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Preface

Semiconductor materials emerged after World War II and their impact on
our lives has grown ever since. Semiconductor technology is, to a large ex-
tent, the art of defect engineering. Today, defect control is often done at the
atomic level. Theory has played a critical role in understanding, and therefore
controlling, the properties of defects.

Conversely, the careful experimental studies of defects in Ge, Si, then
many other semiconductor materials have generated a huge database of mea-
sured quantities that allowed theorists to test their methods and approxima-
tions.

Dramatic improvement in methodology, especially density-functional the-
ory, along with inexpensive and fast computers, has impedance matched the
experimentalist and theorist in ways unanticipated before the late 1980s. As
a result, the theory of defects in semiconductors has become quantitative in
many respects. Today, more powerful theoretical approaches are still being
developed. More importantly perhaps, the tools developed to study defects
in semiconductors are now being adapted to approach many new challenges
associated with nanoscience, a very long list that includes quantum dots,
buckyballs and buckytubes, spintronics, interfaces, and many others.

Despite the importance of the field, there have been no modern attempts
to treat the computational science of the field in a coherent manner within a
single treatise. This is the aim of the present volume.

This book brings together several leaders in theoretical research on defects
in semiconductors. Although the treatment is tutorial, the level at which the
various applications are discussed is today’s state-of-the-art in the field.

The book begins with a “big picture” view from Manuel Cardona, and
continues with a brief summary of the historical development of the subject
in Chap. 1. This includes an overview of today’s most commonly used method
to describe defects.

We have attempted to create a balanced and tutorial treatment of the ba-
sic theory and methodology in Chaps. 3–6. They include detailed discussions
of the approximations involved, the calculation of electrically active levels,
and extensions of the theory to finite temperatures. Two emerging electronic
structure methodologies of special importance to the field are discussed in
Chaps. 7 (quantum Monte-Carlo) and 8 (the GW method). Then come two
chapters on molecular dynamics (MD). In Chap. 9, a combination of high-
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level and approximate MD is developed, with applications to the dynamics
of extended defect. Chapter 10 deals with semiempirical treatments of mi-
crostructures, including issues such as wafer bonding. The book concludes
with studies of defects and their role in the photoresponse of topologically
disordered (amorphous) systems.

The intended audience for the book is graduate students as well as ad-
vanced researchers in physics, chemistry, materials science, and engineering.
We have sought to provide self-contained descriptions of the work, with de-
tailed references available when needed. The book may be used as a text in
a practical graduate course designed to prepare students for research work
on defects in semiconductors or first-principles theory in materials science
in general. The book also serves as a reference for the active theoretical re-
searcher, or as a convenient guide for the experimentalist to keep tabs on
their theorist colleagues.

It was a genuine pleasure to edit this volume. We are delighted with the
contributions provided in a timely fashion by so many busy and accomplished
people. We warmly thank all the contributors and hope to have the oppor-
tunity to share some nice wine(s) with all of them soon. After all,

When Ptolemy, now long ago,
Believed the Earth stood still,
He never would have blundered so
Had he but drunk his fill.
He’d then have felt it circulate
And would have learnt to say:
The true way to investigate
Is to drink a bottle a day.

(author unknown)
published in Augustus de Morgan’s A Budget of Paradoxes, (1866).

Athens, Ohio, David A. Drabold
Lubbock, Texas Stefan K. Estreicher
February 2006
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Preface

Semiconductor materials emerged after World War II and their impact on
our lives has grown ever since. Semiconductor technology is, to a large ex-
tent, the art of defect engineering. Today, defect control is often done at the
atomic level. Theory has played a critical role in understanding, and therefore
controlling, the properties of defects.

Conversely, the careful experimental studies of defects in Ge, Si, then
many other semiconductor materials have generated a huge database of mea-
sured quantities that allowed theorists to test their methods and approxima-
tions.

Dramatic improvement in methodology, especially density-functional the-
ory, along with inexpensive and fast computers, has impedance matched the
experimentalist and theorist in ways unanticipated before the late 1980s. As
a result, the theory of defects in semiconductors has become quantitative in
many respects. Today, more powerful theoretical approaches are still being
developed. More importantly perhaps, the tools developed to study defects
in semiconductors are now being adapted to approach many new challenges
associated with nanoscience, a very long list that includes quantum dots,
buckyballs and buckytubes, spintronics, interfaces, and many others.

Despite the importance of the field, there have been no modern attempts
to treat the computational science of the field in a coherent manner within a
single treatise. This is the aim of the present volume.

This book brings together several leaders in theoretical research on defects
in semiconductors. Although the treatment is tutorial, the level at which the
various applications are discussed is today’s state-of-the-art in the field.

The book begins with a “big picture” view from Manuel Cardona, and
continues with a brief summary of the historical development of the subject
in Chap. 1. This includes an overview of today’s most commonly used method
to describe defects.

We have attempted to create a balanced and tutorial treatment of the ba-
sic theory and methodology in Chaps. 3–6. They include detailed discussions
of the approximations involved, the calculation of electrically active levels,
and extensions of the theory to finite temperatures. Two emerging electronic
structure methodologies of special importance to the field are discussed in
Chaps. 7 (quantum Monte-Carlo) and 8 (the GW method). Then come two
chapters on molecular dynamics (MD). In Chap. 9, a combination of high-
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level and approximate MD is developed, with applications to the dynamics
of extended defect. Chapter 10 deals with semiempirical treatments of mi-
crostructures, including issues such as wafer bonding. The book concludes
with studies of defects and their role in the photoresponse of topologically
disordered (amorphous) systems.

The intended audience for the book is graduate students as well as ad-
vanced researchers in physics, chemistry, materials science, and engineering.
We have sought to provide self-contained descriptions of the work, with de-
tailed references available when needed. The book may be used as a text in
a practical graduate course designed to prepare students for research work
on defects in semiconductors or first-principles theory in materials science
in general. The book also serves as a reference for the active theoretical re-
searcher, or as a convenient guide for the experimentalist to keep tabs on
their theorist colleagues.

It was a genuine pleasure to edit this volume. We are delighted with the
contributions provided in a timely fashion by so many busy and accomplished
people. We warmly thank all the contributors and hope to have the oppor-
tunity to share some nice wine(s) with all of them soon. After all,

When Ptolemy, now long ago,
Believed the Earth stood still,
He never would have blundered so
Had he but drunk his fill.
He’d then have felt it circulate
And would have learnt to say:
The true way to investigate
Is to drink a bottle a day.

(author unknown)
published in Augustus de Morgan’s A Budget of Paradoxes, (1866).

Athens, Ohio, David A. Drabold
Lubbock, Texas Stefan K. Estreicher
February 2006
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Preface

Semiconductor materials emerged after World War II and their impact on
our lives has grown ever since. Semiconductor technology is, to a large ex-
tent, the art of defect engineering. Today, defect control is often done at the
atomic level. Theory has played a critical role in understanding, and therefore
controlling, the properties of defects.

Conversely, the careful experimental studies of defects in Ge, Si, then
many other semiconductor materials have generated a huge database of mea-
sured quantities that allowed theorists to test their methods and approxima-
tions.

Dramatic improvement in methodology, especially density-functional the-
ory, along with inexpensive and fast computers, has impedance matched the
experimentalist and theorist in ways unanticipated before the late 1980s. As
a result, the theory of defects in semiconductors has become quantitative in
many respects. Today, more powerful theoretical approaches are still being
developed. More importantly perhaps, the tools developed to study defects
in semiconductors are now being adapted to approach many new challenges
associated with nanoscience, a very long list that includes quantum dots,
buckyballs and buckytubes, spintronics, interfaces, and many others.

Despite the importance of the field, there have been no modern attempts
to treat the computational science of the field in a coherent manner within a
single treatise. This is the aim of the present volume.

This book brings together several leaders in theoretical research on defects
in semiconductors. Although the treatment is tutorial, the level at which the
various applications are discussed is today’s state-of-the-art in the field.

The book begins with a “big picture” view from Manuel Cardona, and
continues with a brief summary of the historical development of the subject
in Chap. 1. This includes an overview of today’s most commonly used method
to describe defects.

We have attempted to create a balanced and tutorial treatment of the ba-
sic theory and methodology in Chaps. 3–6. They include detailed discussions
of the approximations involved, the calculation of electrically active levels,
and extensions of the theory to finite temperatures. Two emerging electronic
structure methodologies of special importance to the field are discussed in
Chaps. 7 (quantum Monte-Carlo) and 8 (the GW method). Then come two
chapters on molecular dynamics (MD). In Chap. 9, a combination of high-
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level and approximate MD is developed, with applications to the dynamics
of extended defect. Chapter 10 deals with semiempirical treatments of mi-
crostructures, including issues such as wafer bonding. The book concludes
with studies of defects and their role in the photoresponse of topologically
disordered (amorphous) systems.

The intended audience for the book is graduate students as well as ad-
vanced researchers in physics, chemistry, materials science, and engineering.
We have sought to provide self-contained descriptions of the work, with de-
tailed references available when needed. The book may be used as a text in
a practical graduate course designed to prepare students for research work
on defects in semiconductors or first-principles theory in materials science
in general. The book also serves as a reference for the active theoretical re-
searcher, or as a convenient guide for the experimentalist to keep tabs on
their theorist colleagues.

It was a genuine pleasure to edit this volume. We are delighted with the
contributions provided in a timely fashion by so many busy and accomplished
people. We warmly thank all the contributors and hope to have the oppor-
tunity to share some nice wine(s) with all of them soon. After all,

When Ptolemy, now long ago,
Believed the Earth stood still,
He never would have blundered so
Had he but drunk his fill.
He’d then have felt it circulate
And would have learnt to say:
The true way to investigate
Is to drink a bottle a day.

(author unknown)
published in Augustus de Morgan’s A Budget of Paradoxes, (1866).

Athens, Ohio, David A. Drabold
Lubbock, Texas Stefan K. Estreicher
February 2006
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This book is dedicated to Manuel Cardona, who has done so
much for the field of defects in semiconductors over the past

decades, and convinced so many theorists to calculate beyond
what they thought possible.





Preface

Semiconductor materials emerged after World War II and their impact on
our lives has grown ever since. Semiconductor technology is, to a large ex-
tent, the art of defect engineering. Today, defect control is often done at the
atomic level. Theory has played a critical role in understanding, and therefore
controlling, the properties of defects.

Conversely, the careful experimental studies of defects in Ge, Si, then
many other semiconductor materials have generated a huge database of mea-
sured quantities that allowed theorists to test their methods and approxima-
tions.

Dramatic improvement in methodology, especially density-functional the-
ory, along with inexpensive and fast computers, has impedance matched the
experimentalist and theorist in ways unanticipated before the late 1980s. As
a result, the theory of defects in semiconductors has become quantitative in
many respects. Today, more powerful theoretical approaches are still being
developed. More importantly perhaps, the tools developed to study defects
in semiconductors are now being adapted to approach many new challenges
associated with nanoscience, a very long list that includes quantum dots,
buckyballs and buckytubes, spintronics, interfaces, and many others.

Despite the importance of the field, there have been no modern attempts
to treat the computational science of the field in a coherent manner within a
single treatise. This is the aim of the present volume.

This book brings together several leaders in theoretical research on defects
in semiconductors. Although the treatment is tutorial, the level at which the
various applications are discussed is today’s state-of-the-art in the field.

The book begins with a “big picture” view from Manuel Cardona, and
continues with a brief summary of the historical development of the subject
in Chap. 1. This includes an overview of today’s most commonly used method
to describe defects.

We have attempted to create a balanced and tutorial treatment of the ba-
sic theory and methodology in Chaps. 3–6. They include detailed discussions
of the approximations involved, the calculation of electrically active levels,
and extensions of the theory to finite temperatures. Two emerging electronic
structure methodologies of special importance to the field are discussed in
Chaps. 7 (quantum Monte-Carlo) and 8 (the GW method). Then come two
chapters on molecular dynamics (MD). In Chap. 9, a combination of high-
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level and approximate MD is developed, with applications to the dynamics
of extended defect. Chapter 10 deals with semiempirical treatments of mi-
crostructures, including issues such as wafer bonding. The book concludes
with studies of defects and their role in the photoresponse of topologically
disordered (amorphous) systems.

The intended audience for the book is graduate students as well as ad-
vanced researchers in physics, chemistry, materials science, and engineering.
We have sought to provide self-contained descriptions of the work, with de-
tailed references available when needed. The book may be used as a text in
a practical graduate course designed to prepare students for research work
on defects in semiconductors or first-principles theory in materials science
in general. The book also serves as a reference for the active theoretical re-
searcher, or as a convenient guide for the experimentalist to keep tabs on
their theorist colleagues.

It was a genuine pleasure to edit this volume. We are delighted with the
contributions provided in a timely fashion by so many busy and accomplished
people. We warmly thank all the contributors and hope to have the oppor-
tunity to share some nice wine(s) with all of them soon. After all,

When Ptolemy, now long ago,
Believed the Earth stood still,
He never would have blundered so
Had he but drunk his fill.
He’d then have felt it circulate
And would have learnt to say:
The true way to investigate
Is to drink a bottle a day.

(author unknown)
published in Augustus de Morgan’s A Budget of Paradoxes, (1866).

Athens, Ohio, David A. Drabold
Lubbock, Texas Stefan K. Estreicher
February 2006



Foreword

Manuel Cardona

Max-Planck-Institut für Festkörperforschung,
70569 Stuttgart, Germany
M.Cardona@fkf.mpg.de

Man sollte sich mit Halbleitern nicht beschäftigen,
das sind Dreckeffekte –
wer weiss, ob sie wirklich existieren.
Wolfgang Pauli, 1931

1 Early History and Contents of the Present Volume

This volume contains a comprehensive description of developments in the
field of defects in semiconductors that have taken place during the past two
decades. Although the field of defects in semiconductors is at least 60 years
old, it had to wait, in order to reach maturity, for the colossal increase in
computer power that has more recently taken place, following the predictions
of Moore’s law [1]. The ingenuity of computational theorists in developing
algorithms to reduce the intractable many-body problem of defect and host
to one that can be handled with existing and affordable computer power has
also played a significant role: much of it is described in the present volume. As
computational power grew, the simplifying assumptions of these algorithms,
some of them hard to justify, were reduced. The predictive accuracy of the
new calculations then took a great leap forward.

In the early days, the real-space structure of the defect had to be postu-
lated in order to get on with the theory and self-consistency of the electronic
calculations was beyond reach. During the past two decades emphasis has
been placed in calculating the real-space structure of defect plus host and
achieving self-consistency in the electronic calculations. The results of these
new calculations have been a great help to experimentalists groping to in-
terpret complicated data related to defects. I have added up the number of
references in the various chapters of the book corresponding to years before
1990 and found that they amount to only 25% of the total number of ref-
erences. Many of the remaining 75% of references are actually even more
recent, having been published after the year 2000. Thus one can say that the
contents of the volume represent the state-of-the-art in the field. Whereas
most of the chapters are concerned with defects in crystalline semiconduc-
tors, Chaps. 10 and 11 deal with defects in amorphous materials, in particular
amorphous silicon, a field about which much less information is available.
D. A. Drabold, S. K. Estreicher (Eds.): Theory of Defects in Semiconductors,
Topics Appl. Physics 104, 1–10 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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The three aspects of the defect problem, real-space structure, electronic
structure and vibrational properties are discussed in the various Chapters
of the book, mainly from the theoretical point of view. Defects break the
translational symmetry of a crystal, a property that already made possible
rather realistic calculations of the host materials half a century ago. Small
crystals and clusters with a relatively small number of atoms (including im-
purities and other defects), have become useful to circumvent, in theoretical
calculations, the lack of translational symmetry in the presence of defects
or in amorphous materials. The main source of uncertainty in the state-of-
the-art calculations remains the small number of cluster atoms imposed by
the computational strictures. This number is often smaller than that corre-
sponding to real-world samples, even including nanostructures. Clusters with
a number of atoms that can be accommodated by extant computers are then
repeated periodically so as to obtain a crystal lattice, with a supercell and
a mini-Brillouin zone. Although these lattices do not exactly correspond to
physical reality, they enable the use of k-space techniques and are instrumen-
tal in keeping computer power to available and affordable levels. Another
widespread approach is to treat the cluster in real space after passivating the
fictitious surface with hydrogen atoms or the like. When using these methods
it is good practice to check convergence with respect to the cluster size by
performing similar calculations for at least two sets of clusters with numbers
of atoms differing, say, by a factor of two.

The epigraph above, attributed to Wolfgang Pauli, translates as One
should not keep busy with semiconductors, they are dirt effects – Who knows
whether they really exist. The 24 authors of this book, like many tens of thou-
sands of other physicists and engineers, have fortunately not heeded Pauli’s
advice (given in 1931, 14 years before he received the Nobel Prize). Had they
done so, not only would the world have missed a revolutionary and nowa-
days ubiquitous technology, but basic physical science would have lost some
of the most fruitful, beautiful and successful applications of quantum me-
chanics. “Dreckeffekte” is often imprecisely translated as effects of dirt, i.e.,
as effects of impurities. However, effects of structural defects would also fall
into the category of Dreckeffekte. In Pauli’s days applications of semiconduc-
tors, including variation of resistivity through doping leading to photocells
and rectifiers, had been arrived at purely empirically, through some sort of
trial and error alchemy. I remember as a child using galena (PbS) detectors
in crystal radio sets. I had lots of galena from various sources: some of it
worked, some not but nobody seemed to know why. Sixty years later, only a
few months ago, I was measuring PbS samples in order to characterize the
number of carriers (of nonstoichiometric origin involving vacancies) and their
type (n or p) so as to wrap up original research on this canonical mater-
ial [2]. Today, GOOGLE lists 860 000 entries under the heading “defects in
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semiconductors”. The Web of Science (WoS) lists 3736 mentions in the title
and abstract of source articles1.

The modern science of defects in semiconductors is closely tied to the
invention of the transistor at Bell Laboratories in 1948 (by Bardeen, Shock-
ley and Brattain [3], Physics Nobel laureates for 1956). Early developments
took place mainly in the United States, in particular at Bell Laboratories,
the Lincoln Lab (MIT) and Purdue University. Karl Lark-Horovitz, an Aus-
trian immigrant, started at Purdue a program to investigate the growth and
doping (n- and p-type) of germanium and all sorts of electrical and optical
properties of this element in crystalline form [4]. The initial motivation was
the development of germanium detectors for radar applications. During the
years 1928 till his untimely death in 1958 he built up the Physics Department
at Purdue into the foremost center of academic semiconductor research. Work
similar to that at Purdue for germanium was carried out at Bell Labs, also as
a spinoff of the development of silicon rectifiers during World War II. At Bell,
Scaff et al. [5] discovered that crystalline silicon could be made n- or p-type
by doping with atoms of the fifth (P, As, Sb) or the third (B, Al, Ga, In)
column of the periodic table, respectively. n-type dopants were called donors,
p-type ones acceptors. Pearson and Bardeen performed a rather extensive
investigation of the electrical properties of intrinsic and doped silicon [6].
These authors proposed the simplest possible expression for estimating the
binding energy of the so-called hydrogenic energy levels of those impurities:
The ionization energy of the hydrogen atom (13.6 eV) had to be divided by
the square of the static dielectric constant ε (ε = 12 for silicon) and multiplied
by an effective mass (typical values m∗ ≈ 0.1) that simulated the presence of
a crystalline potential. According to this Ansatz, all donors (acceptors) would
have the same binding energy, a fact that we now know is only approximately
true (see Fig. 5 of Chap. 3 for diamond).

