist in different forms as a member ring or as a vacancy chain [157]. Similar types of

vacancy-sites have been observed in models where the conduction happens to be primarily

through these vacancy cluster sites. The connected SPC path also follows Si atom with

SiO4 tetrahedral structure. This atom has distorted bond angle where the electrons could

be trapped towards the wide angle side. For p-doped region(left plot in Figure 4.5), the

distorted bond angle is 112◦ and for the n-doped region (right plot in Figure 4.5), the angle

is 119◦. As we have many O-vacancy sites in the network and these sites produce defect

states in a wide range of energy in the band-gap, the conduction path is not unique. It

depends upon choice of the Fermi-level which changes an occupancy of the electronic

state, and therefore the conduction path. Figure 4.5 clearly shows that p-doping and
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n-doping select out different parts of the network through which the conduction proceeds.

The ability of switching the conduction path in the material due to the availability of

O-vacancy sites in teh netwoek makes this material useful for creating PUFs.

4.4 Conclusions

In this chapter, we obtained atomistic models of a-SiOx and showed that a-SiOx

models have complex bonding topology and the complexity increases with decreasing x.

We find different tetrahedral structures in the models that represent different O-vacancy

sites. We studied the electronic structure of the models by calculating electronic density of

states and inverse participation ratio. We find that the electronic states near the

Fermi-level are mostly attributed to Si-atoms, and these states are highly localized. We

computed space projected conductivity and showed that the O-vacancy sites form major

sites for electronic conduction. We also shifted the Fermi-level towards the valence and

conduction-tail regions and showed that the conduction then follows different O-vacancy

sites. This property also makes this material as a promising candidate for PUF devices.
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5 Atomic Properties of Sodium Silicate Glasses using

Building-BlockMethod

The work presented in this chapter has been published as Subedi, K. N., Botu, V.,

and Drabold, D. A. Atomic properties of sodium silicate glasses using building block

method, Phys. Rev. B 103, 134202 (2021)

5.1 Introduction

Sodium silicates ((Na2O)x(SiO2)1−x) are widely studied glasses that have established

and potential applications for photonics, and bio-material

engineering [159, 160, 161]. Despite these applications, the atomic structure of these

glasses is still not well understood, owing to the large number of possible local bonding

environments because of the complex composition. To fully exploit these glasses for

practical applications, fundamental insight about the atomic structure is needed.

Experimental work such as extended X-ray absorption fine structure (EXAFS) [162],

magic angle spinning NMR (MAS-NMR) [163, 164], X-ray Photonelectron Spectroscopy

(XPS) [165] and neutron diffraction [166] have determined many fingerprints of the

structure. However the fingerprints alone are insufficient to determine the microstructure.

Computer simulations have become the preferred route to understanding these materials at

the nano-scale. Most classical molecular dynamics (MD) and ab initio molecular

dynamics (AIMD) studies have used the quench-from-melt scheme [88] to obtain the

(Na2O)x(SiO2)1−x structures. Within this method, properties of densified silicates and the

impact of the cooling rates on structure of the silicates glasses have been

discussed [167, 168]. With a priori experimental information available, methods like

Force Enhancement Atomic Refinement (FEAR) [169] can be used which integrates

experimental constraints with the classical MD or AIMD to obtain more realistic models.
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A recent work by Zhou et al. [170] has employed the method to study (Na2O)0.3(SiO2)0.7

glasses using classical MD. The study shows that FEAR models capture the medium

range order particularly well. Most of the earlier and contemporary works on

(Na2O)x(SiO2)1−x [171, 172, 173, 174] are primarily focused on the structural character of

the materials, and have been successful when compared to experiments. Limited literature

is available on electronic, optical, and mechanical properties [175, 176]. One interesting

recent study of diffusion of the sodium silicate melt has been offered by Hung et al. [177]

revealing that two different diffusion mechanisms could occur in such glasses. However to

our knowledge, there are no studies on the thermal properties, especially thermal

expansion coefficient (TEC), a key quantity for applications.

All amorphous materials have significant short range order, some form of

medium-range order and ultimately no long range order. Thus, amorphous silicon has

local order very reminiscent of diamond – bond angles are that are clustered around the

tetrahedral angle and the great preponderance of bond lengths near the diamond nearest

neighbor distance. Similarly, glassy phases of SiO2 consist of interconnected Si-O

tetrahedra that nevertheless have bond angle disorder in both Si-O-Si and O-Si-O angles

(the latter again distributed around the tetrahedral angle). Other examples come to mind,

such as the pyramidal units of As2Se3. As the stoichiometry of the glass becomes complex

including several elements, the building blocks are not necessarily so simple. It is with this

background that we motivate the “building block” method [178]. Essentially, we try to

identify the complex units, and perform a melt-quench simulation with that local order

already built in. To enable this, a small cell (here, 30 atoms) of the correct stoichiometry

of the glass and low energy is obtained by a thorough and extensive annealing/quenching

process (easy to carry out because the cell is so small). The idea is that the actual glass is

likely to exhibit such local order. The small cell is then used to build a larger cell from

eight copies of the small cell formed into a cube with 240 atoms. A melt-quench method
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is then carried out with this larger cell and remnants of this local order will persist even

after a melt-quench process. This scheme has worked quite well in multinary glasses with

complex ordering, and in particular seems to match or sometimes outperform

conventional melt-quench method starting from random initial conditions,even for fairly

extended simulations. The pair-correlation functions for the ternary glasses AsGe0.8Se0.8

and Ge2As4Se4 have shown pleasing agreement with experiment [178]. A conceptually

related but different version of the idea was presented by Ouyang and Ching, applied to

amorphous Si3N4 glasses [179].

The rest of the chapter is organized as follows. In Section 5.2, we discuss the

computational methodology for obtaining the models and the quasi-harmonic

approximation. In Section 5.3, we describe structural, electronic, thermal and elastic

properties in various subsections.