The simple hydrogenic Ansatz applies to semiconductors with isotropic
extrema, so that a unique effective mass can be defined (e.g., n-type GaAs).
It does not apply to electrons in either Ge or Si because the conduction-band
extrema are strongly anisotropic. The hydrogen-like Schrödinger equation
can, however, be modified so as to include anisotropic masses, as apply to
germanium and silicon [7]. The maximum of the valence bands of most di-
amond and zincblende-like semiconductors occurs at or very close to k = 0.
It is fourfold degenerate in the presence of spin-orbit interaction and sixfold
if such interaction is neglected [8]. The simple Schrödinger equation of the
hydrogen atom must be replaced by a set of four coupled equations (with
spin-orbit coupling) with effective-mass parameters to be empirically deter-
mined [9]. Extensive applications of Kohn’s prescriptions were performed by
several Italian theorists [10].

1 A source article is one published in a Source Journal as defined by the ISI-
Thomson Scientific. There are about 6000 such journals, including all branches
of science.
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In the shallow (hydrogenic) level calculations based on effective-mass
Hamiltonians the calculated impurity eigenvalues are automatically referred
to the corresponding band edges, thus obviating the need for using a marker,
of the type discussed in Chap. 3 of this book. This marker was introduced in
order to avoid errors inherent to the “first-principles” calculations, such as
those related to the so-called “gap problem” found when using local-density
functionals to represent many-body exchange and correlation. For a way to
palliate this problem using the so-called GW approximation see Chap. 7,
where defects at surfaces are treated.

We have discussed so far the electronic levels of shallow substitutional
impurities. In this volume a number of other defects, such as vacancies, in-
terstitial impurities, clusters, etc., will be encountered. Energy levels related
to structural defects were first discussed by Lark-Horovitz and coworkers [11].
These levels were produced by irradiation with either deuterons, alpha parti-
cles or neutrons. After irradiation, the material became more p-type. It was
thus postulated that the defect levels introduced by the bombardment were
acceptors (vacancies?).

It was also discovered by Lark-Horovitz that neutron bombardment, fol-
lowed by annealing in order to reduce structural damage, could be used to
create electrically active impurities by nuclear transmutation [12]. The small
amount of the 30Si isotope (≈ 4 %) present in natural Si converts, by neutron
capture, into radioactive 31Si, which decays through β-emission into stable
31P, a donor. This technique is still commercially used nowadays for produc-
ing very uniform doping concentrations.

Since Kohn–Luttinger perturbation theory predicts reasonably well the
electronic levels of shallow impurities (except for the so-called central-cell
corrections [13]) this book covers mainly deep impurity levels that not only
are difficult to calculate for a given real-space structure but also require
relaxation of the unperturbed host crystal around the defect. Among these
deep levels, native defects such as vacancies and self-interstitials are profusely
discussed. Most of these levels are related to transition-metal atoms, such as
Mn, Cu, and Au (I call Au and Cu transition metals for obvious reasons). The
solubility of these transition-metal impurities is usually rather low (less than
1015 cm−3. Exceptions: Cd1 − xMnxTe and related alloys). They can go into
the host lattice either as substitutional or as interstitial atoms,2 a point that
can be clarified with EPR and also with ab initio total-energy calculations.
These dopants were used in early applications in order to reduced the residual
conductivity due to shallow levels (because of the fact that transition-metal
impurities have levels close to the middle of the gap). One can even nowadays
find in the market semi-insulating GaAs obtained by doping with chromium.
2 The reader who tries to do a literature search for interstitial gold may be sur-

prised by the existence of homonyms: Interstitial gold is important in the treat-
ment of prostate cancer. It has, of course, nothing to do with our interstitial
gold. See [14].
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I remember having obtained in 1957 semi-insulating germanium and silicon
(doped with either Mn or Au) with carrier concentrations lower than intrinsic
(this makes a good exam question!). They were used for measurements of
the low-frequency dielectric constants of these materials, in particular vs.
temperature and pressure [15] while I was working at Harvard on my PhD
under W. Paul.

Rough estimates of the positions of deep levels of many impurity elements
in the gap of group IV and III–V semiconductors were obtained by Hjalmar-
son et al. [8, 16] using Green’s function methods. In the case of GaAs and
related materials, two kinds of defect complexes, involving structural changes
and metastability have received a lot of attention because of technological im-
plications: the so-called EL2 and DX centers. Searching the Web of Science
for EL2 one finds 1055 mentions in abstracts and titles of source articles. Like-
wise 695 mentions are found for the DX centers. Chadi and coworkers have
obtained theoretical predictions for the structure of these centers and their
metastability [17, 18]. Although these theoretical models explain a number
of observations related to these centers, there is not yet a general consensus
concerning their structures.

An aspect of the defect problem that has not been dealt with explicitly
in this volume is the errors introduced by using nonrelativistic Schrödinger
equations, in particular the neglect of mass–velocity corrections and spin–
orbit interaction (the latter, however, is explicitly included in the Kohn–
Luttinger Hamiltonian, either in its 4× 4 or its 6× 6 version). Discrepancies
between calculated and measured gaps are attributed to the “gap problem”
inherent in the local-density approximation (LDA). However, already for rel-
atively heavy atoms (Ge, GaAs) the mass–velocity correction decreases the
s–like conduction levels and, together with the LDA gap problem. converts
the semiconductor into a metal in the case of germanium. For GaAs it is
stated several times in this volume that the LDA calculated gap is about half
the experimental one. This is for a nonrelativistic Hamiltonian. Even a scalar
relativistic one reduces the gap even further, to about 0.2 eV (experimental
gap: 1.52 eV at 4 K) [19]. This indicates that the gap problem is more serious
than previously thought on the basis of nonrelativistic LDA calculations.

Another relativistic effect is the spin-orbit coupling. For moderately heavy
atoms such as Ge, Ga and As the spin-orbit splitting at the top of the valence
bands (≈ 0.3 eV) is much larger than the binding energy of hydrogenic accep-
tors. Hence we can calculate the binding energies of the latter by solving the
decoupled 4×4 (J = 3/2) and 2×2 (J = 1/2) effective-mass equations. This
leads to two series of acceptor levels separated by a “spin-orbit” splitting ba-
sically equal to that of the band-edge states. In the case of silicon, however,
the spin-orbit splitting at k = 0 (∆ = 0.044 eV) is of the order of shallow-
impurity binding energies. The impurity potential thus couples the J = 3/2
and J = 1/2 bands and the apparent spin-orbit splitting of the correspond-
ing impurity series becomes smaller than that at the band edges [20,21]. The
difference between band-edge spin-orbit splitting (∆ = 0.014 eV) and that of
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the acceptor levels becomes even larger in diamond. Using a simple Green’s
functions technique and a Slater–Koster δ-function potential, the impurity-
level splittings have been calculated and found to be indeed much smaller
than ∆ = 0.014 eV. This splitting depends strongly on the binding energy of
the impurity.

Another aspect that has hardly been treated in the present volume (see,
however, Chap. 10 for amorphous silicon) is the temperature dependence of
the electronic energy levels that is induced by the electron–phonon inter-
action. Whenever this question appears in this volume, it is assumed that
we are in the classical high-temperature limit, in which the corresponding
renormalization of electronic gaps and states is proportional to temperature.
At low temperatures, the electron–phonon interaction induces a zero-point
renormalization of the electronic states that can be estimated from the mea-
sured temperature dependence. It is also possible to determine the zero-point
renormalization of gaps by measuring samples with different isotopic compo-
sitions. The interested reader should consult the review by Cardona and
Thewalt [22].

When an atom of the host lattice of a semiconductor has several stable
isotopes (e.g., diamond, Si, Ge, Ga, Zn samples grown with natural material
lose, strictly speaking, their translational symmetry. In the past 15 years a
large number of semiconductors have been grown using isotopically pure ele-
ments (which have become available in macroscopic and affordable quantities
after the fall of the Iron Curtain). A different isotope added to an isotopically
pure sample can thus be considered as an impurity, probably the simplest kind
of defect possible: Only the atomic mass of such an impurity differs from that
of the host, the electronic properties remain nearly the same.3 The main ef-
fect of isotope mass substitution is found in the vibrational frequencies of
host as well as local vibrational modes: such frequencies are inversely pro-
portional to the square root of the vibrating mass (see Chap. 4). Although
this effect sounds rather trivial it often induces changes in phonon widths
and in the zero-point anharmonic renormalizations (see [22]) that in some
cases can be rather drastic and unexpected [23]. The structural relaxation
around isotopic impurities is rather small. The main such effect corresponds
to an increase of the lattice constant with increasing isotopic mass, about
0.015% between 12C and 13C diamond. Its origin lies in the change in the
zero-point renormalization of the lattice constant: ab initio calculations are
available [24].

The third class of effects of the isotopic impurities refers to electronic
states and energy gaps and their renormalization on account of the electron–
phonon interaction. The zero-point renormalizations also vary as the inverse
square root of the relevant isotopic mass. By measuring a gap energy at
low temperatures for samples with two different isotopic masses, one can
3 Except for the electron–phonon renormalization of the electronic states and gaps

that is usually rather small. See [22].
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extrapolate to infinite mass and thus determine the unrenormalized value of
the gap. Renormalizations of around 60 meV have been found for Ge and
Si. For diamond, however, this renormalization seems to be much larger [25],
around 400 meV.4 This large renormalization is a signature of strong electron–
phonon interaction that seems to be responsible for the superconductivity
recently observed in heavily boron doped (p-type) diamond (Tc higher than
10 K) [26,27]. Ab initio calculations of the electronic and vibronic structure of
heavily boron doped diamond have been performed and used for estimating
the critical temperature Tc [28].

2 Bibliometric Studies

In the previous section I have already discussed the number of times certain
topics appear in titles, keywords and abstracts in source journals (about
6000 publications chosen by the ISI among ≈ 100 000, as those that contribute
significantly to the progress of science). While titles go back to the present
starting date of the source journal selection (the year 1900), abstracts and
keywords have only been collected since 1990. In the Web of Science (WoS)
one can completely eliminate the latter in order to avoid distortions but, for
simplicity, I kept them in the qualitative survey presented here.

In this section, a more detailed bibliometric analysis will be performed
using the WoS that draws on the citation index as the primary database.
In order to get a feeling for the standing of the various contributors to this
volume, we could simply perform a citations count (it can be done relatively
easily within the WoS using the cited reference mode). However, a more tale-
telling index has been recently suggested by Hirsch [29], the so-called h-index.
This index is easily obtained for anyone with access to the WoS going back
to the first publication of the authors under scrutiny (1974 for Nieminen and
Shaw). How far back your access to the WoS goes depends on how much your
institution is willing to pay to ISI-Thomson Scientific. The h-index is obtained
by using the general search mode of the WoS and ordering the results of the
search for a given individual according to the number of citations (there is
a function key to order the author’s contributions from most cited to less
cited). You then go down the list till the order number of a paper equals its
number of citations (you may have to take one more or less citation if equality
does not exist). The number so obtained is the h-index. It rewards more
continued, sustained well-cited publications rather than only a couple with a
colossal number (such as those that deserve the Nobel Prize). Watch out for
possible homonyms although, on the average, they appear seldom. They can
be purged by hand if the number of terms is not too high. I had problems
with homonyms only for five out of the 24 (excluding myself) contributors

4 Theorists: beware (and be aware) of this large renormalization when comparing
your fancy GW calculations of gaps with experimental data.
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to this volume (Antonelli, Colombo, Hernández, Sanati and Shaw). I simply
excluded them from the count.

The average h-factor of the remaining 19 authors is h = 20. Hirsch men-
tions in [29] that recently elected fellows of the American Physical Society
have typically h ≈ 15–20. Advancement of a physicist to full professor at a
reputable US university corresponds to h ≥ 18. The high average h already
reveals the high standing of the authors of this book. In several cases, the
authors involve a senior partner (h ≥ 20, Chaps. 3, 4, 5, 7, 8, 10 and 11)
and a junior colleague. I welcome this decision. It is a good procedure for
introducing junior researchers to the intricacies and ordeals involved in writ-
ing a review article of such extent. In this connection, I should mention that
the h-index is roughly proportional to the scientific age (counted from the
first publication or the date of the PhD thesis). The values of h given above
for faculty and NAS membership are appropriate to physicists and chemists.
Biomedical scientists often have, everything else being equal, twice as large
h-indices, whereas engineers and mathematicians (especially the latter) have
much lower ones.

After having discussed the average h-index of our contributors, I would
like to mention the range they cover without mentioning specific names.5 The
h-indices of our contributors cover the range 6 ≤ h ≤ 64. Four very junior
authors who have not yet had a chance of being cited have been omitted
(one could have set h = 0 in their case). Hirsch mentions in his seminal
article [29] that election to the National Academy of Sciences of the US
is usually associated with h = 45. We therefore must have some potential
academicians among our contributors.

Because of the ease in the use of the h-algorithm just described and its
usefulness to evaluate the “impact” of a scientist’s career, bibliometrists have
been looking for other applications of the technique. Instead of people one
can apply it to journals (provided they are not too large in terms of published
articles), institutions, countries, etc. One has to keep in mind that the result-
ing h-number always reverts to an analysis of the citations of individuals that
are attached to the investigated items (e.g., countries, institutions, etc.). One
can also use the algorithm to survey the importance of keywords or title sub-
jects. The present volume has 11 chapters and this gives it a certain (albeit
small) statistical value to be of use in such a survey. We thus attach to each
chapter title a couple of keywords and evaluate the corresponding h-index
entering these under “topic” in the general search mode of the WoS. In the
table below we list these words, the number of items we find for each set of
them and the corresponding h-index. There is considerable arbitrariness in
the procedure to choose the keywords but we must keep in mind that these
applications are just exploratory and at their very beginning.
5 Mentioning the h-indices of the authors, one by one, may be invidious. The

interested reader with access to the WoS can do it by following the prescription
given above.
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We display in Table 1 the keywords we have assigned to the eleven chap-
ters, the number of terms citing them and the corresponding h-index that
weights them according to the number of times each citing term is cited. One
can draw a number of conclusions from this table. Particularly interesting are
the low values of n and h for empirical molecular dynamics, which probably
signals the turn towards ab initio techniques. Amorphous semiconductors, in-
cluding defect and the metastabilities induced by illumination plus possibly
their applications to photovoltaics are responsible for the large values of n
and h.

Table 1. Keywords assigned (somewhat arbitrarily) to each of the 11 chapters in
the book together with the corresponding number n of source articles citing them
in abstract, keywords or title. Also, Hirsch number h that can be assigned to each
of the chapters according to the keywords

Chapter Keyword (topic in WoS) n h

1 defects and semiconductors 3735 76
2 supercell calculations 165 27
3 Gaussian orbitals 190 27
4 dynamical matrix 231 26
5 free energy and defect 494 36
6 quantum Monte Carlo 2551 71
7 point defect and surface 426 38
8 defect and molecular dynamics 2023 67
9 empirical molecular dynamics 23 7
10 defect and amorphous 4492 77
11 light and amorphous 5747 87
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Abstract. This introductory chapter begins with a summary of the developments
of the theory of defects in semiconductors in the past 50 years. This is followed by
an overview of single-particle methods and today’s first-principles approach, rooted
in density-functional theory. Much more detail about this theory and the approxi-
mations it involves is found in subsequent chapters. The last section discusses the
various contributions to this book.

1 Introduction

The voluntary or accidental manipulation of the properties of materials by
including defects has been performed for thousands of years. The most an-
cient example we can think of is well over 5000 years old. It happened when
someone realized that adding trace amounts of tin to copper lowers the melt-
ing temperature, increases the viscosity of the melt, and results in a metal
considerably harder than pure copper: bronze. This allowed the manufacture
of a variety of tools, shields and weapons. Not long afterwards, the early
metallurgists realized that sand mixed with a metal is relatively easy to melt
and produces glass. The Ancient Egyptians discovered that glass beads of
various brilliant colors can be obtained by adding trace amounts of specific
transition metals, such as gold for red or cobalt for blue [1].

Defect engineering is not something new. However, materials whose me-
chanical, electrical, optical, and magnetic properties are almost entirely con-
trolled by defects are relatively new: semiconductors [2, 3]. Although the
first publication describing the rectifying behavior of a contact dates back to
1874 [4], the systematic study of semiconductors began only during World
War II. The first task was to grow high-quality Ge (then Si) crystals, that is
removing as many defects as possible. The second task was to manipulate the
conductivity of the material by adding selected impurities that control the
type and concentration of charge carriers. This involved theory to understand
as quantitatively as possible the physics involved. Thus, theory has played a
key role since the very beginning of this field. These early developments have
been the subject of several excellent reviews [5–8].

For a long time, theory has been trailing the experimental work. Ap-
proximations at all levels were too drastic to allow quantitative predictions.

D. A. Drabold, S. K. Estreicher (Eds.): Theory of Defects in Semiconductors,
Topics Appl. Physics 104, 11–28 (2007)
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Indeed, modeling a perfect solid is relatively easy since the system is periodic.
High-level calculations can be done in the primitive unit cell. This periodicity
is lost when a defect is present. The perturbation to the defect-free material
is often large, in particular when some of the energy eigenvalues of the defect
are in the forbidden gap, far from band edges. However, in the past decade or
so, theory has become quantitative in many respects. Today, theorists often
predict geometrical configurations, binding, formation, and various activation
energies, charge and spin densities, vibrational spectra, electrical properties,
and other observable quantities with sufficient accuracy to be useful to ex-
perimentalists and sometimes device scientists.

Furthermore, the theoretical tools developed to study defects in semicon-
ductors can be easily extended to other areas of materials theory, includ-
ing many fields of nanoscience. It is the need to understand the properties
of defects in semiconductors, in particular silicon, that has allowed theory
to develop as much as it has. One key reason for this was the availabil-
ity of microscopic experimental data, ranging from electron paramagnetic
resonance (EPR) to vibrational spectroscopy, photoluminescence (PL), or
electrical data, all of which provided critical tests for theory at every step.

The word “defect” means a native defect (vacancy, self-interstitial, an-
tisite, . . . ), an impurity (atom of a different kind from the host atoms), or
any combination of those isolated defects: small clusters, aggregates, or even
larger defect structures such as precipitates, interfaces, grain boundaries, sur-
faces, etc. However, nanometer-size defects play many important roles and
are the building blocks of larger defect structures. Therefore, understanding
the properties of defects begins at the atomic scale.

There are many examples of the beneficial or detrimental roles of defects.
Oxygen and nitrogen pin dislocations in Si and allow wafers to undergo a
range of processing steps without breaking [9]. Small oxygen precipitates pro-
vide internal gettering sites for transition metals, but some oxygen clusters are
unwanted donors that must be annealed out [10]. Shallow dopants are often
implanted. They contribute electrons to the conduction band or holes to the
valence band. Native defects, such as vacancies or self-interstitials, promote
or prevent the diffusion of selected impurities, in particular dopants. Self-
interstitial precipitates may release self-interstitials that in turn promote the
transient enhanced diffusion of dopants [11]. Transition-metal impurities are
often associated with electron–hole recombination centers. Hydrogen [12], al-
most always present at various stage of device processing, passivates the elec-
trical activity of dopants and of many deep-level defects, or forms extended
defect structures known as platelets. Mg-doped GaN must be annealed at
rather high temperatures to break up the {Mg, H} complexes that prevent p-
type doping [13]. Magnetic impurities such as Mn can render a semiconductor
ferromagnetic. The list goes on.

Much of the microscopic information about defects comes from electri-
cal, optical, and/or magnetic experimental probes. The electrical data are
often obtained from capacitance techniques such as deep-level transient spec-
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troscopy (DLTS). The sensitivity of DLTS is very high and the presence
of defects in concentrations as low as 1011 cm−3 can be detected. However,
even in conjunction with uniaxial stress experiments, these data provide little
or no elemental and structural information and, by themselves, are insuffi-
cient to identify the defect responsible for electrical activity. Local vibrational
mode (LVM) spectroscopy, Raman, and Fourier transform infrared absorp-
tion (FTIR), often give sharp lines characteristic of the Raman- or IR-active
LVMs of impurities lighter than the host atoms. When uniaxial stress, anneal-
ing, and isotope substitution studies are performed, the experimental data
provide a wealth of critical information about a defect. This information can
be correlated, e.g., with DLTS annealing data. However, Raman and FTIR
are not as sensitive as DLTS. In the case of Raman, over 1017 cm−1 defect
centers must be present in the surface layer exposed to the laser. In the case
of FTIR, some 1016 cm−3 defect centers are needed, although much higher
sensitivities have been obtained from multiple-internal reflection FTIR [14].
Photoluminescence is much more sensitive, sometimes down to 1011 cm−1,
but the spectra can be more complicated to interpret [15]. Finally, magnetic
probes such as EPR are wonderfully detailed and a lot of defect-specific data
can be extracted: identification of the element(s) involved in the defect and
its immediate surrounding, symmetry, spin density maps, etc. However, the
sensitivity of EPR is rather low, of the order of 1016 cm−3. Further, localized
gap levels in semiconductors often prefer to be empty or doubly occupied as
most defect centers in semiconductors are unstable in a spin- 1

2 state. The
sample must be illuminated in order to create an EPR-active version of the
defect under study [16–18].

This introductory Chapter contains brief reviews of the evolution of the-
ory [19, 20] since its early days and of the key ingredients of today’s state-of-
the-art theory. It concludes with an overview of the content of this book.

2 The Evolution of Theory

The first device-related problem that required understanding was the creation
of electrons or holes by dopants. These (mostly substitutional) impurities are
a small perturbation to the perfect crystal and are well described by effective
mass theory (EMT) [21]. The Schrödinger equation for the nearly-free charge
carrier, trapped very close to a parabolic band edge, is written in hydrogenic
form with an effective mass determined by the curvature of the band. The
calculated binding energy of the charge carrier is that of a hydrogen atom but
reduced by the square of the dielectric constant. As a result, the associated
wavefunction is substantially delocalized, with an effective Bohr radius some
100 times larger than that of the free hydrogen atom.

EMT has been refined in a variety of ways [22] and provided a basic un-
derstanding of doping. However, it cannot be extended to defects that have
energy eigenvalues far from band edges. These so-called “deep-level” defects
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are not weak perturbations to the crystal and often involve substantial relax-
ations and distortions. The first such defects to be studied were the byprod-
ucts of radiation damage, a hot issue in the early days of the cold war. EPR
data became available for the vacancy [16, 23] and the divacancy [24], in sili-
con (the Si self-interstitial has never been detected). Transition-metal (TM)
impurities, which are common impurities and active recombination centers,
have also been studied by EPR [25].

In most charge states, the undistorted vacancy (Td symmetry) or diva-
cancy (D3d symmetry) is an orbital triplet or doublet, respectively, and there-
fore should undergo Jahn–Teller distortions. The EPR studies showed that
this is indeed the case. Although interstitial oxygen, the most common impu-
rity in Czochralski-grown Si, was known to be at a puckered bond-centered
site [26, 27], it was not realized how much energy is involved in relaxations
and distortions. It was believed that the chemistry of defects in semiconduc-
tors is well described in first order by assuming high-symmetry, undistorted,
lattice sites. Relaxations and distortions were believed to be a second-order
correction. The important issue then was to correctly predict trends in the
spin densities and electrical activities of specific defects centers in order to ex-
plain the EPR and electrical data (see, e.g., [28,29]). The critical importance
of carefully optimizing the geometry around defects and the magnitudes of
the relaxation energies were not fully realized until the 1980s [30, 31]. The
host-atom displacements can be of several tenths of an Å, and the chemical
rebonding can lead to energy changes as large as several eV (undistorted vs.
relaxed structures).

The first theoretical tool used to describe localized defects in semiconduc-
tors involved Green’s functions [2, 19, 32, 33]. These calculations begin with
the Hamiltonian H0 of the perfect crystal. Its eigenvalues give the crystal’s
band structure and the eigenfunctions are Bloch or Wannier functions. In
principle, the defect-free host crystal is perfectly described. The localized de-
fect is represented by a Hamiltonian H ′ that includes the defect potential V .
The Green’s function is G(E) = 1/(E − H ′). Therefore, the perturbed ener-
gies E coincide with its poles. The new eigenvalues include the gap levels of
the defect and the corresponding eigenfunctions are the defect wavefunctions.
In principle, Green’s functions provide an ideal description of the defect in
its crystalline environment. In practice, there are many difficulties associated
with the Hamiltonian, the construction of perfect-crystal eigenfunctions that
can be used as a basis set for the defect calculation [34,35], and the construc-
tion of the defect potential itself. This is especially true for those defects that
induce large lattice relaxations and/or distortions.

The first successful Green’s functions calculations for semiconductors date
back to the late 1970s [36–38]. They were used to study charged defects [39],
calculate forces [40–42], total energies [43, 44], and LVMs [45, 46]. These
calculations also provided important clues about the role of native defects in
impurity diffusion [47]. However, while Green’s functions do provide a near-
ideal description of the defect in a crystal, their implementation is difficult
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and not very intuitive. Clusters or supercells are much easier to use and
provide a physically and chemically appealing description of the defect and
its immediate surroundings. Green’s functions have mostly been abandoned
since the mid-1980s, but a rebirth within the GW formalism [48] is now taking
place (see the Chapter by Schindlmayr and Scheffler).

In order to describe the distortions around a vacancy, Friedel et al. [49]
completely ignored the host crystal and limited their description to rigid
linear combinations of atomic orbitals (LCAO). Messmer and Watkins [50,51]
expanded this approach to linear combinations of dangling-bond states. These
simple quantum-chemical descriptions provided a much-needed insight and a
correct, albeit qualitative, explanation of the EPR data. Here, the defect was
assumed to be so localized that the entire crystal could be ignored in zeroth
order.

The natural extension of this work was to include a few host atoms around
the defect, thus defining a cluster . These types of calculations were performed
in real space with basis sets consisting of localized functions such as Gaussians
or LCAOs. The dangling bonds on the surface atoms must be tied up in
some way, most often with H atoms. However, without the underlying crystal
and its periodicity, the band structure is missing and the defect’s energy
eigenvalues cannot be placed within a gap. Further, the finite size of the
cluster artificially confines the wavefunctions. This affects charged defects
the most, as the charge tends to distribute itself on the surface of the cluster.
However, the local covalent interactions are well described.

The Schrödinger equation for a cluster containing a defect can be solved
using almost any electronic-structure method. The early work was empiri-
cal or semiempirical, with heavily approximated quantum-chemical methods.
At first, extended Hückel theory [52, 53] was used then self-consistent semi-
empirical Hartree–Fock: CNDO [54], MNDO [55], MINDO [56]. Geometries
could be optimized, albeit often with symmetry assumptions. The methods
suffered from a variety of problems such as cluster size and surface effects,
basis-set limitations, lack of electron correlation, and the use of adjustable
parameters. Their values are normally fitted to atomic or molecular data,
and transferability is a big issue.

In order to bypass the surface problem, cyclic clusters have been designed,
mostly in conjunction with semiempirical Hartree–Fock. Cyclic clusters can
be viewed as clusters to which Born–von-Karman periodic boundary con-
ditions are applied [57, 58]. These boundary conditions can be difficult to
handle, in particular when 3- and 4-center interactions are included [59].

DeLeo and coworkers [60, 61] extensively used the scattering-Xα method
in clusters to study trends for interstitial TM impurities and hydrogen–alkali-
metal complexes. The results provided qualitative insight into these issues.
Ultimately, the method proved difficult to bring to self-consistency and the
rather arbitrarily defined muffin-tin spheres rendered it poorly suited to the
calculation of total energies vs. atomic positions.
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The method of partial retention of diatomic differential overlap [62, 63]
(PRDDO) was first used for defects in diamond and silicon in the mid-1980s.
It is self-consistent, contains no semiempirical parameters, and allows geom-
etry optimizations to be performed without symmetry assumptions. Conver-
gence is very efficient and relatively large clusters (44 host atoms) could be
used. However, PRDDO is a minimal basis-set technique and ignores elec-
tron correlation. Its earliest success was to demonstrate [30, 31] the stability
of bond-centered hydrogen in diamond and silicon. It was not expected at
all that an impurity as light as H could indeed force a Si–Si bond to stretch
by over 1 Å. Substantial progress in the theory of defects in semiconduc-
tors occurred in the mid-1980s with the combination of periodic supercells
to represent the host crystal, ab-initio-type pseudopotentials [64–66] for the
core regions, DF theory for the valence regions, and ab-initio molecular dy-
namics (MD) simulations [67, 68] for nuclear motion. This combination is
now referred to as “first-principles” as opposed to “semiempirical”. There
are parameters in the theory. They include the size of the supercell, k-point
sampling, type and size of the basis set, chosen by the user, as well as the
parameters associated with the basis sets and pseudopotentials. However,
these parameters and user inputs are not fitted to an experimental data-
base. Instead, some are determined self-consistently, other are calculated from
first principles or obtained from high-level atomic calculations. Note that the
first supercell calculations were done in the 1970s in conjunction with ap-
proximate electronic-structure methods [69–71]. PRDDO was used to study
cluster size and surface effects [72] and many defects (see, e.g., [73, 74]). It
provided good input geometries for single-point ab-initio Hartree–Fock cal-
culations (see, e.g., [75]). However, it suffered from the problems associated
with all Hartree–Fock techniques, such as unreasonably large gaps and in-
accurate LVMs. A number of research groups have used Hartree–Fock and
post-Hartree–Fock techniques [76–78] to study defects in clusters, but these
efforts have now been mostly abandoned.

Density-functional (DF) theory [79–82] with local basis sets (see, e.g., [83])
in large clusters allowed more quantitative predictions. The DF-based AIM-
PRO code [84, 85] uses Gaussian basis sets and has been applied to many
defect problems (this code handles periodic supercells as well). In addition to
geometries and energetics, rather accurate LVMs for light impurities can be
predicted [86, 87]. Large clusters have been used [88, 89] to study the distor-
tions around a vacancy or divacancy in Si. However, all clusters suffer from
the surface problem and lack of periodicity.

3 A Sketch of First-Principles Theory

The theoretical approach known as “first principles” has proven to be a rev-
olutionary tool to predict quantitatively some key properties of defects. An
elementary exposition of the theory follows.
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3.1 Single-Particle Methods: History

After the Born–Oppenheimer approximation is made, so that electronic and
ionic degrees of freedom are separated, we face the time-independent many-
electron problem [82]:

[
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∑
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Zle
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]
Ψ = 0 .

(1)

Here, rj are electron coordinates, Rl and Zl are positions and atomic numbers
of the nuclei and E is the energy. It is worth reflecting on the remarkable
simplicity of this equation: it is exact (nonrelativistically), and the meaning of
each term is entirely transparent. In one of the celebrated legends of science,
P. A. M. Dirac is said to have implied that chemistry was just an application
of (1), though he also acknowledged that the equation was intractable. It is
true that the quantum mechanics of the many-electron problem is beautifully
and succinctly represented in (1).

Kohn gives an interesting argument [82] stating that even in principle,
(1) is hopeless as a practical tool for calculation if the number of electrons
exceeds 103 or so. His argument is a development of a paper of Van Vleck [90]1

and points out that it appears to be fundamentally impossible to obtain
an approximate many-electron function Ψ with significant overlap with the
“true” many-body wavefunction for large systems. He further points out that
the sheer dimensionality of the problem rapidly makes it unrepresentable on
any conceivable computer. Thus, a credible case can be made that for large
systems it does not even make sense to estimate Ψ directly. Kohn has named
this the “exponential wall”. To some extent this is disconcerting, because of
the simplicity of the form of (1), but it points to the need for new concepts
if we are to make sense of solids – to say nothing of defects!

Empirical experience with solids also suggests that the unfathomable com-
plexity of the many-body wavefunction is unnecessary. If all of the informa-
tion contained in Ψ was really required for estimating the properties of solids
that we care about, e.g., experimental observables, molecular physics would
reach exhaustion with tiny molecules, and solid-state physics would never
get off the ground at all. The fact is that many characteristics of materials
are independent of system size. For example, in a macroscopic sample, the
electronic density of states has the same form for a system with N atoms
and an identically prepared one with 2N atoms. Yet Ψ is immeasurably more
complex for the second system than the first. Thus, the additional complexity
1 In this prescient paper on Heisenberg’s theory of ferromagnetism, Van Vleck in-

troduces what later was called the “Van Vleck Catastrophe”, and emphasizes the
fundamentally nonlocal character of quantum mechanics as expressed in (1), the
associated factorial growth in complexity, and its dire implications for attempts
to compute many-particle states for large systems.
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of the 2N system ψ must be completely irrelevant to our observable, in this
case the density of states.

The saturation of complexity of the preceding paragraph is connected to
Kohn’s “principle of nearsightedness” [91], which states that in fact quantum
mechanics in the solid state is intrinsically local (how local depends sensi-
tively on the system [92, 93]). The natural gauge of this locality is the decay
of the density operator in the position representation: ρ(x, x′) = 〈x|ρ̂|x′〉:
a function of |x−x′|, decaying as a power law in metals and exponentially in
systems with a gap. For systems with a gap, the exponential fall off enables
accurate calculations of all local properties by undertaking a calculation in
a finite volume determined by the rate of decay. The decay in semiconduc-
tors and insulators can be exploited to produce efficient order-N methods for
computing total energies and forces, with computational cost scaling linearly
with the number of atoms or electrons [94].

3.2 Direct Approaches to the Many-Electron Problem

While this book emphasizes single-particle methods, there is one impor-
tant exception. Needs shows in his Chapter in this volume that remarkable
progress can be made for the computation of expectation values of observ-
ables using quantum Monte Carlo methods, with no essential approximations
to (1). This is a promising class of methods that offers the most accurate cal-
culations available today for complex systems. Several groups are advancing
these methods, and even the stochastic calculation of forces is becoming pos-
sible. One can be certain that quantum Monte Carlo will play an important
role in systems needing the most accurate calculations available, and certainly
this is the case for the theory of defects.

3.3 Hartree and Hartree–Fock Approximations

In 1928, Hartree [95] started with (1) with a view to extracting useful single-
particle equations from it. He used the variational principle for the ground-
state wavefunction adopting a simple product trial function: Ψ(x1, x2, . . . , xn)
= ψ1(x1)ψ2(x2) . . . ψn(xn). The product ansatz did not enforce Fermion an-
tisymmetry requirements; this was built in with a Slater determinant ansatz
as proposed by Fock in 1930 [96]: the Hartree–Fock method.

These methods map the many-body ground-state problem onto a set of
challenging single-particle equations. The structure of the Hartree equations
is a Schrödinger equation with a potential depending upon all the orbitals:

−�
2/2m∇2ψl + Veffψl = εlψl , (2)

where the effective potential Veff(r) =
∑

j �=�

∫
d3r′ψ∗

j (r′)ψ�(r′)/|r − r′|, and
the sum is over occupied states. This appealing equation prescribes an effec-
tive Coulomb field for electron l arising from all of the other electrons. Since
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computing the potential requires knowledge of the other wavefunctions, the
equation must be solved self-consistently with a scheme of iteration. While
the equation is intuitive, it is highly approximate. Curiously, it will turn out
that the equations of density-functional theory have the mathematical struc-
ture of (2), but with quite a different (and far more predictive) Veff (see (7)
below), derived from a very different point of view.

The Hartree–Fock approximation includes that part of the exchange en-
ergy implied by the exclusion principle and has well-known analytic problems
at the Fermi surface in metals [94] and a tendency to exaggerate charge fluc-
tuations at atomic sites in molecules or solids [97]. In molecular calculations,
the correlation energy (roughly speaking, what is missing from Hartree–Fock)
can be estimated in perturbation theory. This is computationally expensive:
the most popular fourth-order perturbation theory (MP4) scales as n3N4,
where n is the number of electrons and N the number of orbitals (basis set
size). Such methods are important for molecular systems, but challenging to
apply to condensed systems.