5.2 Methodology and Computational Details

5.2.1 Generation of Models using Building Block Method

We performed AIMD simulations using the VASP [83]. Three atomic models of

(Na2O)x(SiO2)1−x were made with x = 0.0, 0.1 and 0.3. For each model, we built a small

“sub-unit cell” with 30 atoms at the known experimental density [180] and desired

stoichiometry. The atoms were randomly placed with minimum separation of 2.1 Å from

each other. The temperature of the sub-unit cell was then increased to 3500 K in 4.5 ps

and equilibrated at this temperature for 6 ps. The “hot liquid” was then cooled in

successive steps followed by equilibration for a few ps to make the model representative

of that temperature. Then it was cooled to 2000 K at a cooling rate of 2 × 1014 K/s

followed by equilibration for 7.5 ps at the same temperature. The equilibrated sub-unit

cell was further cooled to 1000 K at the same cooling rate followed by another

equilibration for 7.5 ps. The sub-unit cell was then quenched to 300 K and equilibrated for
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another 7.5 ps. The conjugate gradient (CG) method as implemented in VASP was then

used to relax the sub-unit cell to optimize its energy. We obtained at least four such

relaxed sub-unit cells by repeating the process and considered the sub-unit cell

corresponding to the lowest energy termed as building block (BB) for the further

calculations. Eight copies of the BB were used to prepare the starting configuration of the

supercell that consists of 240 atoms. Following a similar scheme as used for the sub-unit

cell, the super-cell was annealed at 2500 K7 for 7.5 ps and quenched to 300 K . The model

was then equilibrated at 300 K for 7.5 ps. The equilibrated model at 300 K was finally

optimized by performing zero-pressure relaxation. This resulted a non orthogonal cell and

thus the density of the super-cell changes slightly (A variation in density was less than 3%

for all models). A direct melt-quench model with x = 0.3 consisting of 240 atoms was also

obtained for comparison. The initial structure was annealed from 300K to 3500 K in 4.0

ps and was equilibrated at 3500 K for 6ps. It was then cooled to 2000 K at the same

cooling rate of 2 × 1014 K/s followed by equilibration for 6 ps at 2000 K. The model was

further cooled to 1000 K at the same cooling rate and was equilibrated for next 4 ps. It was

then quenched to 300 K followed by another equilibration for 4 ps. The model was finally

optimized by performing zero-pressure relaxation. The direct melt-quench model was

generated in ≈ 40 ps in terms of simulation time scale. The BB model took ≈65 percent of

the time taken to generate the direct melt-quench model starting from the supercell of 240

atoms. This excludes simulation time to prepare the optimized BB of 30 atoms cell that is

very cheap for computation. In all the above calculations, plane-wave basis sets were used

with a kinetic energy cutoff of 400 eV. For CG and the zero-pressure relaxation steps, a

cutoff of 520 eV was used. The generalized gradient approximations (GGA) of

Perdew-Burke-Ernzerhof (PBE) [84] was used as the exchange-correlation functional. A

single k-point (Γ) was used to sample the Brillouin zone. In all MD calculations, a time

7 a-SiO2 model was annealed at 3000 K due to higher melting point compared to silicate models.
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step of 1.5 fs was used and the temperature was controlled by a Nose-Hose

thermostat [152, 153, 154]. Gaussian smearing with a width of 0.05 eV was used to

represent the partial occupancies of the energy levels near the Fermi-level. Periodic

boundary conditions were used throughout the calculations. The flow chart for the above

discussed method is depicted in Figure 5.1.

Figure 5.1: Schematic “flow chart” for building-block (BB) method. (a) Initial
configurations of atoms in the sub-unit cell. (b) The sub-unit cell with minimum energy
from several melt-quench cycles. (c) 8×8×8 supercell formed from the optimized sub-unit
cell. (d) The final model formed after one melt-quench cycle followed by relaxation.

5.2.2 Quasi-Harmonic Approximation

The thermal properties of the materials can be calculated within the framework of the

quasi-harmonic approximation (QHA). In this approach, the volume dependence is used
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to compute the approximate free energy F(V,T ) expressed as:

F(V,T ) = E0(V) + Fvib(T,V) (5.1)

where E0 is the ground state energy for a given volume V . In the DFT framework, E0 is

due to all electronic contributions to the Coulomb energy, and atomic energy

contributions, according to the supplied PAW potentials. Fvib represents the vibrational

contribution to the free energy. Once the phonon frequencies over Brillouin zone are

known, Fvib is given by:

Fvib =
∑

q j

~ωq j[
1
2
+

1
exp(~ωq j/kBT ) − 1

] (5.2)

where ωq j is the phonon frequency for a given wave-vector q and the band index j. T , kB

and ~ are the temperature, Boltzmann constant and Planck’s constant.

To implement this, the relaxed supercell vectors were gradually scaled by factors

from 0.97 to 1.03 with a step of 0.01 to obtain seven different configurations for both

doped models. Structural optimization was then performed for each model at fixed

volume with the convergence criteria of 10−6 eV and force 0.004 eV/Å for energy and

force on each atom respectively. Static calculations were performed for each configuration

to obtain E0(V) for both models. To obtain the phonon frequencies, the displacement of

atomic coordinates by 0.015 Å was made along ±x, ±y and ±z directions for each

configuration. This led to several supercells slightly distorted from equilibrium

geometry. Every such displacement configurations was then treated by a single-point

computation and the force calculation was performed in VASP. The force-sets were

collected from each displacement and the phonon frequencies were calculated on 31× 31×

31 mesh grids. The contribution of the phonon frequencies was then included to obtain

F(V,T ). The Helmholtz free energy was fitted with the Birch-Murnaghan equation of state

(EOS) [181, 182]. Additional calculations were performed using phonopy [183], a

convenient open source package for phonon-related computations.
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5.3 Results and Discussion

5.3.1 Structural Properties

The structural topology of (Na2O)x(SiO2)1−x models were analyzed by calculating

pair-correlation functions, structure factors, bond angle distribution functions, Qn

distributions and the coordination environment of each atomic species. The obtained

results are compared with experiment and also with other available AIMD and classical

MD results. The left subplot in Figure 5.2 displays total distribution function (T (r))

Figure 5.2: Total distribution function T (r) and the Structure factor S (q) for sodium silicate
models with x = 0.0 and 0.3 respectively. The left and right subplots correspond to T (r)
and S (q) respectively.

calculated from the models and obtained from the experiments for the undoped (x = 0.0)
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and the “fully” doped case (x = 0.3). The experimental data for the undoped and the doped

models were taken from reference [184, 185] respectively. T (r) for the doped model with

x = 0.3 shows excellent agreement up to the local range order (≈ 3.4 Å) and in pleasing

agreement up to the medium range order (5-6 Å). T (r) for the doped-model (x = 0.3)

obtained from direct melt-quench method is also displayed for comparison, and shows

almost the same local ordering as the model obtained from building-block method. T (r)

for the undoped model shows very good agreement with the experiment up to 3 Å and also

accurately reproduces peaks in the medium range order. The structure factor (S (q)) for

both models (undoped and the fully doped) were also calculated from the Fourier

transform of the radial distribution function (g(r)), and are shown in the right subplot of

Fig 5.2. S (q) for both models show excellent agreements with the available

experiments [186, 185] other than first sharp diffraction peaks (FSDP). S (q) for the direct

melt-quench model and using ReaxFF potential [187] with x = 0.3 are also displayed in

the same subplot for comparison. The BB model shows slightly better agreement of the

second peak with the diffraction experiment than the model using ReaxFF potential. The

direct melt-quench model captures the second peak of S (q) better than the BB model,

nevertheless, overall agreement with the experiment is more or less similar. The large

model using ReaxFF potential captures the FSDP of the neutron diffraction

experiment. The small-sized models with 240 atoms provide poor description of

correlations in intermediate or extended length scales. The origin of the FSDPs in silica

and alkali silicates are attributed to many factors such as system size, composition, etc,

and are discussed in references [188, 189, 190].