3.4 Density-Functional Theory

3.4.1 Thomas–Fermi Model

Not long after the dawn of quantum mechanics, Thomas and Fermi [98, 99]
suggested a key role for the electron-density distribution as the determiner of
the total energy of an inhomogeneous electron gas. This was the first serious
attempt to express the energy as a functional of the electron density ρ:

E[ρ] =
∫

d3rV (r)ρ(r) + e2/2
∫

d3r d3r′ρ(r)ρ(r′)/|r − r′| + α/m

×
∫

d3
rρ5/3(r) . (3)

Here, α is a numerical constant, m and e are the electron mass and charge
respectively, and V is an external potential. The first two terms are evidently
obtained from classical electrostatics. Quantum mechanics appears only in
the third term, derived from the kinetic energy of a homogeneous electron gas.
Already this equation is making a “local-density approximation”, forming an
estimate for the inhomogeneous electron kinetic energy from the result from
a homogeneous gas; an approximation that is expected to succeed if |∇ρ|/ρ
is sufficiently small. Variation of (3) with respect to ρ with fixed electron
number leads to the coupled self-consistent Thomas–Fermi equations (see,
e.g., the treatment by Fulde [97]). The coarse treatment of the kinetic energy
greatly limits the predictive power of the method – for example, the shell
structure of atoms is not predicted [100]. However, the Thomas–Fermi model
is conceptually a density-functional theory.
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3.4.2 Modern Density-Functional Theory

For atomistic force calculations on solids, the overwhelming method of choice
is density-functional theory, due to Kohn, Hohenberg and Sham [101, 102].
This Chapter only sketches the concepts in broad outline, as a detailed treat-
ment focused on defect calculations is available in this book (Niemenen Chap-
ter). For additional discussion we strongly recommend the books of Martin
(see [94]) and Fulde [97].

The following statements embody the foundation of zero-temperature
density-functional theory:

1. The ground-state energy of a many-electron system is a functional of the
electron density ρ(x):

E[ρ] =
∫

d3
xV (x)ρ(x) + F [ρ] , (4)

where V is an external potential (due, for example, to interaction with
ions, external fields, e.g., not with electrons), and F [ρ] is a universal
functional of the density. The trouble is that F [ρ] is not exactly known,
though there is continuing work to determine it. The practical utility of
this result derives from:

2. The functional E[ρ] is minimized by the true ground-state electron den-
sity.

It remains to estimate the functional F [ρ], which in conjunction with the
variational principle 2, enables real calculations. To estimate F [ρ], the usual
procedure is to note that we already know some of the major contributions
to F [ρ], and decompose the functional in the form:

F [ρ] = e2/2
∫

d3
xd3

x′ρ(x)ρ(x′)/|x − x′| + Tni(ρ) + Exc(ρ) . (5)

Here, the integral is just the electrostatic (Hartree) interaction of the elec-
trons, Tni is the kinetic energy of a noninteracting electron gas of density
ρ, and Exc(ρ) is yet another unknown functional, the exchange-correlation
functional, which includes nonclassical effects of the interacting electrons.
Equation (5) is difficult to evaluate directly in terms of ρ, because of
the term Tni. Thus, one introduces single-electron orbitals |χi〉, for which
Tni =

∑
iocc〈χi|−�

2/2m∇2|χi〉, and ρ =
∑

iocc |χi(x)|2 is the charge density
of the physically relevant interacting system. The value of this decomposi-
tion is that Exc(ρ) is smooth and reasonably slowly varying, and therefore
a functional that we can successfully approximate: we have included the most
difficult and rapidly varying parts of F in Tni and the Hartree integral, as can
be seen from essentially exact many-body calculations on the homogeneous
electron gas [103]. The Hartree and noninteracting kinetic energy terms are
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easy to compute if one makes the local-density approximation, that is assum-
ing that the electron density is locally uniform. With information about the
homogeneous electron gas, the functional (5) is fully specified.

With noninteracting orbitals |χi〉, (with ρ(x) = 2
∑

iocc |〈x|χi〉|2), then
the minimum principle plus the constraint that 〈χi|χj〉 = δij can be trans-
lated into an eigenvalue problem for the |χi〉:

{−�
2∇2/2m + Veff[ρ(x)]}|χi〉 = εi|χi〉 , (6)

where the effective density-dependent (in practical calculations, orbital-
dependent) potential Veff is:

Veff[ρ(x)] = V (x) + e2

∫
d3

x′ρ(x′)/|x − x′| + δεxc/δρ . (7)

In this equation εxc is the parameterized exchange-correlation energy density
from the homogeneous electron gas.

The quantities to be considered as physical in local-density functional
calculations are: the total energy (electronic or system), the ground-state
electronic charge density ρ(x), and related ground-state properties like the
forces. In particular, it is tempting to interpret the |χi〉 and εi as genuine
electronic eigenstates and energies, and indeed this can often be useful. Such
identifications are not rigorous [94]. It is instructive to note that the starting
point of density-functional theory was to depart from the use of orbitals and
formulate the electronic-structure problem rigorously in terms of the electron
density ρ; yet a practical implementation (which enables an accurate estimate
of the electronic kinetic energy) led us immediately back to orbitals! This
illustrates why it would be very worthwhile to know F (ρ), or at least the
kinetic energy functional since we would then have a theory with a structure
close to the Thomas–Fermi form and would therefore be able to seek one
function ρ rather than the cumbersome collection of orthonormal |χi〉.

The initiation of modern first-principles theory and its development into
a standard method with widespread application was due to Car and Par-
rinello [67]. They developed a powerful method for simultaneously solving
the electronic problem and evolving the positions of the ions. The method
is usually applied to plane-wave basis sets, though the key ideas are inde-
pendent of the choice of representation. One of the early applications to
defects in silicon was the diffusion of bond-centered hydrogen [104]. An al-
ternative ab-initio approach to MD simulations, based on a tight-binding
perspective, was proposed by Sankey and Niklewski [68]. Their basis sets
consist of pseudoatomic orbitals with s, p, d, . . . symmetry. The wavefunc-
tions are truncated beyond some radius and renormalized. The early version
of this code was not self-consistent and was restricted to minimum basis sets.
A more recent version [105] is self-consistent and can accommodate expanded
and polarized basis sets. This is also the case for the highly flexible SIESTA
code [106,107] (Spanish initiative for the electronic structure with thousands
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of atoms). Although basis sets of local orbitals (typically, LCAOs) are highly
intuitive and allow population analysis and other chemical information to
be calculated, they are less complete than plane-wave basis sets. The latter
can easily be checked for convergence. On the other hand, when an atom
such as Si is given two sets of 3s and 3p plus a set of 3d orbitals, the basis
set is sufficient to describe quite well virtually all the chemical interactions
of this element, as the contribution of the n = 4 shell of Si is exceedingly
small, except such under extreme conditions that a ground-state theory is not
capable of handling anyway. Many details of the implementation of density-
functional methods are given in the contribution of Nieminen in his Chapter
in this volume.

The power of these methods is that they yield parameter-free estimates
for the structure of defects and even topologically disordered systems, provide
accurate estimates of total energies, formation energies, vibrational states, de-
fect dynamics, and with suitable caveats information about electronic struc-
ture, defect levels, localization, etc. There are many subtle aspects to their
applications to defect physics, partly because high accuracy is often required
in such studies.

4 The Contributions

In his Chapter in this volume, Nieminen carefully discusses the use of periodic
boundary conditions in supercell calculations, detailing both strengths and
weaknesses, and other basic features of these calculations. In their Chap-
ter, Goss and coworkers discuss the marker method to extract electronic
energy levels, and include several important applications. In their Chapter,
Estreicher and Sanati describe the calculation and remarkable utility of vi-
brational modes in systems containing defects, including novel analysis of
finite-temperature properties of defects. Then, in their Chapter, Hernandez
and coworkers work out a proper theory of free energies and phase diagrams
for semiconductors. Needs describes in his Chapter the most rigorous attack
of the book on the quantum many-body problem, as Needs explores quan-
tum Monte Carlo methods and their promise for defects in semiconductors.
Schindlmayr and Scheffler describe the theory and application of self-energy
corrected density-functional theory, the “GW” approximation in their Chap-
ter. Like the work of Needs, this technique has predictive power beyond DFT.
Csanyi and coworkers present a multiscale modeling approach in their Chap-
ter with applications. Scheerschmidt offers a comprehensive view of molecular
dynamics in his Chapter, focusing on empirical methods, though much of his
Chapter is applicable to first-principles simulation as well. In their Chapter,
Drabold and Abtew discuss defects in amorphous semiconductors with a spe-
cial emphasis on hydrogenated amorphous silicon. Last but not least, in their
Chapter, Simdyankin and Elliott write on the theory of light-induced effects
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in amorphous materials, an area of great basic and practical interest, which
nevertheless depends very much upon the defects present in the material.
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Abstract. Periodic boundary conditions enable fast density-functional-based cal-
culations for defects and their complexes in semiconductors. Such calculations are
popular methods to estimate defect energetics, structural parameters, vibrational
modes and other physical characteristics. However, the periodicity introduces spuri-
ous defect–defect interactions and dispersion of the defect-induced electronic states.
For charged defects, compensating background charging has to be introduced to
avoid electrostatic divergences. These factors, together with the intrinsic limitation
of standard density-functional theory for accurate estimation of semiconducting
gaps, pose challenges for quantitatively accurate and properly controlled calcu-
lations. This chapter discusses these issues, including point sampling, electrosta-
tic (Madelung) corrections, valence-band (reference energy) alignment, and other
finite-size effects in supercell calculations. These are important for reliable estima-
tion of formation and migration energies as well as ionization-level prediction. More-
over, the chapter discusses the various ways of generating transferable pseudopo-
tentials, the choice of the exchange-correlation functional, and other topics related
to total-energy calculations. Methods to calculate excitation energies and other
spectroscopic properties as well as atomic motions are also discussed. Examples of
applications of the supercell methods to a few selected semiconductor defects are
presented.

1 Introduction

An important role for theory and computation in studies of defects in semi-
conductors is to provide means for reliable, robust interpretation of defect
fingerprints observed by many different experimental techniques, such as
deep-level transient spectroscopy, various methods based on positron annihi-
lation (PA), local-vibrational-mode (LVM) spectroscopy, and spin-resonance
techniques [1]. High-resolution studies can provide a dizzying zoo of defect-
related features, the interpretation and assignment of which requires accurate
calculations of both the defect electronic and atomic properties as well as
quantitative theory and computation also for the probe itself.

Materials processing can also draw significant advantages of the predic-
tive computational studies. The kinetics of defect diffusion and reactions dur-
ing thermal treatment depend crucially on the atomic-scale energetics (for-
mation energies, migration barriers, etc.), derived from the bond-breaking,
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bond-making and other chemical interactions between the atoms in question.
Accurately calculated estimates for defect and impurity energetics can consid-
erably facilitate the design of strategies for doping and thermal processing to
achieve the desired materials properties. Parameter values calculated atom-
istically, from the electronic degrees of freedom, can be fed into multiscale
modeling methods for defect evolution, such as kinetic Monte Carlo, cellular
automaton, or phase-field simulation tools [2].

A defect in otherwise perfect material breaks the crystalline symmetry
and introduces the possibility of localized electronic states in the funda-
mental semiconducting or insulating gap. Depending on the position of the
host-material Fermi level of the host semiconductor, these states are either
unoccupied or occupied by one or more electrons, depending on their degen-
eracy and the spin assignment. The defects thus appear in different charge
states, with varying degrees of charge localization around the defect center.
To achieve a new ground state, the neighboring atoms relax around the defect
to new equilibrium positions. For a point defect a new point symmetry group
can be defined.

The energy levels in the gap, also known as “ionization levels”, “occupa-
tion energy levels” or “transition levels”, correspond to the Fermi-level po-
sitions where the ground state of the system changes from one charge state
to another. Their values can be computationally estimated by the “∆SCF”
approach, i.e., from total-energy differences between different charge states.
These gap levels can be probed experimentally by temperature-dependent
Hall conductivity measurements, deep-level transient spectroscopy (DLTS),
and photoluminescence (PL). The nature of the defect-related gap-state wave-
functions can be examined with electron paramagnetic resonance (EPR) and
electron-nuclear double-resonance (ENDOR) measurements.

Experimentally, the defect energy levels can often be located with the pre-
cision of the order of 0.01 eV with respect to host material band edges. The
proper interpretation of the levels and the physical features associated with
them pose demanding challenges for theory and computation. At present,
the computational accuracy of the level position is typically a few tenths of
an eV. It follows that sometimes different calculations for the same physical
system lead to very different conclusions and interpretations of the experi-
ments. Defect calculations may also fail to predict correctly the symmetry-
breaking distortions around defects undisputedly revealed by experiments.
While theoretical modeling has had considerable success and a major impact
in semiconductor physics, there are still severe limitations to its capabilities.
The purpose of this Chapter is to point out and discuss these.

Density-functional theory (DFT) [3, 4] is the workhorse of atomic-scale
computational materials science and is also widely used to study defects in
semiconductors, predict their structures and energetics, vibrational and dif-
fusional dynamics, and elucidate their electronic and optical properties, as
observed by the various experimental probes. The central quantity in DFT
is the electron density. The ground-state total energy is a functional of the
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electron density and can be obtained via variational minimization of the func-
tional. The wave-mechanical kinetic energy part of the total-energy functional
is obtained not from the density directly but through a mapping to a non-
interacting Kohn–Sham system. The mean-field electrostatic Hartree energy
is obtained from the density, as are in principle the remaining exchange and
correlation terms, coded into the exchange-correlation functional.

The purpose of this Chapter is to examine critically the methodological
status of calculations of defects in semiconductors, especially those based
on the so-called supercell methods. As will be discussed in more detail be-
low, there are three main sources of error in such calculations. The first is
the proper quantum-mechanical treatment of electron–electron interactions,
which at the DFT level is dependent on the choice of the exchange-correlation
functional. The popular local or semilocal density approximations lead to un-
derestimation, sometimes serious, of the semiconducting gap. The underlying
reasons for this are the neglect of self-interactions and the unphysical con-
tinuity of the exchange-correlation energy functional as a function of level-
occupation number. This has naturally serious consequences to the mapping
of the calculated defect electronic levels onto the experimental energy gap.
The second source of errors is related to the geometrical description of the
defect region, often known as the finite-size effect. The third source of error
is the numerical implementation of DFT, i.e., the self-consistent solution of
the effective-particle Kohn–Sham equations and the evaluation of the total
electronic energy.

2 Density-Functional Theory

The quantum physics of electrons in materials is governed by the Schrödinger
equation. Density-functional theory (DFT) provides a parameter-free frame-
work for casting the formidable many-electron problem to a numerically
tractable form involving only the three spatial coordinates of the N inter-
acting electrons (as opposed to 3N in the full solution of the Schrödinger
equation).

The fundamental starting point is the DFT expression for the total energy
Etot of the electronic system:

Etot
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where the total electronic density n(r) =
∑

i,σ fiσ |ψiσ(r)|2 is expressed as
a summation of the one-electron states ψiσ(r), dependent on the spin index
σ =↓, ↑ and with the occupation number fiσ. Above, Vion is the nuclear (ionic)
potential, and Zα denotes the charge of ion α at Rα.

The coupled Kohn–Sham eigenvalue equations

− �
2

2m
∇2ψiσ(r) + Veff [n↑(r), n↓(r)] ψiσ(r) = εiσψiσ(r) (2)

resulting from the minimization of Etot with respect to the density recast the
complex many-body interactions into an effective single-electron potential
Veff via the exchange-correlation functional Exc. In practice, the functional
Exc has to be approximated. The popular choices are functionals where ex-
change and correlation are treated as functions of the local density and/or its
gradients. This sounds drastic, because electronic Pauli exchange is a mani-
festly nonlocal object, as demonstrated by the Hartree–Fock theory. However,
there is a partial cancelation of errors, and these methods are surprisingly
robust and accurate. The generalization to spin degrees of freedom is also
straightforward in scalar-relativistic DFT.

A useful primer for designing DFT calculations has been written by
Mattsson et al. [5]. The design of any calculation, whether using periodic
boundary conditions, finite clusters or embedding techniques, involves the
choice of the exchange-correlation functional. The choice, whether a partic-
ular flavor of local-density (LDA) or local spin-density (LSDA) approxima-
tion, a generalized-gradient approximation (GGA), full Hartree–Fock-type
exchange, screened exchange, or a “hybrid” between a nonlocal orbital-based
functional and a density-dependent functional, defines the physical accuracy
of the calculation. The numerical accuracy of the calculation depends on such
technical things as basis-set completeness, accuracy of integration in both real
and reciprocal space, convergence criteria, etc. The model accuracy depends
naturally on how faithfully the chosen supercell, cluster or embedding meth-
ods describe the desired situation.

In the context of defects in semiconductors, the ground-state properties
can be obtained via the minimization of the total energy Etot with respect to
the charge density n(r) and the ionic positions Rα through the Hellmann–
Feynman interatomic forces. This enables the calculation of not only the
formation energy of a defect in a given lattice position, but also its low-
energy vibrational excitations, and any observables accessible via the charge
and spin densities, such as positron-annihilation parameters [6] or hyperfine
fields [7–9].

3 Supercell and Other Methods

A popular way to calculate defect energetics from first principles (i.e., from
electronic degrees of freedom) is based on the supercell idea. In this method



Supercell Methods for Defect Calculations 33

Fig. 1. Schematic presentation of the supercell construction. (a) lattice vacancy in
a solid, (b) surfaces in a stack of slabs, (c) isolated molecules

one confines the atoms defining the defect area of interest into an otherwise ar-
bitrary box, which is then repeated infinitely in one or more spatial directions
(see Fig. 1). In other words, this box (the supercell) now becomes the new
unit cell of the system, and periodic boundary conditions are applied at one
or more of its boundaries. For a point-defect assembly in a three-dimensional
solid, the system now becomes a three-dimensional periodic defect array. For
a line defect (e.g., a dislocation) the result is a regular line-defect network.
For a surface, the system becomes a sandwich of material slabs interlaced
by vacuum regions. Typical sizes of the supercell are nowadays 64 atoms or
larger in a cubic system, and the increasing computational power has enabled
supercells with hundreds of atoms.

The supercell method is one of the three main approaches to defect calcu-
lations. The other two are the finite-cluster methods [10, 11] and the Green’s
function embedding techniques [12–14]. In the former the interesting defect is
simply incorporated in a finite atomic cluster (with often atoms added to the
cluster surface to saturate any dangling electron bonds). The finite-cluster
method is well suited for studies of local defect properties (such as vibrational
modes), provided that the cluster is large enough and thus the surface effects
small. However, care should be taken to make sure that manipulating the
cluster surface does not interfere with the defect-localized electrons. Estre-
icher and Marinyck [15] have shown how this can influence, for example, the
defect-related hyperfine fields.

The embedding techniques, in turn, match the perturbed defect region to
the known DFT Green’s function of the unperturbed host material, and offer
in principle the best way to study isolated defects. However, the numerical
implementation of the Green’s function method is challenging for accurate
interatomic forces and long-range atomic relaxations, as it requires a well-
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localized defect potential and usually short-range basis functions. Thus, su-
percell methods have surpassed the Green’s function methods in popularity.

The great advantage of supercell calculations is that the periodic bound-
ary conditions allow the utilization of the many efficient techniques derived
for the quantum physics of periodic systems. The wavevectors of the Brillouin
zone (BZ) in the reciprocal space of the supercell are good quantum num-
bers, and the standard “band-structure methods” of periodic solids can be
applied in full force. Particularly fast computation methods can be performed
by using Fourier analysis (plane-wave basis sets), as they adopt naturally to
periodic boundary conditions and offer spatially uniform resolution.

The supercell approach enables the full relaxation of the structure to mini-
mize total energy, and the calculation of the formation and migration energies
of defects in different charge states as a function of the Fermi-level position
of the host semiconductor, and as a function of the chemical potentials of
the atoms building up the material. Thus, the method can be conveniently
adapted to describe such effects as the host material stoichiometry on the
energetics of isolated defects in compound semiconductors [16]. From super-
cell calculations one can extract several useful physical properties, such as:
1. the probabilities of certain types of defect to form under given chemical and
thermodynamical conditions during the growth, 2. the basic nature (acceptor,
donor, deep level) of the defect electronic states, 3. the migration and recom-
bination barriers, 4. vibrational modes, hyperfine fields, positron-annihilation
parameters and other ground-state properties, and 5. within certain limita-
tions, excited-state (for example optical) properties as well. The ground-state
properties are those most reliably accessible. For example, the defect-induced
electronic energy levels in the fundamental gap are obtained as differences
between formation energies for different charge states.

4 Issues with the Supercell Method

The obvious drawback of the supercell methods for defect calculations is that
the periodicity is artificial and can lead to spurious interactions between the
defects. They have a finite density, and do not necessarily mimic the true
physical situation with an aperiodic, very low density defect distribution.
The supercell method, widely used and with demonstrated success in de-
fect studies, requires a critical examination of the finite-size and periodicity
effects.

The first consequence of the finite-size supercell approximation is the
broadening of the defect-induced electronic levels to “defect bands”, with a
bandwidth of the order of 0.1 eV for 64-atom supercells. This translates into
a difficulty in placing accurately the ionization levels, also in the total-energy
based ∆SCF approach. The one-electron Kohn–Sham states associated with
the defect are often assigned a position by averaging over the supercell Bril-
louin zone, or just values at the Brillouin zone origin (the Γ point) are dis-
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cussed as they exhibit the full symmetry of the defect. It can be argued that
the defect-state dispersion has a smaller effect on the total energies that in-
clude summations and integrations of the Kohn–Sham states over the entire
Brillouin zone. Thus, ionization levels determined from the total-energy dif-
ferences would also be less sensitive to the defect-band dispersion. However,
this is hard to prove systematically.

Another source of difficulty is the accurate determination of the host crys-
tal band edges (valence-band maximum, conduction-band minimum), which
are the natural reference energies for the defect-induced gap states. In the
defect-containing supercell, the band-edge states themselves are affected by
the defect. The band-edge positions are often determined by aligning a chosen
reference level between the defect-containing and perfect solid. For example,
the effective potential in a localized region far from the defect can be aligned
with the potential in the same region in a perfect crystal. The calculated
band-edge distances from the reference energy in a perfect crystal can then
be used to align the band edges in the system containing the defect. Alter-
natively, one can consider a deeper, core-level energy of an atom as a local
reference. Another possibility is to define as the “crystal zero” the electrosta-
tic potential at a Wigner–Seitz cell boundary far away from the defect. This
is particularly convenient when the atomic-sphere approximation (ASA) is
used in the context of minimal basis sets, such as the LMTO [17].

Another, more difficult problem arises with charged defects . In order to
avoid divergences in electrostatic energies, a popular solution is to introduce
a homogeneous neutralizing background charge to the supercell array, which
enables the evaluation of electrostatic (Coulomb) energies. This, however,
introduces an electrostatic interaction between the periodic charge distribu-
tion in the supercells and the background, which vanishes only at the limit
of infinitely large supercells. The influence of the fictitious charge has to be
subtracted in the end, and this is a highly nontrivial task, as discussed below.

Point defects induce elastic stress in the host lattice, which is relieved
by ion displacements, i.e., lattice relaxation. The lattice-relaxation pattern is
restrained by the supercell geometry. The argument, often used in supercell
calculations, is that the ion displacements vanish near the borders of the
supercell. However, this does not necessarily guarantee that the long-range
ionic relaxations are correctly described, as the supercell symmetry itself may
fix the positions of the border ions. According to elastic continuum theory, the
strain field at large distances from the point defect should fall off as |r|−3 and
the ionic displacements should fall off as |r|−2. In tetrahedrally coordinated
covalent materials the distances between the periodic images along the rigid
[110] zigzag chains are typically more important to the convergence of lattice
relaxations than the volume relaxations. A case in point is the vacancy in
silicon [18], where the sense of the lattice relaxation changes from outward
to inward only at large enough cell sizes. A similar behavior is also observed
in finite-cluster calculations [19].
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The finite size of the supercell thus restricts also the ionic relaxations
around the defect. The relaxation pattern is truncated midway between a
defect and its nearest periodic replica. In the case of long-range relaxations
this cutoff may be reflected dramatically close to the defect, as was demon-
strated by Puska et al. [18] by detailed calculations for vacancies in silicon.

Further comparison of the supercell to the finite-cluster and Green’s func-
tion methods reveals the following. The supercell and Green’s function meth-
ods have a well-defined electron chemical potential (they are coupled to a
reservoir of electrons) whereas the cluster method does not. This has conse-
quences for the treatment of ionization levels, which is somewhat problematic
for the cluster method. The finite-size effect is there in the cluster method as
well, as the clusters can contain spurious surface-related effects. The Green’s
function method is mathematically elegant and in principle the best for iso-
lated defects, but its computational implementation is difficult in view of the
accuracy required for total electronic energies and derived quantities (such
as interatomic Hellmann–Feynman forces).

Finally, it is important to note that defect and impurity calculations
should, as a rule, be carried out using the theoretical lattice constant, opti-
mized for the bulk unit cell. This is crucial in order to avoid spurious elastic
interactions with defects or impurities in the neighboring supercells. The pur-
pose is to investigate properties of isolated defects or impurities in the dilute
limit. If the volume of the defect-containing supercell is relaxed (in addition
to relaxing the positions of the atoms near the defect), the calculation would
in fact correspond to finding the lattice parameter of the system containing
an ordered array of defects at a high concentration.

5 The Exchange-Correlation Functionals
and the Semiconducting Gap

The fundamental semiconductor gap Eg is defined as the difference between
the ionization energy I and the electron affinity EA of the bulk material,

Eg = I − EA . (3)

As both quantities can be written in terms of total energies of systems with
different numbers of electrons, the value of the gap Eg is, in principle, a
ground-state property and can thus be calculated within the Kohn–Sham
DFT. The fundamental gap can also be written as

Eg = EKS
g + ∆xc . (4)

EKS
g is the difference between the highest occupied and lowest unoccupied

Kohn–Sham eigenvalues εiσ. ∆xc is the discontinuity (as a function of the
occupation number) of the exchange-correlation potential at the Fermi level.
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The estimation of semiconductor bandgaps and positions is one of the
classic failures of local(-spin-)density (L(S)DA) formulation of the Kohn–
Sham DFT. There are two origins of this error. First is the self-interaction
error inherent in the LDA potential, and the second is the vanishing of the
discontinuity ∆xc of the local-density exchange potential as a function of the
level occupation at the Fermi level. They lead to both wrong absolute energy
positions and too small or entirely absent bandgaps for many materials. This
is not remedied by semilocal approximations for exchange and correlation,
such as the generalized-gradient approximations (GGA) where the disconti-
nuity also vanishes. In fact, the experience is that GGA approximations tend
to make the gap even smaller than local-density approximations [20]. This
can be traced to the property of GGA methods increasing the interatomic
distances and lattice constants compared to LSDA. It is another well-known
flaw of local-density methods that they overbind molecules and solids and un-
derestimate bond and lattice distances. GGA methods correct and sometimes
overcorrect this, but give even smaller bandgap values.

A qualitatively opposite problem is encountered with the Hartree–Fock
method, which is known to considerably overestimate the bandgaps. More-
over, its application to metallic systems leads to well-known problems, such as
the vanishing density of states at the Fermi level. Thus, intuitively, a hybrid
method “interpolating” between the two seems an attractive approach.

Nonlocal descriptions of exchange are expected to improve the Kohn–
Sham bandgaps as they remove the self-exchange error and exhibit discon-
tinuity at the Fermi level. In the “exact exchange” (EXX) formulation one
evaluates the exchange energy and potential using the Kohn–Sham (rather
than Hartree–Fock) wavefunctions. Städele et al. [21] have shown that the
discontinuity ∆x in the exchange potential is much larger than the bandgap
for several semiconductors, which points to the existence of a large cancella-
tion between the exchange ∆x and the corresponding correlation ∆c.

The EEX method has been reported to give very good values for the
bandgap and many other properties for sp semiconductors [22]. However,
when applied to rare-gas solids, EXX fails to reproduce the experimental
bandgaps [23]. A related problem is the position of the d band in many
solids. Again, the self-interaction error in local-density methods displaces the
d states and contributes to the bandgap error. The d band positions can be
improved by the explicit removal of self-interactions [24], but the application
of the nonlocal EXX does not seem to lead to a consistent improvement of
both d band positions and bandgap values.

This points to the important interplay between treatment of nonlocal
exchange and the description of the lower-lying and core states in semicon-
ductors and insulators. It has recently been pointed out [25] that the lack of
explicitly treated core-valence interactions can lead to an anomalously good
agreement of the calculated Kohn–Sham gap with the experimental gap in sp
semiconductors. The inclusion of these interactions worsens the agreement,
while leading to a consistent treatment of semiconductors and insulators. It
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thus appears that the EXX alone does not solve the bandgap problem, al-
though it is a marked improvement over LDA or GGA. A major drawback
is also the high computational cost of EEX, which has so far prohibited its
widespread use in defect calculations.

In the screened-exchange LDA (sx-LDA) scheme [26] the Kohn–Sham
single-particle orbitals are used to construct a nonlocal exchange operator,
again improving the description compared to the local-density approximation.
The many-body correlations and screening missing from the Hartree–Fock
method are treated in a form of model screening and LDA correlation. This
approach can solve the gap problem, but contains a phenomenological con-
stant (e.g., the Thomas–Fermi screening constant). Lento and Nieminen [27]
have applied this method for a prototypical supercell defect calculation (va-
cancy in Si). While the method can in principle give accurate total energies
and thus ionization levels (and the correct gap), its full exploitation is still
prohibitively expensive computing-wise. As with other hybrid functionals and
with EXX, the computational cost is typically two orders of magnitude larger
than with LDA or GGA. Thus the calculations with full lattice relaxation
have so far been limited to supercells not large enough to allow the correct
pattern to emerge (see Sect. 16 below).

There are other suggested approaches to overcome the failure of DFT to
produce accurate bandgaps and excited-state properties. However, currently
no method is available that would go beyond standard DFT and yet be feasi-
ble for total-energy calculations for the large supercells required to investigate
defects. The class of methods, such as the GW approach [28] which are mainly
aimed at calculating the (quasiparticle) band structure and properties de-
rived thereof, are prohibitively expensive for large supercells. Presently, such
calculations can be carried out with supercells with less than twenty atoms.
However, this size is perfectly adequate for treating well-localized excitations,
such as self-trapped excitons [29].

The gap problem may sometimes make calculations for certain defect
levels impossible. The too-narrow gap may induce the defect level to be a
resonance in the conduction or valence band. In this case some charge states
would not be accessible at all. It should be noted that this can also happen
in just some part of the Brillouin zone because of the defect-level dispersion
in the supercell approach. A possible remedy is then to simply occupy the
defect level, ignoring the fact that the state lies above the conduction-band
minimum at other k points.

Apart from underestimating the bandgap and thus hampering the po-
sitioning of the possible ionization levels, the local (or quasilocal)-density
approximation for exchange and correlation can sometimes lead to other dif-
ficulties with the defect-localized electron states. This has recently been dis-
cussed by Laegsgaard and Stokbro [30]. They considered a substitutional Al
impurity on the Si site in SiO2. LDA and GGA calculations predict a struc-
ture that has the full tetrahedral symmetry. However, ENDOR experiments
show unambiguously that the defect wavefunction is localized on just one of
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the four neighboring oxygen atoms, as the hyperfine splittings are radically
different from those expected for four equivalent neighbors. The source of
this problem can again be traced to the self-interaction error in LDA and
GGA. In LDA/GGA, there is a penalty for localizing a single electron as the
cancelation between self-exchange/correlation and self-Coulomb interactions
is not complete. Thus, one overestimates the Coulomb energy of a localized
state, which then leads to charge delocalization. In the true situation, there
is just a single electron state contributing to the Coulomb energy. Thus,
the calculated charge delocalization is completely due to self-interaction. If
exchange is treated correctly as in the Hartree–Fock theory, self-interaction
is eliminated and one obtains the correct distorted structure with the wave-
function localized on a single oxygen atom. As noted above, the problem with
Hartree–Fock is that it seriously overestimates the bandgap and spin split-
tings, and is as such usually not a good tool for calculations of semiconductor
defects.

A self-interaction-corrected (SIC) scheme for the case of hole trapping in
SiO2 was recently suggested by d’Aveszac et al. [31]. In their approach the
Coulomb energy arising from the charge density of a single defect orbital and
the associated contribution to the exchange-correlation energy are explicitly
subtracted. This is technically straightforward for methods using localized
basis sets, but can also be implemented using projection techniques with
plane-wave methods. The physical idea of this self-interaction correction is
that delocalized states do not suffer as much from self-interaction error as
localized states do. In the standard SIC [32, 33] approaches there is some
ambiguity in choosing the states to which the correction should be applied.
For defect calculations, the localized state in the gap is well defined and the
application of the correction is quite straightforward.

The LDA/GGA gap error is a persistent and rather harmful problem
in semiconductor defect physics. The Kohn–Sham eigenvalues of (2) are
Lagrange parameters used to orthogonalize the states in total-energy min-
imization, but cannot be interpreted as true electron-excitation energies.
These could be obtained from quasiparticle theories such as Hedin’s GW
approach [34] or time-dependent density-functional theory [35]. The GW
method is computationally expensive and cannot be applied to defect su-
percells with many atoms. Its ability to give converged total energies is not
clear. However, it is a powerful approach for doing perturbative calculations
for optical and other excitation spectra, and can be generalized to include
the final-state electron–hole interactions through the Bethe–Salpeter equa-
tion [36].

One simple, obvious and often used possibility is to use the “scissor op-
erator”, i.e., to correct the bandgap by simply shifting the unoccupied and
occupied states further away from each other. This, of course, destroys the
self-consistency between Kohn–Sham eigenvalues and eigenfunctions, which
may be detrimental for observables calculated from them. For defect physics,
the question arises whether to shift the defect levels or not in such a process.
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Intuitively, one would expect acceptor-like levels to move with the valence-
band edge and donor-like states with the conduction-band edge, while levels
deep in the bandgap would not move at all. This reasoning is, of course, quite
arbitrary and unsatisfactory. A recent example of these difficulties is the work
on the oxygen vacancy in ZnO, where the LDA gap is again considerably in
error. Two calculations [37,38] have addressed this system using the LDA+U
method [39], where an onsite Coulomb repulsion U is added “by hand” when
calculating the Zn d-states. This shifts the occupied d bands and subsequently
the valence-band minimum downwards. The defect level associated with the
oxygen vacancy then moves deeper into the gap from the valence-band max-
imum. If one leaves the defect level in place and shifts just the conduction
bands up, there is a single level in the lower half of the gap. If, on the other
hand, one decides from LDA+U calculation how much valence/conduction
band character the state has, one ends up moving the state further up in the
gap, into the upper half. As the experiments are ambiguous at this time, the
matter is undecided and again calls for a better solution to the gap problem.

Finally, one should mention the quantum Monte Carlo (QMC) methods
that look promising for addressing total-energy calculations for defects and
impurities. They approach the problem of interacting electrons by address-
ing the correlations explicitly and build in the Pauli exchange by starting
from a Slater determinant. The fixed-node QMC method has been applied
to study self-interstitials in Si [40]. The formation energy of the split-〈110〉
interstitial defect was found to be significantly higher with QMC than LDA,
which can be explained by the upward shift of the defect-induced level in
the bandgap. Further work includes QMC studies of optical and diffusive
properties of vacancies in diamond [41]. If QMC methods can be extended to
large enough supercells, to force and relaxation calculations, and to secured
convergence with respect to k-point summation, they can provide a most
useful set of benchmarks for accurate total-energy calculations for defects in
semiconductors.

The above discussion may give an overly pessimistic impression of the ca-
pabilities of DFT calculations for defects in semiconductors. The other side
of the coin is much brighter. There is a vast inventory of “standard” DFT
calculations that have produced robust and reliable results for semiconduc-
tor defects and have thus decisively contributed to their identification. An
illustrative example is the extensive work on III–V nitride semiconductors,
recently reviewed by Van de Walle and Neugebauer [42].

6 Core and Semicore Electrons: Pseudopotentials
and Beyond

The widespread use and success of DFT in predicting various materials
properties stems largely from the successful application of the pseudopo-
tential (PP) concept. Only relatively few “valence” electrons of an atom are
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chemically active. The replacement of chemically inert “core” electrons with
an effective core potential both reduces the number of electronic degrees of
freedom and avoids the numerical challenge posed by rapidly varying wave-
functions near the nucleus. Efficient numerical techniques such as the fast
Fourier transform (FFT) can be used. The replacement of the all-electron
potential with a PP is, however, a nontrivial task where a balance has to be
struck between optimal transferability (accurate reproduction of all-electron
atom behavior) and computational efficiency (slow spatial variability).

Several methods are popular for generating PPs. They include the gener-
alized norm-conserving pseudopotentials of Hamann [43], Troullier and Mar-
tins [44], Hartwigsen et al. [45] and the ultrasoft, non-norm-conserving PPs
of Vanderbilt [46]. It is important to realize that the true figure of merit of a
PP is not how well its results match experiment, but how well it reproduces
the results of all-electron calculations when using otherwise similar methods.

The separable PPs commonly used in the context of plane-wave calcu-
lations, such as those of the Kleinman–Bylander [47] form, are built from
norm-conserving PPs. The separation process can sometimes add complica-
tions, for example, in the form of so-called ghost states. The construction of
reliable ultrasoft pseudopotentials [46] or projected-augmented-wave (PAW)
potentials [48, 49] presents additional challenges, but the latter is quickly
gaining in popularity as it has proven a particularly robust and transparent
approximation.

To compare calculated values reported in the literature for defects in
semiconductors, specific details of the PP generation are important for the
reproduction of a given result. Several parameters usually enter the PP con-
struction, such as the core radii for different angular-momentum channels
and the core-matching radii. The effectiveness of a given PP needs to be
checked and validated in every new chemical environment before being used
in quantitative studies.