The left subplot in Figure 5.3 depicts g(r) calculated from the models. For the model

with x = 0.0, the first peak in g(r) is located at ≈ 1.63 Å and corresponds to the Si-O

correlations. g(r) for the model with x = 0.1 shows that the first peak is slightly shifted

towards the right at ≈ 1.64 Å. For the model with x = 0.3, g(r) shows that the first major
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Figure 5.3: Radial distribution function g(r) (left subplot) and bond length distribution of
Si and O atoms (right subplot) for (Na2O)x(SiO2)1−xmodels. The inset in left subplot shows
partial g(r) attributed to Na-O correlations for the doped models. Solid and dashed lines
in legends in right subplot correspond to bonding of Si with bridging oxygen (BO) and
non-bridging oxygen (NBO) atoms respectively. NBO atoms here refer to O atoms that are
linked to only one Si atom. BO atoms refer to O atoms that are not NBO atoms.

peak is further shifted to ≈ 1.65 Å. The calculated bond length for this model is closer to

Si-O bond length obtained from EXAFS measurement (1.66 Å ± 0.02 Å) than from

neutron scattering measurements (1.62 Å) [162, 185]. For the silica structure, Si tetrahedra

are connected by bridging oxygen (BO) atoms. Addition of a modifier to such structure

depolymerizes the silica network by breaking the Si-BO-Si bonds and forming

non-bridging oxygen (NBO) atoms. The concentration of such NBO atoms in the doped

models were calculated to be 7.24% (10.53) and 34.56% (35.29) with x = 0.1 and 0.3

respectively where numbers inside the parenthesis correspond to theoretical percentages
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assuming that each Na2O creates 2 NBO atoms. The low percentage of NBO atoms for the

model with x = 0.1 suggests that not all Na atoms depolymerize the network to form NBO

atoms. The direct melt-quench model also contains the same number of NBO atoms as BB

model with x = 0.3 showing very similar structural topologies between the models

obtained from these two different methods. Earlier studies also obtained similar

percentage of NBO atoms for the model with x = 0.3 [191, 171]. The fraction of BO and

NBO atoms in the model with x = 0.3 is in agreement with results obtained using Electron

Spectroscopy for Chemical Analysis technique [192]. From the left subplot in Figure 5.3,

the intensity of the first peak in g(r) is seen to decrease with increasing x. This is

attributed to formation of fewer Si-BO bonds with increase in x and can be explained from

the bond distribution of Si with O atoms. The bond distribution for the (Na2O)x(SiO2)1−x

models were calculated and the contribution from Si-BO and Si-NBO bonds are displayed

in right subplot of Figure 5.3. It can be seen that the intensity of Si-BO distribution

decreases with increase in x that results decreasing intensity of the first peak in g(r). The

shift in peak position of Si-BO distribution towards larger distance results overall shift of

the first peak in g(r) with increasing x as observed in left subplot of Figure 5.3. The study

by Sakka and Matusita [193] confirmed that the addition of Na2O weakens the Si-O bond

and results increase in Si-O bond length. This is consistent with our results and with the

previous studies [185, 194]. The Si-NBO bonds peak at lower bond-length ≈ 1.59 Å and

the intensity of peak grows with increase in x. So, for high concentration of Na2O content

in the silicates (x ≥ 0.5), the first peak in g(r) is expected to shift closer to the Si-NBO

peak. For all models, the second peak at ≈ 2.66 Å is mainly due to O-O partial

correlations. The calculated Si-Si correlations show peak at ≈ 3.06 Å for the doped

models. The Si-Si bond length for the models is very close to that obtained from the

neutron diffraction experiments for a-SiO2 (3.08 Å). Most of the DFT and classical MD

studies predict the bond length of ≈ (3.11-3.19 Å) for these glasses [195, 196]. For both
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doped models, there exists a small minor peak at ≈ 2.3 Å which is due to the partial pair

correlations from Na and O atoms forming a weak ionic bond. The inset in the left subplot

of Figure 5.3 shows that the intensity of this peak is large for the model with x = 0.3. This

peak is mainly attributed to Na-NBO correlations in the network. The Na-BO correlations

are found towards larger distance and form a peak at ≈ 2.42 Å. The bond angle

Figure 5.4: Bond angle distribution functions (BADF) for the (Na2O)x(SiO2)1−x models
within the first cutoff distance for each atomic pairs showing the contribution of BO
and NBO atoms. “A” in the legend refers to either Si or Na atom and black solid line
corresponds to total distribution for each case. Left and right subplots correspond to O-Si-
O and O-Na-O angles respectively. BO and NBO atoms used here are same as defined in
Figure 5.3.

distribution function (BADF) for the models was also analyzed. Figure 5.4 displays

BADF corresponding to O-Si-O and O-Na-O angles. The left subplot in Figure 5.4 shows
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BADF corresponding to O-Si-O angles. The BADF shows that O-Si-O angles for the

models are approximately normally distributed. For the undoped model, O-Si-O bond

angles form a peak at ≈ 108.9◦ and has the full width half maximum (FWHM) of

12.5◦. The neutron diffraction experiment by Grimley et al. found the peak at 109.7◦ with

FWHM of 10.6◦. The models obtained using potentials developed by VSL [197] and

BKS [198] show that the O-Si-O angles form peak at 109.3◦ with FWHM of 12.2◦ and

108.6◦ with FWHM of 15.1◦ respectively [195]. For the doped models, it can be seen that

the intensity of BO-Si-BO distribution decreases with increase in x and is attributed to

formation of more NBO atoms in the network. The BO-Si-NBO angles are mostly formed

towards right of the tetrahedral angle and these angles form a broader peak at ≈ 112.0◦ for

the model with x = 0.3. On the other hand, BO-Si-BO angles lie towards the left side and

form a peak at ≈ 106.0◦. There exists negligible contribution from NBO-Si-NBO angles to

the distribution at ≈ 119.0◦ for the model with x = 0.3. The presence of more NBO atoms

in the network causes an overall shift of O-Si-O angles’ peak towards high angle side. The

BADF shows a peak at ≈ 109.5◦ with FWHM of 12.0◦ and ≈ 109.7◦ with FWHM of 15.0◦

for the models with x = 0.1 and 0.3 respectively. The study based on neutron diffraction

experiment by Misawa et al. showed that the O-Si-O angle for x = 0.0 and 0.33 to be

109.1◦ and 109.3◦ respectively [194]. The classical MD simulations of the silicate glasses

show peaks at slightly lower values for O-Si-O angles for the studied

compositions [171, 191, 199, 200] The right subplot in Figure 5.4 depicts the BADF

corresponding to O-Na-O angles for the doped models. The BADF for the model with x =

0.1 shows that there exists a first peak at ≈ 59.0◦ and corresponds to BO-Na-BO angles.