Constructing PPs thus involves compromises, and in reporting computa-
tional results it is important to state those compromises clearly. In particular,
the choice of a given state as an “active” valence state vs. its treatment via
perturbative, nonlinear core-valence corrections [50] are crucial. For exam-
ple, it has been demonstrated [51] that a nonlinear core-valence correction is
necessary to get spin-polarized states of first-row atoms O and N properly
described. Unlike previously assumed, the 1s core in these atoms is not so
deep as to be uninvolved in the chemistry important in defining the valence-
electron potential.

An interesting approach that yields bulk band structures in good agree-
ment with experiment is based on the idea of self-interaction and relaxation-
corrected pseudopotentials (SIRC) [52]. The removal of self-interactions has
important consequences for ionization levels in the semiconducting gap, as
discussed above. However, it seems that the SIRC approach does not allow a
simple self-consistent calculation of total energies.
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Finally, it should be emphasized that consistency in the choice of the
exchange-correlation functional for pseudopotential construction and their
application is highly advisable. The problems of using a different functional
for the two have been demonstrated, especially in the cases where polarizable
semicore states are present [53].

7 Basis Sets

The use of DFT is not limited to static electronic-structure problems such as
total energies and bond distances. The potential-energy (Born–Oppenheimer)
surface defined by the positions of the nuclei defines the interatomic forces,
and in recent years there has been rapid growth in the use of first-principles
molecular dynamics (FPMD) within the finite-temperature DFT framework
for studying many materials properties, including atomic vibration and mi-
gration, and the full equation of state (EOS). If the force fields or pressure
or stress tensor of the system are of interest, additional care must be taken
to ensure that the calculated quantities are of sufficient numerical accuracy.
Whereas errors in the total energy are second order with respect to errors in
the electron density or Kohn–Sham eigenfunctions, errors in the interatomic
forces and pressure are first order. The errors are significantly affected by the
completeness and accuracy of the basis set.

A popular choice is the plane-wave expansion for the Kohn–Sham states,

ψiσ(r) = ψnσk(r) =
∑
G

ψnσk(G) exp[−i(k + G) · r] . (5)

The summation is over the reciprocal lattice vectors G of the superlattice.
In plane-wave calculations the accuracy of the basis set is determined by

the chosen kinetic energy cutoff or maximum wavevector Ecut = �
2(k+Gmax)2

2m .
It is important to realize that while a lower cutoff may be sufficient for the
convergence of total energies, it may be totally unacceptable for calculating
interatomic force constants or pressure/stress tensors.

The reason that forces are more sensitive to the plane-wave cutoff than
total energies is that the real-space force formula contains the derivatives
with respect to coordinates (see (6)). This derivative will introduce an extra
factor of the reciprocal lattice vectors G into the reciprocal-space formulae
and the maximum value Gmax is determined by the cutoff. It also follows that
exchange-correlation functionals involving gradients of the density (such as
GGA) are more sensitive to the cutoff than LDA.

The issue of basis-set sufficiency is even more critical when using local ba-
sis sets, for example linear combinations of numerical atomic orbitals [54, 55]
or Gaussians [56]. A great advantage of local-orbital methods is the much
smaller size of the basis (typically up to twenty basis functions per atom),
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reflecting their economy when fitting rapidly varying wavefunctions. How-
ever, as a discrete set the convergence of a local basis is not simply con-
trolled by a single parameter. Local basis sets always require “optimization”
and experience, and tested basis sets are collected into libraries with lim-
ited possibilities for modification. The words of caution about plane-wave
basis-set convergence apply even more strongly to local basis sets. While
a well-designed basis set (for example, the “double-zeta plus polarization”
(DZP)) does match the accuracy of a fully converged plane-wave calculation,
the omission of the polarization term or calculation with single s and p func-
tions can lead to large errors. This is particularly true for forces. For atoms
far from equilibrium (e.g., under large strain) it may be necessary to increase
variational freedom by expanding the basis to triple functions to achieve con-
vergence. In some cases, especially for systems with large open volumes, it
is advisable to augment the basis set by introducing “floating orbitals”, i.e.,
basis functions not centered at atoms.

Finally, one should mention the real-space methods quickly gaining popu-
larity [57,58]. They use finite-difference approximations for the kinetic-energy
operator (finite elements are also a possibility), and the quality of the basis
set can be controlled simply by the choice of the spacing of the real-space
grid. The great advantage of real-space techniques is their easy adaptability
to different boundary conditions (periodic, open, etc.), which is especially
useful for studies of defects in low-symmetry nanostructures, where supercell
methods can be quite wasteful.

8 Time-Dependent and Finite-Temperature Simulations

Within the Born–Oppenheimer approximation, the electronic and ionic mo-
tion and timescales are well separated. First-principles molecular dynamics
(FPMD) can be implemented on the Born–Oppenheimer hypersurface by cal-
culating an instantaneous value for the electronic total energy Etot[{Ri}] as
determined by all the ionic positions {Ri}. The forces acting on the atoms
are then evaluated as

F i = −∂Etot

∂Ri
(6)

and Newton’s equations of motion are solved for the ionic degrees of freedom,
using standard algorithms for the second-order temporal differential equa-
tions. Periodic boundary conditions are routinely implemented, and allow
simulations of disordered amorphous or liquid phases. A fixed-volume super-
cell with conserved total energy corresponds to the microcanonical statistical
ensemble. The constant-temperature (canonical) ensemble can be simulated
using the Nosé–Hoover thermostat [59, 60]. Allowing the supercell volume
to change as a dynamical variable leads to the constant-pressure ensemble,
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and structural phase transformations are enabled by making the directional
vectors spanning the supercell also dynamical [61].

The molecular-dynamics techniques also enable free-energy simulations.
The thermodynamic integration formula for the (Helmholtz) free energy reads

∆F =
∫ 1

0

dλ 〈H1 − H0〉λ , (7)

where ∆F is the free-energy difference between the actual system with the
Hamiltonian H1 and a reference system with the Hamiltonian H0, and 〈. . . 〉λ
denotes a temporal average along an isobaric-isothermal trajectory generated
from the Hamiltonian

H(λ) = λH1 + (1 − λ)H0 . (8)

Under ergodic conditions this is equivalent to an ensemble average. If the
free energy of the reference system is known, (7) allows one to compute the
free energy of the actual system. The FPMD method is particularly well
adaptable to the supercell geometry.

The quantum dynamics associated with the electronic degrees of freedom
can be described by the time-dependent Schrödinger equation. Within the
density-functional formulation of many-body systems, this leads to the pow-
erful formulation of time-dependent density-functional theory [62]. It can be
cast in the form of time-dependent Kohn–Sham equations with a general-
ized, time-dependent exchange-correlation potential. These equations can be
explicitly solved by time-propagation algorithms and starting from an appro-
priately prepared initial state. The time evolution of the wavefunctions and
the density can then be analyzed to obtain the desired physical quantities,
such as the full response of the system to an external, polarizing field or
exciting pulse.

The Kohn–Sham equations with an external time-dependent perturbation
can also be treated in the linear-response limit if the perturbation is weak.
As the Kohn–Sham states are noninteracting, the linear-response function of
the system can be constructed. The linearization leads to integrodifferential
equations with an exchange-correlation kernel derived from the description of
Exc. Linear-response TDDFT is a popular method [63] to estimate excitation
energies, polarizabilities and inelastic-loss properties (such as photoabsorp-
tion cross sections), especially for finite systems. The treatment of extended
systems (periodic boundary conditions) within TDDFT requires the consis-
tent handling of electronic currents in the system, and is best characterized
as time-dependent current-density-functional theory (TCDFT) [64].

9 Jahn–Teller Distortions in Semiconductor Defects

The Jahn–Teller effect is the removal of electronic degeneracy by spontaneous
lowering of spatial symmetry of atoms surrounding a defect, which leads to
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Fig. 2. The splitting of the defect-related gap states for a vacancy in Si. The point
symmetry group is denoted for defects in different charge states. The arrows denote
the population of the two spin states

the lowering of total energy. This is the result of a general theorem [65], with
several well-known consequences in solid-state physics.

It is easiest to discuss the Jahn–Teller mechanism by using the monova-
cancy and a substitutional metal impurity in a tetrahedrally bonded semi-
conductor (Si) as examples. These same systems will later be presented as
examples of state-of-the-art supercell DFT calculations in Sect. 16.

9.1 Vacancy in Silicon

In the pioneering linear combination of atomic-orbitals (LCAO) model by
Watkins [66] (see Fig. 2), the electronic configuration of a neutral vacancy
in Si (VSi) with full cubic (Td) symmetry is a2

1t
2
1, analogous to a Si atom

([Ne]3s22p2). The a1 state lies in the valence band (is a resonance) and is
doubly occupied. The other state t1 is in the fundamental gap and can contain
up to six electrons. It is pushed into the gap by the repulsive potential due
to the removal of a positive ion in the lattice. In compound semiconductors,
therefore, the states are expected to lie higher for anion vacancies with a
larger number of removed valence electrons than for cation vacancies.

The filling of the gap states with rising Fermi level is associated with the
relaxations of the atoms neighboring the defect. If there are no electrons in
these levels, the Td symmetry of the ideal vacancy (ideal crystal) is preserved.
The only possible relaxation is of the breathing-mode symmetry around the
defect center. Adding one or more electrons to the levels splits the degeneracy
through the Jahn–Teller effect, and lowers the symmetry through atomic
relaxation. The main component of this distortion is tetragonal, giving D2d

symmetry. This can occur in two senses, giving either a short, broad (“type
A”) or long, thin (“type B”) shape for the box bounding the nearest-neighbor
atoms (see Fig. 3). This determines the order of the resulting b2 and e states.
For VSi, the latter option turns out to be valid.

One electron added to the gap level thus results in a singly positively
charged vacancy with D2d symmetry. Adding more electrons usually implies
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Fig. 3. The bounding boxes for the Si vacancy with distortions of different point-
symmetry orientation

higher total energies because of the intraelectron Coulomb repulsion between
the localized electrons in the gap states. However, adding a second electron
to the vacancy in Si can enhance the pairing distortions (while retaining D2d

symmetry) and the Jahn–Teller splitting, possibly outweighing the increased
Coulomb repulsion. This is the negative-U phenomenon [67] often encoun-
tered in semiconductor defects. Another way of stating the effect is to say
that the energy to remove two electrons from V 0

Si is less than to remove one
electron. Thus V +

Si would be unstable.
A trigonal distortion from Td symmetry occurs when a third electron is

added and the vacancy is in the charge state q = −1. This lowers the symme-
try to or C2v or C3v and splits the e state to b2 and b1. The quantitative re-
sults of state-of-the-art supercell calculations for the charge-state-dependent
relaxation and how they match the Watkins model are given in Sect. 16.

9.2 Substitutional Copper in Silicon

Neutral CuSi [68] is isoelectronic with the negatively charged VSi (see Fig. 4).
The triplet state t32 is partially occupied, in the bandgap, and susceptible to
the Jahn–Teller effect. If onsite electronic repulsion prevails, the high-spin
S = 3/2 states would be stabilized, as for example in the case of negatively
charged substitutional Ni in diamond or the silicon vacancy in SiC [69]. Spin-
orbit coupling also affects the orbital degeneracy, especially for the heavier
impurity elements.
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Fig. 4. The evolution of the defect-related states of substitutional Cu in Si from
those for a Cu atom and Si vacancy

In general, it is in principle possible to reach higher positive and negative
charge states by adding/removing electrons to/from the localized levels. The
stability of a given charge state requires accurate calculation of its total
energy, and is subject to the computational limitations discussed above and
further expanded upon in Sects. 13–15.

10 Vibrational Modes

The phonon modes of a vibrating solid can be calculated using the power-
ful linear-response formalism [70], where the DFT total-energy hypersurface
enters as the ground state and determines the elastic response. This formal-
ism has been implemented using different basis sets for bulk calculations,
including short-range local orbitals [71]. For defects in semiconductors, it is,
however, the localized vibrational modes (LVMs) associated with defects that
are often useful fingerprints for defect identification. In the case of defect-
associated localized modes, a more economical route than the full phonon
response is provided by considering only a single supercell. This is because
the interaction between the defect replicas can be made small by using a
large enough cell, whereby the vibrations do not mix and there is no phonon
dispersion. The total energy of the supercell can be written as a Taylor series
around the equilibrium positions in the harmonic approximation as

Etot[{Rαi + sαi}] = Etot

[
{Rαi } +

1
2

∑
αi,βj

∂2Etot

∂Rαi∂Rβj
sαisβj + · · · , (9)
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where sαi is the ith Cartesian component of the atomic displacement of the
ion α. The coupling constants

Φαi
βj ≡ ∂

∂Rαi

(∂Etot

∂Rβj

)
(10)

are conveniently obtained as numerical derivatives of the (Hellmann–Feyn-
man) forces on the atoms as they are shifted a small distance from their
equilibrium positions around the defect (“frozen phonons”). The frequencies
ω and amplitudes u of the localized vibrations can then be obtained as the
normal-mode solutions to the equations

−ω2uαi +
∑
βj

Dβj
αi , uβj = 0 , (11)

where Dβj
αi is the dynamical matrix. If Mα is the mass of ion α,

Dβj
αi ≡ 1√

MαMβ

Φαi
βj . (12)

In practical LVM calculations, selected atoms in the supercell are dis-
placed to all three Cartesian directions, and after each displacement the
ground-state electronic total energy is obtained and the Hellmann–Feynman
forces calculated. This is done for all atoms that are a priori considered impor-
tant for the description of the local vibrational modes around the defect. The
dynamical matrix is then calculated by the finite-difference approximation us-
ing these forces and displacements. The normal modes and the corresponding
vibrational frequencies can then be obtained by diagonalizing the dynamical
matrix. The harmonic modes can easily be quantized and the zero-point vi-
brational motion estimated. Within the harmonic approximation, the phonon
spectrum can be used to estimate the vibrational entropy of a given defect,
which can then be entered as the prefactor when estimating absolute defect
concentrations in thermal equilibrium.

Alternatively, the phonon spectrum, including the localized modes, can
be obtained by MD simulation. The simulation time has to be long enough
so that all the relevant vibrational modes have undergone several oscilla-
tion periods. The vibrational frequencies can then be obtained by Fourier
transforming the velocity autocorrelation function of the moving ions. This
usually requires that the LVM is well separated from the density of states
for host-lattice vibrations. The MD approach includes also the anharmonic
contributions to the vibrations, but not the zero-point motion.

11 Ionization Levels

The formation energy of a defect or impurity X in the charge state q is

Ef [Xq] = Etot [Xq] − Etot [bulk] −
∑

i

niµi + q [µe + Ev] , (13)
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where Etot [Xq] is the total energy from a supercell calculation with a defect
or an impurity in the cell, and Etot [bulk] is the total energy of the equivalent
bulk supercell. ni indicates the number of atoms of type i (host or impurity),
either added (ni > 0) or removed (ni < 0) from the defected supercell, and
µi denote the corresponding atomic chemical potentials. They represent the
energy of the reservoirs with which atoms are exchanged when assembling
the crystal in question. µe is the electron chemical potential (Fermi level),
referenced here to the valence-band maximum Ev in the bulk material. The
valence-band maximum of defect supercell has to be aligned with that in the
bulk (see below).

For a monoatomic solid, the formation energy for a defect in the charge
state q reads

Ef
q = Edef

q − Nµ + q(Ev + µe) , (14)

where Edef
q is the total energy of the defect-containing supercell and N the

total number of atoms in it.
The thermodynamic ionization (transition) level of a given defect Ed(q/q′)

is defined as the Fermi-level position where the charge states q and q′ have
equal total energy. In experiments where the final charge state can relax to its
equilibrium configuration after the transition (excitation), this is the energy
level that would be observed. The ionization levels are therefore observed
in DLTS experiments or (for shallow levels near band edges) as the thermal
ionization energies derived from temperature-dependent conductivity or Hall
effect data.

The optical energy Eopt
d (q/q′) associated with a transition between charge

states q and q′ is defined similarly to the thermodynamic transition energy,
but now the final state with charge q′ is calculated using the atomic geometry
of the initial state q. The optical level is observed in “vertical” absorption
experiments where the final charge state cannot relax to its equilibrium.
In emission experiments, on the other hand, the initial excited state has
evolved towards its minimum-energy configuration, which is different from
the ground-state structure. Optical emission and absorption peaks are thus
separated by the so-called Stokes shift. This poses challenges for both the
experimental assignment of peaks and the theoretical analysis.

For a two-component (compound) semiconductor, (13) can be rewrit-
ten [16] in a form that reflects the stoichiometry of the host material. It
is gauged by the chemical potential difference ∆µ of an AB compound as

∆µ = µA − µB − [µA(bulk) − µB(bulk)] , (15)

with an allowed range

−∆H ≤ ∆µ ≤ ∆H , (16)
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where the lower limit corresponds to A-rich and the upper limit B-rich mate-
rial. ∆H is the heat of formation of the compound from its bulk constituents,

∆H = µA(bulk) + µB(bulk) − µAB(bulk) . (17)

By defining

Ef
1 [Xq] ≡ Etot [Xq] − 1

2 (nA + nB)µAB(bulk)

− 1
2 (nA − nB)[µA(bulk) − µB(bulk)] + qEv (18)

one can write (13) in the short form

Ef [Xq] = Ef
1 [Xq] + qµe − 1

2 (nA − nB)∆µ . (19)

Equations (14) or (19) provide a basis for evaluating the ionization level
between charge states q and q + 1 as the value of µe where the two for-
mation energies are equal. This is a widely used technique for defects in
semiconductors. It requires the accurate determination of the supercell to-
tal energies, and uses the valence-band maximum as the absolute reference
energy (alternatively, the electron chemical potential can be measured from
the conduction-band minimum). Although it makes no explicit reference to
the eigenvalues of the Kohn–Sham gap states, the method can suffer from
the DFT underestimation of the bandgap, especially if the state in question
is far from the reference energy, close to the opposite band edge.

12 The Marker Method

The problems of bandgap underestimation and valence-band alignment can to
some extent be avoided in using the so-called marker method for calculating
ionization-level positions [72]. Let us define the configuration energy for a
defect labeled d as the total energy difference per unit charge between two
charge states

Cd(q/q′) =
(
Etot

[
Xq′] − Etot [Xq]

)/
(q − q′) . (20)

If there is a measured or otherwise accurately known reference (“marker”)
defect m with the ionization level Em(p/p′) between charge states p and p′

in the region of interest in the semiconductor bandgap, one can calculate its
configuration energy Cm(p/p′) and the configuration energy difference of d
from the marker as

Dd(q/q′) = Cd(q/q′) − Cm(p/p′) . (21)

Then the ionization level of interest can be estimated as

Ed(q/q′) ≈ Dd(q/q′) + Em(p/p′) . (22)
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The idea is to achieve systematic cancelation of computational errors. This
happens best when the defects d and m are similar and all computational
parameters are the same.