For the model with x = 0.3, the first peak in BADF lies at ≈ 62.9◦ and is attributed to the

BO-Na-BO, BO-Na-NBO, and NBO-Na-NBO angles with the smallest contribution from

NBO-Na-NBO angles. Beyond the first peak, there exists another broad peak ≈ 88.5◦ and

near the far end forming a shoulder at ≈ 150.0◦. The major broad angle formed at ≈ 88.5◦
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is attributed to almost equal contribution from NBO-Na-NBO and BO-Na-NBO angles.

The shoulder formed at far side is also attributed to these angles. Such a broad peak does

not exist for the model with x = 0.1 because of few available NBO atoms. There exists

peaks ≈ 95.9◦ and 121.8◦ that are mostly attributed to BO-Na-NBO angles. To understand

Figure 5.5: Bond angle distribution functions (BADF) corresponding to Si-BO-Si angles
for the (Na2O)x(SiO2)1−x models shown by black lines in all subplots. The distribution
decomposed based on number of modifier atom (Na) that are linked to BO atoms shown
by the colored lines and labeled at the top of the figure for the doped models. The cutoff
distance of 2.74 Å for Na-O pairs is used.

how the tetrahedra are connected in the network, the BADF corresponding to Si-BO-Si

angles were calculated and are displayed in Figure 5.5. Unlike the symmetric distribution

obtained from most classical MD simulations [195, 201], our simulations show that the

bond angles are more spread out with asymmetric shape of the distribution and are mostly
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biased towards small angles. Donadio et al. [202] has also shown that for the model with x

= 0.25, ab initio Car-Parrinello MD results the spread-out distribution compared to

symmetric distribution from classical MD. The total BADF distribution for the undoped

model shows a broad peak at ≈ 131.4◦. The peak lies towards small angle compared to

NMR secant model (142◦) [203] and XRD model by Mozzi and Warren (144◦) [204]. The

latter model reproduces asymmetric distribution of Si-BO-Si angles. For the undoped and

slightly doped (x = 0.1) models, bond angles near the extremes are observed at ≈ 158◦ and

160◦ respectively. On the other hand, the distribution flattens in this region for the model

with x = 0.3. Therefore, the distribution narrows and also shifts towards smaller angles

with increasing x. This could be attributed to the increased Si-O lengths with addition of

the modifier atoms [205]. The BADF corresponding to the doped models were

decomposed based on linking of the BO atoms with neighboring Na atoms and are

displayed by colored lines in Figure 5.5. It is observed that peaks at extremes are mostly

attributed to the Si-BO-Si angles that are not linked to the modifier atoms. The Si-BO-Si

angles with Na atoms as neighbors mostly form peaks towards small angles. For the

model with x = 0.3, the Si-BO-Si angles linked with 2 Na atoms show a contribution to

the peak very close to 120◦ but are absent for the model with x = 0.1. For the model with x

= 0.1, there exists distinct peaks at ≈ 127.8◦ and 142.8◦. For the model with x = 0.3, there

is a major peak ≈ 134.8◦ and a shoulder towards the small angle side at ≈ 125.1◦. It is

observed that the contribution from the Si-BO-Si angles linked with 1 Na becomes higher

with increase in x. A detailed analysis on Si-O-Si bond angle distribution for silica and

sodium silicates can be found in reference [201]. To further understand the extent of

depolymerization of the silica network due to the presence of Na2O modifier, the Qn

distribution of Si atoms was calculated. Qn is defined as Si atoms with n BO atoms. The

NBO atoms are defined as O atoms that only form bond with one Si atom. The BO atoms

here refer to O atoms that are not NBO atoms. For the model with x = 0.0, all O atoms
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Figure 5.6: Qn distribution for the doped models. The red and blue bars correspond to the
calculated Qn from the relaxed models with x = 0.1 and 0.3 respectively. The light blue
bars correspond to the experimental data estimated for x = 0.3 from reference [1]. A cutoff
distance of 1.94 Å is used to define the bonds between Si and O atoms based on their
covalent radii plus a tolerance factor of 0.10 Å.

form BO atoms and constitute 100% of Q4 distribution. The Qn distribution for the doped

models is displayed as histograms in Figure 5.6. The Qn distribution obtained from the

doped model with x = 0.3 shows agreement with estimated values obtained from the NMR

experiment shown by light blue histograms [1]. For the model with x = 0.1, it is observed

that the structure has majority of Q4 (79.17%) and Q3 (15.28%) and are displayed as red

colored histograms in Figure 5.6. A few Q5 are observed in both doped models and a Q6 is

observed for the model with x = 0.1. The contributions from Q5 and Q6 are very small,

and could be artifacts of high cooling rate used to quench the liquid phase to obtain the

glass models. These are also sensitive to the cutoff used to define bond-length between Si
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and O atoms. For model with x = 0.3, the majority are Q3 (66.07%) and Q4

(23.21%). Simulated silicate glasses using classical MD or combined with DFT show

similar results for the model with x = 0.1 whereas significant deviation of Q3 values are

observed for the model with x = 0.3 [171, 206, 207].

Table 5.1: Average Coordination Number (n) and its Distribution Among Each Atomic
Pairs n(), where () is Filled by the Corresponding Atomic Species. The Coordination is
Counted Only if the Distance for Each Atomic Pair is no More than the Sum of Their
Covalent Radii Plus a Tolerance Factor of 0.1 Å. Covalent Radii of 1.11, 0.73 and 1.66 Å
was Taken for Si, O and Na Atoms Respectively.

Na2O content (x) Atom n n(S i) n(O) n(Na)

0.0 Si 3.93 0.00 3.93 –

O 1.96 1.96 0.00 –

Si 4.07 0.00 4.07 0.00

0.1 O 2.17 1.93 0.00 0.24

Na 2.5 0.0 2.25 0.25

Si 4.11 0.00 4.02 0.09

0.3 O 2.73 1.65 0.00 1.07

Na 4.98 0.10 3.04 1.83

In order to understand the local bonding environments of these glasses, the average

coordination number for different atomic pairs were calculated. To describe the

coordination, the covalent radius for each atom was used. So, the distance between atoms

which is no more than the sum of covalent radii of the atomic pairs within the tolerance of

0.1 Å only contribute to the coordination. The detailed coordination number for the doped

glasses are shown in Table 5.1.

Table 5.1 shows that the average coordination of each atom type is x-dependent. It is

clear that the mean coordination of each atom increases with increase in x. For the doped
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models, we find a significant increase in the average coordination of Na with increase in

the Na2O content. The coordination number was calculated to be 2.5 and 4.98 for models

with x = 0.1 and 0.3 respectively.