The reference energy may also be taken as the valence-band maximum
and the conduction-band bottom of the bulk supercell with the same number
of atoms as the defect supercell, whereby

Cbulk
m (0/ + 1) = Ev and Cbulk

m (−1/0) = Ec , (23)

and the bandgap is

Eg = Cbulk
m (−1/0)− Cbulk

m (0/ + 1) . (24)

The marker method can provide a useful alternative for ionization-level de-
termination, but requires the knowledge of a suitable known transition level
in the vicinity of the level under scrutiny.

13 Brillouin-Zone Sampling

For a perfect (no defects) lattice, the convergence of electronic properties
can be achieved either by increasing the number of k points in the BZ or
the product of the number of atoms (N) in the calculational unit cell and
the number of k points. The computational cost increases linearly with the
number of k points but is proportional to at least N3. Thus increasing simply
the number of k points would seem most economical. However, for defect
calculations the spurious defect–defect interactions are a more subtle issue.
For defects in metals already quite small supercells may give well-converged
results if the number of k points is large enough. For defects in semiconductors
the situation is more difficult. Their description involves localized gap states.
The description of these is not straightforwardly improved as the number of
k points increases, i.e., the detailed choice of the k-point sampling may affect
the convergence.

In supercell calculations, the evaluation of a ground-state property P of
the system, such as total energy, requires integration over the Brillouin zone
(BZ) of the reciprocal cell

P =
( 1

VBZ

)∫
BZ

d3
k

∑
n

pn(k)f [εn(k)] , (25)

where VBZ is the volume of the BZ, n enumerates Kohn–Sham states with
the wavevector k and eigenvalue εn(k), and pn defines the physical property.
f [εn(k)] is the occupation number of the Kohn–Sham state, given by the
Fermi–Dirac distribution around the chemical potential µe as

f [εn(k)] =
1

e
µe−εn(k)

kBT + 1
. (26)
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For semiconductors with a finite gap between occupied and unoccupied states,
the integrand in (25) is continuous, and consequently the integral can, in
principle, be replaced by a finite sampling of discrete k points. The computa-
tional cost increases linearly with the number of k points, and “special point”
schemes are popular to reduce the computational cost to obtain the desired
accuracy [73]. In particular, the uniform k-point mesh approach suggested
by Monkhorst and Pack [74] has been widely used in practical calculations.
For very large actual supercell sizes, the BZ shrinks towards a point (the
Γ -point, the k = 0 of the BZ). Γ -point sampling offers additional savings in
computing as the Kohn–Sham wavefunctions are purely real at k = 0.

The simplest scheme to sample the BZ in supercell calculations is to use
the Γ point only. When the size of the supercell increases, the wavefunctions
calculated correspond to several k points of the underlying perfect bulk lat-
tice, and the perfect lattice k space is evenly sampled. In order to improve
the description of, in particular, that of the delocalized bulk-like states and
the description of the electron density, it is beneficial to use k points other
than the Γ point. Thereby also components with wavelengths larger than the
supercell lattice constant are included. This idea leads to the special k-point
schemes mentioned above. They are widely used to sample the BZ also in
defect calculations.

The accuracy of a given k-point mesh depends naturally on the super-
cell size (BZ volume). Makov et al. [75] utilized this fact to suggest sampling
meshes that would in fact extrapolate the integration result towards larger
unit-cell sizes. They proposed a scheme to choose k points for supercell cal-
culations so that the electronic defect–defect interactions are minimized in
the total energy.

Defect calculations often focus on total-energy differences, and a tacit as-
sumption is that errors due to BZ sampling largely cancel out when taking the
differences (bulk vs. defect, for example) treated with equal-size supercells.
This assumption is not a priori warranted and should be checked carefully.
It has been demonstrated [76] that even for relatively large supercells the
sampling errors can depend on the defect type and charge state and thus
do not cancel when taking the difference. Shim et al. [76] investigated va-
cancy and interstitial defects in diamond and silicon, and found that for a
given supercell size, the k-point sampling errors in the total energy can vary
considerably depending on the charge state and defect type.

14 Charged Defects and Electrostatic Corrections

Although the supercell approximation describes accurately and in an eco-
nomical way the crucial local rearrangement of bonding between atoms and
the underlying crystal structure, it also introduces artificial long-range in-
teractions between the periodic images. The most dramatic artefact is the
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divergence of the overall electrostatic (Coulomb) energy for charged defects
in the periodic superlattice.

This divergence of the total energy of charged defects in the supercell
approximation is usually circumvented by the introduction of a fictitious
neutralizing background charge, often in the form of a uniform “jellium”
distribution. The influence of this neutralizing charge in the total energy
of the supercell needs to be included. This is known as the electrostatic or
Madelung correction ∆Ec.

With the neutralizing background added, in the large-supercell limit the
electrostatic interaction of a charged defect with its periodic images in an
overall neutralized system becomes, in principle, negligible. However, there
is no guarantee that the convergence of the Coulomb energy as a function
of the supercell size is particularly fast [77]. In fact, classical electrostatics
for localized charges in an overall neutral system predicts an asymptotic L−1

dependence, where L = 3
√

V and V is the supercell volume. This scaling law
is unfortunately slow in converging, and, moreover, its prefactor is in general
unknown. Consequently, electrostatic errors are easily introduced into total-
energy calculations and they do not necessarily cancel when taking energy
differences, as the magnitude depends on the details of the charge distribution
within the supercell. Over the years, several attempts to reliably estimate
∆Ec have been proposed.

Leslie and Gillan [78] and Payne and coworkers [79, 80] have developed
correction formulae to be applied for electrostatic correction of charged-defect
arrays. They considered an array of localized charges immersed in a structure-
less dielectric and neutralized by jellium compensation. By considering the
multipole expansion of the defect charge distribution, the correction formula
can be derived in the form

∆Ec ≈ − q2α

2εL
− 2πqQ

3εL3
+ O(L−5) , (27)

where q is the charge of the defect, α the Madelung constant of the super-
lattice, and ε the static dielectric constant of the host material. For cubic
geometries, α is 2.837 3, 2.888 3 and 2.885 for SC, BCC and FCC supercells,
respectively. The first term corresponds to a point-charge array and a com-
pensating background in a uniform dielectric.

The second term in the right-hand side of (27) arises from the shape-
dependent interaction charge distribution inside the supercell with the neu-
tralizing background. The parameter Q is the second radial moment of the
defect charge density

Q =
∫

d3rr2[ρd(r) − ρb(r)] . (28)

Kantorovich [81] re-examined the method for arbitrary supercell shapes, and
suggested a modified formula ignoring dipole–dipole interactions.
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There is obvious ambiguity in this correction scheme. First, the static
dielectric constant is introduced as an external parameter and is not con-
sistently defined. Secondly, the correction scheme is derived assuming that
the charge perturbation introduced by the defect is well localized within the
supercell. This is strictly speaking not valid, as in classical theory the polar-
ization and thus the aperiodic screening charge distribution extend over the
whole macroscopic crystal. Thus, as described in detail by Lento et al. [82], Q
depends on the size of the supercell and (27) does not lead to a well-defined
correction value. Nevertheless, (27), often known as the Makov–Payne for-
mula, is popular in estimations of electrostatic corrections.

Segev and Wei [83] showed that for charges with a Gaussian distribution
with a certain width σ interacting with the background, the Madelung correc-
tion should vanish as σ becomes large. Moreover, situations may arise where
local symmetry-breaking distortions in fact induce a net dipole in the super-
cell. Dipole contributions cannot be discarded in such a situation, as they
do not cancel in the total-energy differences between perfect and defected
supercells.

Shim et al. [84] have systematically studied the behavior of the electro-
static correction for supercells of different sizes for vacancy and interstitial
defects in diamond. For negatively charged vacancies and positively charged
interstitials, the formation energies show a clear dependence on the supercell
size and are in qualitative agreement with the Makov–Payne trend. For posi-
tively charged vacancies and negatively charged interstitials, the electrostatic
corrections are weak. An analysis of the spatial charge density distributions
reveals that these large variations in electrostatic terms with defect type
originate from differences in the screening of the defect-localized charge. A
strongly localized charge is close to the point-ion model, whereas delocalized
defect states spread out and result in weak Madelung corrections. To con-
vince oneself of the proper elimination of the spurious electrostatic energy,
one should, in the general case, carry out a proper scaling analysis of the L−1

behavior and extrapolate to the infinite-L limit.
Another approach is based on fitting a multicenter Gaussian distribution

to the defect charge density, and calculating and subtracting explicitly the
electrostatic interactions between the Gaussian distributions and the back-
ground. This approach has so far only been used for charged molecules in
vacuum [85], but it may be possible to generalize to defect supercells with
aperiodic densities.

A different route to the electrostatic correction for charged defects was
taken by Schultz [86], based again on the linearity of the Poisson equation
but avoiding the neutralizing homogeneous background. An aperiodic defect
charge distribution ρLM(r) is constructed so that it matches the electrosta-
tic moments of the system up to a given order. When this charge density is
separated from the supercell charge distribution, the remaining periodic dis-
tribution has zero net charge and is momentless. Thus, its electrostatic energy
can be accurately calculated within the periodic boundary conditions. The
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Coulomb energy of ρLM(r) is calculated using “cluster boundary conditions”,
with the surrounding polarizable, defect-free crystal replaced by perfect, non-
polarizable bulk crystal. There is no analytical formula similar to (27) for this
local-moment counter-charge (LMCC) method. Its main content is to use pe-
riodic boundary conditions to solve the Kohn–Sham equations but not for
the Poisson equation.

One can then calculate the electrostatic energy of a single defect-contain-
ing supercell surrounded by cells with the perfect crystal charge density. In
order to correctly align the arbitrarily referenced potentials, Schultz [87] has
suggested a method where a common reference potential can be calculated for
all types of defects and also for the valence-band edge of the perfect crystal.

The LMCC method should, in principle, lead to a rigorous 1/L conver-
gence of the supercell energy, with a prefactor proportional to (1 − ε−1)q2.
This method does not need a compensating background, and there are no in-
teractions between the defect charge and its periodic images. It also provides
a way to define a reference energy independent of the defect charge state for
aligning the band edges. The implementation of the LMCC method would
thus seem very much worth the effort for calculations of charged defects.

15 Energy-Level References and Valence-Band
Alignment

As is obvious from (13), another important parameter for supercell-based
total-energy calculations is the position of the valence-band maximum
(VBM), Ev, which is usually taken as the reference energy for the elec-
tron chemical potential. The position of the VBM of the defect-containing
supercell is different from that of the defect-free supercell, and this differ-
ence depends, in general, on the charge state of the defect. Consequently, a
valence-band alignment (VBA) correction is usually applied by matching the
two values. The magnitude of this correction is

∆EVBA =
〈
V eff

bulk

〉
−

〈
V eff

defect

〉
, (29)

where V eff is the effective Kohn–Sham potential and the brackets denote
averaging over the bulk and defect supercells, respectively.

Other potential-energy references are naturally possible. One possibility
is to align an electronic core or semicore level energy (in all-electron calcu-
lations), or define all energies with respect to the so-called crystal zero, the
potential energy at the surface of a neutral Wigner–Seitz cell. This choice is
particularly simple and useful when using the atomic-sphere approximation
(ASA), for example in the context of the linear-muffin-tin-orbital (LMTO)
method.
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16 Examples: The Monovacancy and Substitutional
Copper in Silicon

The literature on supercell calculations of defects in semiconductors is vast
and not even a partial review is attempted here. Instead, we discuss in more
detail a recent systematic case study, where the practical implementations
of two popular approaches were critically examined. The study involves the
prototypical (but far from trivial) point defects in Si, the monovacancy VSi

and substitutional copper CuSi.
The fundamental nature of VSi means that it is a much-studied defect. It

has four unpaired electrons, and in a simple LCAO picture they occupy four
orbitals in the atoms surrounding the vacancy in the diamond structure [66].
These induce electronic states in the gap, which are modified by symmetry-
lowering structural distortions driven by the Jahn–Teller effect.

A comprehensive study of the convergence of the formation energy of the
neutral silicon vacancy as a function of the supercell size has been given
by Puska et al. [18] (see also [88]). The result is shown in Fig. 5. It turns
out that very large supercells are necessary for proper convergence of the
vacancy formation energy, and that the relaxation pattern around the va-
cancy undergoes a qualitative change (from outward to inward relaxation)
as the supercell size grows. This is also shown by calculations for large finite
clusters [19]. The total-energy hypersurface is flat, especially for negatively
charged defects, which makes the unambiguous determination of the point
symmetry difficult. This is also reflected in the difficulty of determining the
ionization levels accurately. This will now be discussed for both VSi and CuSi.

CuSi has a similar structure to VSi: the vacancy is perturbed by the Cu 3d
states that lie in the valence band. The Jahn–Teller theorem predicts that
CuSi should undergo a symmetry-lowering distortion with magnitude con-
strained by the presence of the metal atom. Spin-orbit coupling effects may
also reduce the amount of distortion by lifting the orbital degeneracy.

16.1 Experiments

The greater structural freedom of VSi introduces another possible (and often
encountered) complication. The total energy gained by pairing electrons in
dangling bonds, associated with a structural distortion, can outweigh their
mutual Coulomb repulsion. This is the famous “negative” effective-U phe-
nomenon, which leads to unexpected ordering of the ionization levels in
the bandgap. In the case of VSi the pairing for the neutral defect is much
stronger than for the singly positive +1 state, which shifts the ionization
(donor) level Ed(0/ + 1) below that for the second donor Ed(+1/ + 2). Thus
the singly positive silicon vacancy is a metastable state, a fact confirmed
with DLTS and EPR measurements by Watkins and Troxell [89]. The en-
ergy position measured in these experiments gives for the double donor level
the value Ed(+1/ + 2) ≈ Ev + 0.13 eV, while EPR studies show that V+

Si
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Fig. 5. Formation energy of the neutral vacancy in Si. The supercell size (number of
atoms) is given on the top of each panel, and the k-point set used for Brillouin-zone
sampling is indicated as 1 = Γ , 2 = 23, 3 = 33, 4 = (1/4, 1/4, 1/4) and 5 = Γ + L.
From [18]

ionized by photoexcitation decays to the neutral state from a donor level
at Ed(0/ + 1) ≈ Ev + 0.05 eV. EPR studies together with stress-alignment
experiments also demonstrate that the Jahn–Teller effect causes structural
distortions in accord with a straightforward one-electron model. This model
predicts that the neutral and positively charged defects have D2d symme-
try, while the negative charge states have C2v symmetry. The energies of the
acceptor levels Ed(−1/0) and Ed(−2/ − 1) are experimentally unknown.

For CuSi, there are accurate experimental values [90, 91] for its ionization
levels and thus it provides a good testing ground for theory and computation,
even if experimental structural information is lacking. The defect has a single
donor level at Ed(0/ + 1) ≈ Ev + 0.207 eV, an acceptor level Ed(−1/0) at
≈ Ev + 0.478 eV ≈ Ec − 0.69 eV, and a double acceptor at Ed(−2/ − 1) at
Ec − 0.167 eV.

The Jahn–Teller distortions for VSi and CuSi (and more generally sub-
stitutional transition-metal impurities in Si) possess two components. The
main one is tetragonal in character and gives the defects D2d symmetry. The
direction of this distortion may occur in two senses, and this determines the
relative energetic ordering of the resulting electronic states. The two senses
correspond to two different shapes for the bounding box with {100} faces
that contains the four atoms surrounding the center: one is short and broad
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while the other is long and thin. They correspond to different relative lengths
for the six Si–Si distances between these four atoms. For the D2d point group,
four of the distances belong to one equivalent set and two belong to the sec-
ond equivalent set. One type of distortion (type A) has the pair longer than
the four, and for the other (type B) it is the other way round. Type A splits
the t2 state into a singlet a1 state above the doublet e state, while type B
does the opposite. Transition-metal impurities relax in the A pattern, and
monovacancies in Si relax in the opposite sense, B.

When the system contains sufficient electrons to occupy the e state, a
weaker trigonal distortion is expected. It lowers the symmetry to C2v. The
equivalent pair of Si–Si lengths in the D2d case become unequal. This splits
the e state into orbitals of b1 and b2 character. Spin-orbit coupling may also
affect the splitting of these states for transition-metal impurities [92].

16.2 Calculations

In a recent study, Latham et al. [93] carried out a systematic quantitative
study of the electrical levels and associated structural relaxations of VSi and
CuSi. To conduct the study, two different computer programs, AIMPRO [94]
and VASP [95, 96] were used. The former uses localized Gaussian orbitals
as the basis set for the Kohn–Sham wavefunctions, while the charge den-
sity is expanded in plane waves. VASP uses plane waves throughout. In
AIMPRO, the core electrons of atoms are represented by pseudopotentials
constructed according to the Hartwigsen–Goedecker–Hütter (HGH) norm-
conserving scheme [45]. The VASP package includes pseudopotentials based
on the Vanderbilt ultrasoft [46] construction or, alternatively, the projected-
augmented-wave (PAW) method [48]. The Cu 3d electrons are included ex-
plicitly in the HGH and PAW schemes, while they are not in the Vanderbilt
pseudopotential.

In both methods, the exchange-correlation energy is evaluated using the
LSDA formula described by Perdew and Wang [97]. Unit cells of 216 atoms
are used in all cases, and the supercell band structure is sampled by using the
Monkhorst–Pack scheme with 23k points, folded according to the symmetry
of the system and shifted to avoid the Γ point. This enables the total energy
convergence of better than 10−4 eV per supercell, with the plane-wave kinetic
energy cutoffs chosen to meet this requirement (in AIMPRO the Coulomb
energy is evaluated also using the plane-wave expansion). The actual value of
the cutoff depends on the atoms present and the chosen pseudopotential. For
charged defects, a compensating background charge is introduced as discussed
in Sect. 13, and a finite-size scaling is performed.

For bulk Si, both methods reproduce the lattice parameter a and the
bulk modulus B0 well (see Table 1). The calculation of the bandgap Eg is
a deficiency of LSDA-DFT formalism, as discussed above. The two methods
give similar values, Eg(AIMPRO) = 0.71 while Eg(VASP) = 0.60 eV. The
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VASP results do not depend on whether the core electrons are treated by the
ultrasoft pseudopotential or PAW.