5.3.2 Electronic Properties

Figure 5.7: (a) Total and projected electronic density of states (EDOS), and the inverse
participation ratio (IPR) for (Na2O)x(SiO2)1−x models.(b) and (d) Partial charge density for
the defect state in the gap shown as iso-surface (purple colored blobs) plots for the doped
models with x = 0.1 and 0.3 respectively. (c) and (e) show close look of the defect sites in
(b) and (d) respectively. Atoms color match with the legends in (a).

For the doped models, as discussed in Section 5.3.1, the Na atoms modify the

structural topology of the glass essentially by breaking the Si-BO-Si and forming NBO

atoms; the effect escalates with increase in Na2O content. This in turn induces a variation

of electronic structure of the glass. To understand this, quantities like the electronic

density of states (EDOS) were computed, and the localization of the states was gauged by

the values of IPR.
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The sub-plots in Figure 5.7a show the total EDOS and the EDOS projected on atomic

sites for the doped models. An electronic Kohn-Sham band gap of ≈ 3.96 eV and ≈ 3.82

eV was observed for models with x = 0.1 and 0.3 respectively. Quite large band gaps for

glasses with the same composition has been reported by Murray et al. [208] and are 5.82

and 4.61 eV for models with x = 0.1 and 0.3 respectively. For the doped models, the top of

the valence edge derives from NBO atoms and the bottom of the conduction band is from

more or less all three species. The EDOS projected on atomic sites shows that the

contribution of the Na ions in the conduction band increases with x that is apparent from

the inset plots in Figure 5.7a . The IPR values (labeled on right y-axis in Figure 5.7a)

show that states near the valence edge are highly localized and are attributed to the

non-bridging O-2p orbitals. The energy range of localization is slightly deeper into the

valence band for the model with x = 0.3 than with x = 0.1 which is possibly due to

comparatively more NBO atoms. For both doped models, defect states appear in the gap

around 1 eV below the conduction edge and are shown by arrowheads in the inset plot in

Figure 5.7a. The charge densities corresponding to these defects were then determined

and are displayed as isosurface plots (purple blobs) in Figure 5.7b and Figure 5.7d for

models with x = 0.1 and 0.3 respectively. The isosurface plots show that the charge is

mostly spatially localized in few atomic sites for both models. For the model with x = 0.1,

the maximum charge density is attributed to Na atom towards the O-deficient center as

shown in Figure 5.7c. The charge density is extended towards larger angles (≈113◦) of

SiO4 tetrahedral unit. These sites serve as intrinsic charge carrier sites in the network. For

the model with x = 0.3, the charge density is bounded by Na atoms towards the

O-deficient sides of the network. Figure. 5.7e shows the particular region within the

supercell where the charge density is localized in space surrounded by 4 Na

atoms. Increase in Na2O content in the glass could lead to more such defect states near the

conduction tail and could be engineered for optical applications.



103

5.3.3 Thermal Properties

Figure 5.8: (a) Helmholtz free energy obtained for seven different volumes at selected
temperatures shown by the filled circles. The dashed lines represent the fit to the EOS. The
black star symbols represent the Gibb’s free energy. (b) The volume vs temperature plot
for the doped model with x = 0.3. (c) Linear thermal expansion coefficient (LTEC) for both
doped models.

In this section, the thermal properties of the doped models are studied by calculating

the linear thermal expansion coefficients (LTEC) and specific heat capacities at constant

pressure (Cp). These properties are calculated using quasi-harmonic approximation

approach discussed in section 5.2.2.

The temperature-dependent Helmholtz free energy F(T,V) was obtained as discussed

in section. 5.2.2, and is plotted for one of the doped models with x = 0.3 shown by filled

circles in Figure 5.8a. The dashed lines represent the fit using the Birch-Murnaghan

equation. The minimum volume from each curve was determined (indicated by the star

symbol in Figure 5.8a) and these volumes are plotted against the temperature in

Figure 5.8b. The volume thermal expansion coefficient was obtained using the relation:

β(T ) =
1

V(T )
∂(V(T ))
∂T

(5.3)

The linear thermal expansion coefficient (LTEC), denoted by α, was calculated assuming

α = 1
3β and compared with the experiment [209] that are measured at low temperatures.
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Figure 5.8c shows the calculated and the experimental values of α for both doped models.

The calculated values of α for model with x = 0.3 are in excellent agreement with the

experimental values. The calculated value of α was determined to be 9.0 × 10−6 K−1, close

to the experimental value 1.2 × 10−5 K−1 at 283 K. For x = 0.1, the LTEC values are about

an order smaller than the experimental values at very low temperature but are closer to the

experiment from around 80 K to room temperature. The calculated value of α was found

to be 6.9 × 10−6 K−1 compared with the experimental value 5.0 × 10−6 K−1 at 283 K.

From F(T,V), the Gibbs free energy G(T, p) at given temperature and pressure was

obtained through the transformation,

G(T, p) = min
V

[F(T,V) + pV] (5.4)

From G(T, p), the thermal properties such as specific heat at constant pressure (Cp) can be

calculated. Figure 5.9 shows the specific heat capacity at zero pressure for both doped

models. The Cp for the model with x = 0.3 is slightly higher compared to x = 0.1

throughout the provided temperature range. The results for the model with x = 0.3 was

compared with the closest available experimental results with x = 0.33 and are shown by

scattered plots in Figure 5.9. It can be seen that the results are in close agreement. The

heat capacity for the sodium silicate glasses obtained from the classical MD also shows

similar result [210]. For these doped models, the calculated values of Cp at 300 K were

obtained to be 51.86 and 47.38 Jmol−1 K−1 with x = 0.3 and 0.1 respectively. The

experimental value for x = 0.33 at this temperature is 52.50 Jmol−1 K−1 .

5.3.4 Elastic Properties

The elastic properties for the models are studied from the elastic tensor (Ci j). Ci j can

be obtained by distorting the lattice vectors and relaxing all of the internal parameters to

minimize the total energy. The distortion of the lattice vectors results in a change in total
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Figure 5.9: Specific heat capacity at constant pressure (Cp) for (Na2O)x(SiO2)1−x models
with x = 0.1 and 0.3 shown by solid lines and the experimental values for x = 0.33. The
triangle and star symbols correspond to the values taken from references [2, 3].

energy by amount [211]:

E(ei) = E0 − P(Ω)∆Ω + Ω
6
∑

i=1

6
∑

j=1

Ci jeie j/2 + O[e3
i ] (5.5)

where Ω is the volume of the undistorted lattice, P(Ω) is the pressure of the undistorted

lattice at the volume Ω, ∆Ω is the change in the volume of the lattice due to the acting

strain and the third order term of ei has been neglected. Altogether, there are 21

independent Ci j in Eq. 5.5. However, symmetry reduces the number of independent Ci j

depending upon the crystal structure. By the means of the Ci j and the compliance tensor,

si j (Ci j
−1), the bulk modulus (K) and shear modulus (G) can be expressed as [212]:

9KV = (C11 +C22 +C33) + 2(C12 +C23 +C31) (5.6)
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15GV = (C11 +C22 +C33) − (C12 +C23 +C31) + 3(C44 +C55 +C66) (5.7)

1/KR = (s11 + s22 + s33) + 2(s12 + s23 + s31) (5.8)

15/GR = 4(s11 + s22 + s33) − 4(s12 + s23 + s31) + 3(s44 + s55 + s66) (5.9)

where Ci j are being written in according to Voigot notation [213]. The expressions for K

and G with subscripts V and R in Eqns. (5.6-5.9 ) refer to the Voigt and Reuss approaches

of determining the Bulk and Shear modulus respectively. The Voigt approach provides an

upper limit and the Reuss approach provides the lower limit.

The stress tensor, Ci j for each doped model was obtained from VASP using a strain of

0.015 Å. The diagonalization of the matrix Ci j was then performed that yielded positive

eigenvalues satisfying the elastic stability. The calculated bulk and shear moduli are

presented in table 5.2 and are compared with experiment [214].

Table 5.2: Elastic Properties Obtained From (Na2O)x(SiO2)1−x Models

Na2O content Bulk modulus (GPa) Shear Modulus(GPa)

KV KR Kavg GV GR Gavg

0.0 Model 34.02 32.25 33.18 25.28 22.81 24.05

Expt 36.10 31.25

0.1 Model 27.92 23.48 25.70 25.53 22.28 23.91

Expt 33.95 27.68

0.3 Model 34.56 33.75 34.16 22.62 21.37 21.99

Expt 39.03 23.80

From table 5.2, it can be seen that the calculated values of shear and bulk moduli

using the Voigt approach are closer to the experimental data for all the models. But for

better comparison with the experiment, the average of the values from both Voigt and
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Reuss approaches was performed. These quantities are denoted as Kavg and Gavg for bulk

and shear modulus respectively in table 5.2. We see that the calculated values of Gavg for

both doped models are close to the experimental values with maximum deviation of 3.77

GPa. For the undoped model, we find the deviation of 7.20 GPa from the experiment. The

calculated Kavg for the undoped and x = 0.3 models are also closer to the experimental

value (deviation < 5 GPa). For the model with x = 0.1, the calculated Kavg was found to be

quite low compared with the experimental value (deviation of 8.25 GPa). The

discrepancies of similar range and even higher than the tabulated values have been

reported in literature [215, 216, 217, 218].

5.4 Conclusions

The realistic models of (Na2O)x(SiO2)1−x glasses were obtained using the building

block method that potentially suits for predicting the structure of the homogeneous

glasses. Structural properties of the models were explored by studying the correlation

functions such as pair correlation functions, structure factors, bond angle distribution

functions, Qn distributions and the local coordination analysis. The pair correlation

functions calculated from the obtained models show that the BB method correctly predicts

the local structure of the glasses and also captures the signature of the medium range

order. The Si-O bond length is found to be increased with increase in Na2O content for the

studied concentrations and is consistent with the previous studies. The bond angle

distribution functions corresponding to Si-BO-Si angles are found to be narrower and

O-Si-O angles shift slightly towards the higher angle with increase in modifier

concentration. The Qn distribution for the fully doped model shows good agreement with

the NMR studies. The electronic density of states for the doped glasses shows the

presence of defect states in the band gap towards the conduction tail and are mostly

localized at under-coordinated Na atoms in the network. The thermal properties of the
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doped models were computed on the basis of quasi-harmonic approximation. The

calculated values of linear thermal expansion coefficient show satisfactory agreement with

the experiment. The specific heat capacity for the doped models were calculated and the

fully doped model shows that the results are in agreement with the experiment. The elastic

properties of the doped models were also studied by calculating the bulk and shear

moduli, and these values also satisfactorily agree with the experimental values.
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6 Conclusions

In this dissertation, we provided a novel method to project electronic conductivity

onto real-space grids using the Kubo-Greenwood formula. We also improved the

understanding of the method by diagonalizing the conduction matrix and expressing the

total conductivity and conduction path in terms of conduction-matrix eigenvalues and

eigenvectors. In the second chapter, we implemented the method from outputs of DFT

calculations and studied transport in different electronic materials (insulating to mixed

systems). For a low density a-carbon, we showed that both sp and sp2 sites form major

conduction pathways for electronic conduction. For a-silicon, we find that the SPC shows

a special weight for atoms with bond lengths shorter than 2.32 Å and longer than 2.43

Å. For l-Si, we find that the SPC is mostly uniform throughout the cell representing its

metallic nature. We reveal that the majority of conduction sites in l-Si are Si atoms with

4-fold, 5-fold, 6-fold and 7-fold coordinated. We provided spectral representation of

conduction eigenvalues for insulating/conducting (a-Si/a-C) and the metallic (c-Al)

systems. We find that the conduction matrix always has a huge null space with a large

weight of conduction eigenvalues is close to zero, and only handful of eigenvectors are

sufficient to determine the conductivity path for insulating/semi-conducting systems. On

the other hand, for metallic systems, there exists a spectral tail in the density of states and

more eigenvectors are needed to accurately obtain the conductivity path.

In the third chapter, we described atomistic modeling of one of the promising

CBRAM materials: copper doped aluminum oxide. In this work, we varied Cu

concentration in aluminum oxide and studied the variation in atomic properties. Our study

reveals that Cu atoms segregate and form cluster in such ionic host. From the electronic

structure of Al2O3:Cu models, we find that the mid-gap states within the band-gap of

a-Al2O3 correspond to Cu atoms and the gap fills uniformly as Cu concentration increases.

The Bader-charge analysis of the model with 20% Cu shows that majority of Cu atoms
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that form a cluster/chain like structure in the network carry net charge close to zero. We

also find a few Cu atoms in different charge states depending upon their local

environment. We reveal that the connectivity of Cu atoms plays crucial role in closing and

opening of HOMO-LUMO gap and have direct consequence in electronic conductivity.

Besides electronic structure, we studied lattice dynamics of the models by computing

vibrational DOS and vibrational IPR. We find that lower vibrational modes are mostly due

to Cu atoms. On the other hand, the higher vibrational modes are localized on O-atoms.

In the fourth chapter, we simulated a-SiOx (a promising resistive memory material)

with x = 1.7, 1.5 and 1.3. Our study shows that the material has complex structural

topology with decreasing x. In other words, there exists different structures other than

SiO4 and results in more O-deficient sites in the network. We find that the transport in

a-SiOx is mainly along the connected O-vacancy sites. We showed that one can switch the

conductivity path in this material by either shifting the Fermi-level or switching the

frequency. We therefore suggest that this material as a promising candidate for PUF

applications.

In the last chapter, we implemented a building-block method to model sodium

silicate glasses. The method is computationally less expensive and also provides the

correct local chemistry of these glasses. We computed pair distribution functions and

structure factors for the models and compared with experiments. The detailed analysis of

the structure of these glasses show that Si-O bond length increases with increase in

modifier (Na2O) content in the glass. From the bond angle distribution functions, we find

that Si-BO-Si angles become narrower and O-Si-O angles are shifted towards higher

angles with increasing modifer content. From the electronic structure, we find that the

localized defect states near the conduction tail region in the EDOS is due to under

coordinated Na atoms in the network. We studied thermal properties of the models by

calculating linear thermal expansion coefficients within quasi-harmonic approximation
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and compared with the experiments. Our results yield a good agreement with experiment

making the method a suitable tool to model such kinds of multi-component glasses.

6.1 Future Work

The SPC method is a general tool to explore materials. So far, we have applied it to

only few materials. In one of the ongoing projects, we are studying the effect of lattice

defects to conduction in metals. For this, we have considered vacancies and grain

boundaries in crystalline Al and Cu. Subplots a), b) and c) in Figure 6.1 show 2D

gray-scale images of SPC with a single vacancy in 500 atom cell of c-Al projected along

010, 110 and 111 crystallographic planes respectively. One can see that the spatial

distribution of conduction around the vacancy is slightly anisotropic and its reduction has

a characteristic range. To estimate the recovery length of conduction, we obtained the SPC

as a function of distance away from the vacancy along different directions (shown by

colored lines in subplots a), b) and c) in Figure 6.1) and are displayed as subplots d), e)

and f) in Figure 6.1. For most of the orientations, we find that the conduction is most

likely recovered within 4 Å from the vacancy. We also find that the recovery length can be

as long as up to 6 Å along the directions with (θ, φ) = (45◦, 125◦) and (45◦, 145◦) shown

by green and magenta colored lines in subplots d) and e) of Figure 6.1 respectively.

In the other project, we are collaborating withDr. Keerti Kappagantula and her

experimental group at Pacific Northwest National Laboratory to explore conduction

mechanisms in copper-Graphene composites. Experimental evidences have shown that the

conductivity of these materials can exceed good quality Cu itself [219, 220]. In this work,

we have obtained the initial representative models of copper-Graphene composite in two

different ways: first inserting a small bit of Graphene (up to 7 rings) into a single FCC Cu

and second placing an infinite Graphene sheet along selected grain boundaries. In the

former case, we are studying the structural topology and transport properties for these
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Figure 6.1: a), b), c): Conductivity projected on grids closest to crystallographic planes
010, 011 and 111 containing a vacancy as a 2D gray scale plot. The magnitude of
conductivity increases from white to black. The colored lines with small spheres are just
for guide to an eye representing different directions from the vacancy. d), e), f): Variation
of conductivity with distance from the grid closest to the vacancy along different directions
on planes 010, 011 and 111 respectively. θ and φ refer to the polar and azimuthal angles
respectively. Color of legends in d), e) and f) match with the lines shown in a), b) and c)
respectively.

models. We are also obtaining the temperature dependence of conductivity for these

models. In the latter case, we are exploring the contribution of Graphene to the

conductivity by varying copper-Graphene distance for a selected grain boundaries. Our

preliminary results show that the conductivity calculated in the direction normal to the

grain boundary improves with decreasing copper-Graphene distance from 3.2 Å to 2.2 Å.

We find that the contribution of carbon atoms in Graphene to the conduction increases

with decreasing the copper-Graphene distance.
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Amorphous carbon and battery materials are other promising candidates where the

method can be helpful. a-C can be designed with varying density that leads to different sp,

sp2 and sp3 configuration sites [85]. So, understanding conduction pathways for different

density of a-C would be important depending upon the desired application. Similarly,

identifying good/bad conduction sites in the electrolyte, electrode or electrolyte/electrode

interfaces in batteries would be helpful to optimize them or explore new materials for the

devices.

Despite the method being successful to compute conduction pathways, extracting

quantitative value of conductivity is not easy. The sparseness of the Kohn-Sham

eigenvalues due to finite size effects makes precise estimate challenging. To get a better

estimate, the smearing width of Gaussian distribution function has to be chosen carefully

based on the splitting of the Kohn-Sham eigenvalues. The other factor that affects the

conductivity is the fictitious temperature used in Fermi-Dirac distribution function to

smear the occupancy. Also, there are other factors that arise from the DFT calculations

rather than the method itself. For example, the static lattice computations excludes

electron-phonon coupling that affect electron transport in the materials. Also, the choice

of the exchange potential used during the static calculations plays role where one would

expect better results when used with hybrid functionals.
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[166] Fábián, M., Jóvári, P., Sváb, E., Mészáros, G., Proffen, T., and Veress, E. Journal of

Physics: Condensed Matter 19(33), 335209 (2007).

[167] Bauchy, M. The Journal of Chemical Physics 137(4), 044510 (2012).

[168] Li, X., Song, W., Yang, K., Krishnan, N. M. A., Wang, B., Smedskjaer, M. M.,
Mauro, J. C., Sant, G., Balonis, M., and Bauchy, M. The Journal of Chemical

Physics 147(7), 074501 (2017).

[169] Pandey, A., Biswas, P., and Drabold, D. A. Phys. Rev. B 92, 155205 (2015).

[170] Zhou, Q., Du, T., Guo, L., Smedskjaer, M. M., and Bauchy, M. Journal of

Non-Crystalline Solids 536, 120006 (2020).

[171] Du, J. and Cormack, A. Journal of Non-Crystalline Solids 349, 66 – 79 (2004).
Glass Science for High Technology. 16th University Conference on Glass Science.

[172] Du, J. and Corrales, L. R. Journal of Non-Crystalline Solids 352(30), 3255 – 3269
(2006).

[173] Pota, M., Pedone, A., Malavasi, G., Durante, C., Cocchi, M., and Menziani, M.
Computational Materials Science 47(3), 739 – 751 (2010).

[174] Deng, L., Urata, S., Takimoto, Y., Miyajima, T., Hahn, S. H., van Duin, A. C. T.,
and Du, J. Journal of the American Ceramic Society 103(3), 1600–1614 (2020).

[175] Baral, K. and Ching, W.-Y. Journal of Applied Physics 121(24), 245103 (2017).

[176] Jabraoui, H., Vaills, Y., Hasnaoui, A., Badawi, M., and Ouaskit, S. The Journal of

Physical Chemistry B 120(51), 13193–13205 (2016).

[177] Hung, P. K., Noritake, F., San, L. T., Van, T. B., and Vinh, L. T. The European

Physical Journal B: Condensed Matter and Complex Systems 90(10), 1–11 (2017).

[178] Cai, B., Zhang, X., and Drabold, D. A. Phys. Rev. B 83, 092202 (2011).



124

[179] Ouyang, L. and Ching, W. Y. Phys. Rev. B 54, R15594–R15597 (1996).

[180] Mazurin, O. and Gankin, Y. Journal of Non-Crystalline Solids 342(1), 166 – 169
(2004).

[181] Birch, F. Phys. Rev. 71, 809–824 (1947).

[182] Murnaghan, F. D. Proceedings of the National Academy of Sciences of the United

States of America 30(1), 244–7 (1944).

[183] Togo, A. and Tanaka, I. Scr. Mater. 108, 1–5 Nov (2015).

[184] Grimley, D. I., Wright, A. C., and Sinclair, R. N. Journal of Non-Crystalline Solids

119(1), 49 – 64 (1990).

[185] Wright, A. C., Clare, A. G., Bachra, B., Sinclair, R. N., Hannon, A. C., and Vessal,
B. Trans. Am. Crystallogr. Assoc 27, 239–254 (1991).

[186] Johnson, P. A., Wright, A. C., and Sinclair, R. N. Journal of Non-Crystalline Solids

58(1), 109 – 130 (1983).

[187] Yu, Y., Wang, B., Wang, M., Sant, G., and Bauchy, M. International Journal of

Applied Glass Science 8(3), 276–284 (2017).

[188] Nakano, A., Kalia, R. K., and Vashishta, P. Journal of Non-Crystalline Solids

171(2), 157–163 (1994).

[189] Du, J. and Corrales, L. R. Phys. Rev. B 72, 092201 (2005).

[190] Du, J. and Corrales, L. R. Journal of Non-Crystalline Solids 352(30), 3255–3269
(2006).

[191] Huang, C. and Cormack, A. N. The Journal of Chemical Physics 93(11),
8180–8186 (1990).

[192] Jen, J. and Kalinowski, M. Journal of Non-Crystalline Solids 38-39, 21–26 (1980).
XIIth International Congress on Glass.

[193] Sakka, S. and Matusita, K. Journal of Non-Crystalline Solids 22(1), 57 – 66 (1976).

[194] Misawa, M., Price, D., and Suzuki, K. Journal of Non-Crystalline Solids 37(1), 85
– 97 (1980).

[195] Yuan, X. and Cormack, A. Journal of Non-Crystalline Solids 283(1), 69 – 87
(2001).

[196] Soules, T. F. The Journal of Chemical Physics 71(11), 4570–4578 (1979).



125

[197] Vessal, B., Amini, M., and Catlow, C. Journal of Non-Crystalline Solids 159(1),
184 – 186 (1993).

[198] van Beest, B. W. H., Kramer, G. J., and van Santen, R. A. Phys. Rev. Lett. 64,
1955–1958 (1990).

[199] Ispas, S., Benoit, M., Jund, P., and Jullien, R. Phys. Rev. B 64, 214206 (2001).

[200] Murray, R., Song, L., and Ching, W. Journal of Non-Crystalline Solids 94(1),
133–143 (1987).

[201] Yuan, X. and Cormack, A. Journal of Non-Crystalline Solids 319(1), 31 – 43
(2003).

[202] Donadio, D., Bernasconi, M., and Tassone, F. Phys. Rev. B 70, 214205 (2004).

[203] Pettifer, R., Dupree, R., Farnan, I., and Sternberg, U. Journal of Non-Crystalline

Solids 106(1), 408–412 (1988).

[204] Mozzi, R. L. and Warren, B. E. Journal of Applied Crystallography 2(4), 164–172
(1969).

[205] Gibbs, G. V., Hamil, M. M., Louisnathan, S. J., Bartell, L. S., and Yow, H.
American Mineralogist 57, 1578–1613 (1972).

[206] Pota, M., Pedone, A., Malavasi, G., Durante, C., Cocchi, M., and Menziani, M.
Computational Materials Science 47(3), 739–751 (2010).

[207] Adelstein, N., Olson, C. S., and Lordi, V. Journal of Non-Crystalline Solids 430,
9–15 (2015).

[208] Murray, R. and Ching, W. Journal of Non-Crystalline Solids 94(1), 144 – 159
(1987).

[209] White, G., Birch, J., and Manghnani, M. H. Journal of Non-Crystalline Solids

23(1), 99 – 110 (1977).

[210] Zotov, N. Journal of Physics: Condensed Matter 14(45), 11655–11669 (2002).

[211] Mehl, M. J., Klein, B. M., and Papaconstantopoulos, D. A. Intermetallic

Compounds: Principles/ edited by J. H. Westbrook and R. L. Fleischer, volume 1.
Wiley, New York, (1994).

[212] Hill, R. Proceedings of the Physical Society. Section A 65(5), 349–354 (1952).

[213] Surhone, L., Timpledon, M., and Marseken, S. Woldemar Voigt. VDM Publishing,
(2010).



126

[214] Bansal, N. P. and Doremus, R. H. Handbook of glass properties. Academic press,
New York, (1986).

[215] Priven, A. I. Glass Technology 45(6), 244–254 (2004).

[216] Du, J. and Corrales, L. R. Journal of Non-Crystalline Solids 352(30), 3255 – 3269
(2006).

[217] Pedone, A., Malavasi, G., Menziani, M. C., Cormack, A. N., and Segre, U. The

Journal of Physical Chemistry B 110(24), 11780–11795 (2006).

[218] Pedone, A., Malavasi, G., Cormack, A. N., Segre, U., and Menziani, M. C.
Chemistry of Materials 19(13), 3144–3154 (2007).

[219] Li, W., Li, D., Fu, Q., and Pan, C. RSC Adv. 5, 80428–80433 (2015).

[220] Cao, M., Luo, Y., Xie, Y., Tan, Z., Fan, G., Guo, Q., Su, Y., Li, Z., and Xiong, D.-B.
Advanced Materials Interfaces 6(13), 1900468 (2019).



!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!

Thesis and Dissertation Services 


	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Background
	Theoretical Study of Amorphous Solids
	Commonly used Descriptors of Amorphous Solids
	Dissertation Outline

	Real-Space Projection of Electronic Conductivity
	Introduction
	Kubo Formula
	Computing Spatial Information about Transport
	Theory
	Computational Details
	Results and Discussion
	Conclusions

	Structural Origins of Electronic Conduction in Amorphous Copper-doped Alumina
	Introduction
	Computations
	Results and Discussion
	Conclusions

	Electronic Conduction in Amorphous Silicon Suboxides
	Introduction
	Computational Details
	Results and Discussion
	Conclusions

	Atomic Properties of Sodium Silicate Glasses using Building-Block Method
	Introduction 
	 Methodology and Computational Details
	 Results and Discussion
	Conclusions

	Conclusions
	Future Work

	References