Table 1. Calculated and measured values for the lattice parameter a and the bulk
modulus B0 of Si

Method a (Å) B0 (GPa)

AIMPRO+HGH 5.395 97.0
VASP+VUS 5.390 87.7
VASP+PAW 5.403 72.8
Experiment 5.431 97.9

All the defect electron levels considered here are sufficiently deep so that
the energies of donors can be given with respect to Ec and acceptors with
respect to Ev. As reference (marker) energies Latham et al. choose addi-
tion/removal energies of ideal Si supercells with the same size (216 atoms)
as used for the defect calculations. This means that the energy levels are ref-
erenced to the nearest ideal-crystal band edge (i.e., the marker method with
respect to the two band edges). None of the studied defects are so shallow
that their energy would be between the theoretical and true bandgap. If this
were the case, it would be necessary to use the opposite ideal-crystal band
edge as the reference potential.

A summary of the calculated electrical levels, compared with experimental
data, is presented in Table 2.

Table 2. Calculated and measured electrical levels [93] for VSi and CuSi

Transition AIMPRO VASP VASP [15] Expt.
state VUS PAW [66, 90, 91]

VSi 0/+2 Ev + 0.0 Ev + 0.06 Ev + 0.15 Ev + 0.09
VSi +1/+2 Ev + 0.05 Ev + 0.11 Ev + 0.19 Ev + 0.13
VSi 0/+1 Ev − 0.04 Ev + 0.02 Ev + 0.11 Ev + 0.05
VSi −1/0 Ec − 0.31 Ec − 0.34 Ec − 0.57 exists
VSi −2/−1 Ec − 0.43 Ec − 0.23 Ec − 0.40 exists
VSi −2/0 Ec − 0.37 Ec − 0.29 Ec − 0.49
CuSi 0/+1 Ev + 0.17 Ev + 0.07 Ev + 0.17 Ev + 0.21
CuSi −1/0 Ec − 0.50 Ec − 0.45 Ec − 0.34 Ec − 0.69
CuSi −2/−1 Ec − 0.24 Ec − 0.18 Ec − 0.26 Ec − 0.17

When both program packages are set to use similar thresholds in terms
of energies and forces to decide structural optimization, the outcome shows
some differences. The AIMPRO package finds that the direction of the main
tetragonal distortion (D2d symmetry) is in the expected direction, type B
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for VSi and type A for CuSi. The VASP package also finds type B D2d for
neutral VSi. VASP yields type A D2d distortion for CuSi when the Vander-
bilt pseudopotential is used, but no significant deviation from the perfect Td

symmetry when PAW is used.
Both methods give equal energies for the (0/ + 1) level of CuSi. Regard-

less of constraint choice, no clear evidence is seen for the expected trigonal
component of the distortion of CuSi. The situation is more complex for VSi.
While the optimized structure in positive and neutral charge states has D2d

symmetry as expected, the unconstrained lowest-energy structure is a D3d

symmetry “split-vacancy” configuration. The split-vacancy configuration is
one where a Si atom is located between two unoccupied lattice sites, and
is 0.04 eV lower in energy than the ideal Td monovacancy. This result for
negatively charged vacancies was also found by Puska et al. [18].

According to Latham et al., the energy differences between the C2v and
C3v configurations of VSi in the q = −1 and q = −2 charge states are 0.02 eV
and 0.20 eV, respectively. This means that VSi in the C3v symmetry is cal-
culated to have a negative-U behavior also for the acceptor levels. Little is
presently known from experiment about the negative charge states other than
that they apparently exist.

The calculated energy for the (−1/0) acceptor level of CuSi near midgap
is somewhat deeper than the measured value, while the second acceptor is
shallower. The Jahn–Teller effect moves these levels apart, moving each by
0.1 eV. Thus, the calculations seem to slightly underestimate the magnitude
of the Jahn–Teller effect. It is reasonable to suppose that a similar pattern
will be found for the acceptor states of VSi if they can be measured, and the
expected C2v model without a negative-U effect would prevail.

17 Summary and Conclusions

Calculations based on the density-functional theory and the supercell method
enable quantitative estimates for the formation energies, diffusion barriers,
structural parameters and electrical levels of defects in semiconductors. More-
over, vibrational entropies and free energies can be estimated from the calcu-
lated force fields, which also enable first-principles molecular dynamics simu-
lations. It is also possible to feed the first-principles results for migration and
reaction barriers into kinetic Monte Carlo simulations based on master equa-
tions. This opens up the possibility for multiscale simulations of annealing
kinetics and related phenomena. Quantitatively accurate total-energy calcu-
lations open the way to first-principles thermodynamics and kinetics.

However, reaching the desired quantitative accuracy in the total-energy
calculations is not always straightforward, and requires careful consideration
of several possible sources of error. In particular, the positioning of defect-
related electronic levels in the fundamental semiconducting gap can be quite
problematic. The sources of errors may be divided into three main categories.
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One is the underlying theory, especially the treatment of electronic exchange
and correlation. Local and semilocal approximations do not properly describe
the discontinuity of the corresponding density functional, which contributes
to the underestimation of the fundamental gap. The second source of error
are the finite-size effects inherent in the supercell method, which need proper
scaling analysis as a function of the cell size. These errors include the spu-
rious defect–defect interaction, dispersion of defect-related electronic states,
incomplete sampling of the reciprocal cell, and the constrained relaxation of
atoms around the defect. The third source of errors are the approximations re-
quired to construct a specific implementation, including the pseudopotential
generation, basis-set construction, and numerical accuracy of the algorithms.

The power of the density-functional methods is considerable in revealing
and rationalizing the systematic trends in electronic and structural properties
of defects in semiconductors. These include the nature (acceptor or donor) of
the deep levels, their spin structure, point symmetry, and energetics. They
can also predict the localized vibrational modes associated with defects, and
provide the starting point (for example, the ground-state electron density)
for quantitative calculations of many experimentally observed characterizing
signals (such as positron-annihilation parameters). Total-energy calculations
also reveal the details of the potential-energy hypersurfaces for defects moving
in the lattice, which makes it possible to study the long-time kinetics by using
Monte Carlo techniques.

Quantitatively accurate supercell calculations for defects in semiconduc-
tors are notoriously difficult and demand considerable computational re-
sources. While many confusing and seemingly contradictory results have been
published in the scientific literature, the available computational methods
have steadily matured. With the increase of computer power available for
such calculations, it is now possible to perform well-benchmarked calcula-
tions with considerable predictive power.
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Abstract. The introduction of defect-related states in the bandgap of semiconduc-
tors can be both advantageous and deleterious to conduction, and it is therefore
of great importance to have quantitative computational methods for determining
the location of electrical levels. In particular, where the defect levels are deep in
the bandgap, the states involved are typically highly localized and the application
of real-space, localized basis sets have clear advantages. In this chapter the use
of such basis sets both for cluster and supercell geometries is discussed. Agree-
ment with experiment is often hampered by problems such as the underestimate of
bandgaps when using density-functional theory. We show that these can be some-
what mitigated by the use of “markers”, either experimental or theoretical, to
largely eliminate such systematic errors.

1 Introduction

It is well known that the electrical and optical properties of a crystalline ma-
terial are influenced by impurities and other defects. In particular, conduc-
tivity at a given temperature is related to the free-carrier concentration, that
in turn depends on the depth of the donor or acceptor level of the dominant
dopant. Therefore one requires dopants with the smallest ionization energy,
a value that is limited to the effective-mass level of the host material [1].
Conversely, electron and hole traps deep in the bandgap are detrimental to
the conductivity because they reduce the free-carrier concentration and the
resultant charged defects are scattering centers that reduce carrier mobil-
ity. Deep levels are also nonradiative recombination centers affecting optical
properties.

The importance of the electrical characteristics of defects has driven a
huge effort to develop reliable computational methods that can both explain
experimental observations and predict new dopants with the desired proper-
ties. Currently, most calculations in this field are performed using density-
functional theory (DFT) [2, 3], chiefly simulating crystalline materials using
periodic boundary conditions (PBCs), and plane wave (PW) basis sets1 to
represent the wavefunctions of the electrons.
1 Plane waves represent functions in a Fourier-transformed phase space and are

of the form exp(ik.r), where k is the wavevector that is related to an energy
by E = �

2k2/2m.
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With PBCs, a section of host material containing the dopant or defect is
constructed and this “supercell” is repeated periodically throughout space.
Such a construction represents a crystal of defects, and thus the use of PWs is
a natural choice. If the defect and its periodic images are sufficiently spatially
separated they do not interact significantly and the calculated properties
represent those of isolated defects. This means that in order to obtain reliable
data for defects (especially shallow dopants with large wavefunction extents)
large supercells must be used. However, the computational cost increases
rapidly with system size and in practice most of today’s calculations contain
up to a few hundred atoms.

The DFT-PBC approach has at least two major problems when calculat-
ing electrical properties. The first is that within most commonly used local-
density (LDA) or generalized-gradient (GGA) approximations, the bandgap
is underestimated, sometimes catastrophically. For example, crystalline Ge,
in reality a semiconductor with a bandgap 0.74 eV [4], is found to be a semi-
metal [5]! Secondly, in order to obtain information about the capacity for
defects to adopt different charge states one needs to know the properties of
charged systems. Strictly this is not possible with PBCs, but charged systems
can be approximated by the use of a uniform background charge that exactly
cancels the charge on the defect. Even then, this represents a space-filling
array of charges that have an associated electrostatic energy that does not
correspond to the properties of isolated defects.

These problems are both mitigated by the use of atomic clusters. Here,
defects are imbedded into large sections of the host material, but instead of
repeating it periodically, the surface of the material is passivated (usually
by hydrogen) effectively forming a large molecule. The cluster geometry im-
poses an artificial confining potential increasing the bandgap and localizing
electronic states. However, although this effect counteracts the inherent un-
derestimate of the bandgap, the surface–defect interactions are of a similar
nature to the defect–defect interactions in supercells.

Although there are several sources of error in the calculations, many of
them are somewhat systematic in nature, and hence relative locations of elec-
trical levels may be more reliable than absolute values. This has led to the use
of so-called marker methods [6–8], where one references the system of interest
to one that is well understood: for example, the donor level of P in diamond
is known, whereas those of As and Sb are not. Theory shows that they are
shallower than phosphorus [9] and may therefore represent an improvement
in the production of n-type diamond. (Of course, such calculations do not
reflect on the relative solubilities of these dopants.)

Finally, let us introduce the role of the basis functions used to describe
the electrons in our problem. The use of PWs does not represent a funda-
mental problem, but in order to treat many systems of interest where the
wavefunctions and charge density vary rapidly in space, the use of PWs of-
ten necessitates additional effort (such as high-energy cutoffs) or the use of
so-called ultrasoft pseudopotentials where one systematically removes the as-
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pects of the electrons that are difficult to represent efficiently with PWs due
to their localized nature. It is true that PWs may be viewed as a near-ideal
basis set for effective-mass-like shallow levels, since such donor and acceptor
states are built out of the band-edge Bloch states. However, for deep levels
the wavefunctions are often highly localized and can be characterized rather
more simply by the use of molecular orbitals.

The DFT package AIMPRO (Ab-Initio Modeling PROgram) uses a real-
space basis made up from Gaussian functions [10, 11]. The real-space basis
also allows the same electronic-structure methods to be applied to atomic
clusters and molecules. In this Chapter, we first present a detailed descrip-
tion of the basis sets used in our calculations. In Sect. 3 we describe the
computational methods for calculating electrical levels, and in particular the
marker method and present a review a range examples of its use in different
group-IV materials in Sect. 4.

2 Computational Method

Our intention is to detail the calculation of electrical levels and not review
the entire formalism used in the calculations. However, briefly, AIMPRO is an
electronic-structure program using LDA- and GGA-DFT. Atoms are treated
using pseudopotentials [12] to remove the core electrons, and the distribution
of the electrons solved self-consistently for a given set of atoms. AIMPRO can
be used with a range of pseudopotential types, including the seminonlocal
forms [13–15], and the dual-space separable pseudopotentials [16]. In addition
to the efficiencies offered by their separability, the latter pseudopotentials
offer extended norm conservation, accounting for a large number of occupied
and unoccupied atomic levels. Currently, by default, AIMPRO uses the Perdew–
Wang functional [17] for PBC calculations and a Padé approximation to
this functional [18] for cluster calculations, although a number of alternative
functionals are available. Historically, cluster calculations used an extremely
fast parameterized analytic form for the exchange-correlation functional as
described in detail previously [11]. GGA calculations are performed using a
White–Bird [19] implementation of the GGA functional [20].

AIMPRO can be used both in periodic and cluster modes and the atomic
structures optimized either using static minimization methods or molecular
dynamics. From these calculations a range of observables can be derived,
such as the electrical levels introduced above, vibrational-mode frequencies
and symmetries, electronic-structures, hyperfine and zero-field splitting ten-
sors, electron energy loss spectra, migration barriers, and so on. However, in
contrast to the majority of PBC calculations, AIMPRO represents the wave-
functions using a range of real-space, Gaussian-orbital functions.
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2.1 Gaussian Basis Set

In order to construct and solve the Hamiltonian for our systems we expand
our wavefunctions in terms of a basis set. Many different basis types are
used for first-principles calculations, and each has associated advantages and
disadvantages. There is no firm consensus on the optimum basis set to use,
and since the choice of basis set plays a significant role in determining the
structure and nature of the calculations, the particular bases used and issues
concerning them are worthy of some comment here. In the discussion that
follows we shall consider only the arguments surrounding the selection of
basis sets for pseudopotential calculations: clearly all-electron calculations,
which must describe the rapid fluctuations of the wavefunctions in the ionic
core region place additional demands on the basis set.

As alluded to above, of the many basis sets that are routinely used, per-
haps the most significant distinction lies between the expansion in terms of
PWs, and the use of basis functions that are localized functions in real space.
AIMPRO uses the latter type, specifically a set of Cartesian Gaussian orbitals
(CGOs) centered on atoms and possibly other positions. These basis func-
tions are products of a simple Gaussian and a polynomial in the position
vector relative to the center of the Gaussian:

φi,n1n2n3(r) = xn1yn2zn3e−αir
2
, (1)

where αi reflects the spatial extent of the function; larger (smaller) values
correspond to more localized (diffuse). The term xn1yn2zn3 defines the an-
gular dependence, and relates to the spherical-harmonic associated with the
angular-momentum and magnetic quantum numbers, l and m. For example,
a px-orbital has n1 = 1, n2 = n3 = 0. These polynomial combinations enable
the basis to describe atomic-like states of arbitrary angular momentum.

The basis-set is defined by the combination of Gaussian exponents and
angular-momentum to which the combinations of polynomial functions ex-
tend. The advantages and disadvantages of PW and these real-space basis
sets are already documented in the literature [11], however, it is useful to
consider some of the key differences between them.

A key advantage of CGOs is that they can be nonuniformly distributed in
space, lending a more flexible basis to regions that require it (for example in
the region of a defect in a crystal). Such an approach cannot be taken with
PW bases: the region with greatest complexity defines the density of PWs
everywhere. For systems containing a small region in which the wavefunctions
vary rapidly a high-energy cutoff might be required, and this dense PW
basis set must exist throughout the whole crystal. This leads to a very large
Hamiltonian and slow calculation. A particular example of this problem is
where surfaces are treated using a PBC via the inclusion of regions of vacuum.

An advantage of a PW representation is that the basis functions are neces-
sarily orthogonal. Consequently, the number of PWs can be increased without
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limit while retaining the stability of the calculation. CGOs are not orthog-
onal and the use of too large a basis set can result in numerical instability
developing. The stability of the basis becomes a significant issue when one
attempts to address the question of how one should choose the basis for a
particular problem. For a PW calculation it is possible to ensure that one has
arrived at a converged result by systematically increasing the PW cutoff. For
a CGO basis set it is not possible to perform a systematic test to ensure that
a convergent basis has been arrived at. Indeed, the choice of exponents for
the functions in the basis set is a nontrivial one. We shall discuss the details
of the basis set optimization procedure in more detail below.

We now consider the CGOs in more detail. The task is to obtain a set of
exponents for which the pseudowavefunctions are accurately described with-
out rendering the calculations unstable. In order to achieve this, the vari-
ational principle is employed: when one compares any two basis sets, that
which allows the wavefunctions to describe the true wavefunction most ac-
curately results in the lowest total energy. The minimization of the total
energy with respect to the exponents of the CGOs therefore results in the
optimum basis set for a given number of functions. This process may then be
repeated for different numbers of functions to assess whether the basis is large
enough. Again, the number of CGOs included cannot be increased without
limit as the calculations become unstable. However, it is typically possible
to obtain a convergent set of exponents prior to the onset of instability. Of
course, an increased number of exponents increases the size of the Hamil-
tonian, and in turn the computational cost. Typically, the optimum number
of basis functions is obtained by balancing the absolute quality of the basis
and the associated accuracy of the results against the computational load.

In addition to the number and value of the exponents, αi, the polynomial
functions included with a given Gaussian (s, p, d, f and so on) must also be
chosen. In general, a basis set contains a range of values of angular momen-
tum and each CGO is treated independently. The angular momentum has a
dramatic impact upon the number of functions in the basis set: for example,
angular momentum up to s, p and d results in 1, 4 and 10 functions per
exponent, respectively2.

As an example, four exponents per atom each of which include s and p,
gives rise to 16 functions per atom. Increasing the basis to include d-functions
increases the basis size to 40, and since diagonalization of the Hamiltonian
scales as the cube of the basis size, the time to obtain a total energy would
increase by more than an order of magnitude.
2 It should be noted that the linear combinations of six functions with n1 + n2 +

n3 = 2 in (1) produce the five d-type functions (xy, xz, yz, 2z2 − x2 − y2

and x2−y2), and an s-type function (x2+y2+z2). Our standard practice in using
the uncontracted basis sets discussed here is to include this additional s-type
function, and hence the n1 = n2 = n3 = 0, n1 +n2 +n3 = 1 and n1 +n2 +n3 = 2
terms yield ten rather than nine functions.
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It is therefore paramount that basis functions of higher angular momen-
tum are used selectively where the physical demands of the system merit
them. Indeed, using a small number of high angular momentum functions
is common practice in Hartree–Fock calculations where the basis sets are
relatively small due to the extreme computational cost of this method, and are
built up using the angular momentum of the atomic species with the addition
of a single, higher angular momentum orbital as a polarization function.

For most calculations all of the CGOs are centered on atoms, and move
with the atoms during structural optimization. It is also possible to center
basis functions at sites where there are no atoms. For example, historically,
centering basis functions at appropriate positions on the bonds between adja-
cent atoms in the crystal was used to improve the description of the angular
variations due to the formation of bonding orbitals. Locating basis functions
at bond centers allows for polarization to be incorporated without increasing
the maximum angular momentum, reducing the computational cost, but in-
troducing a poorly defined set of sites: during relaxation, structural changes
may change the atoms between which bonding is present.

However, increases in the speed of computational resources, together with
improved algorithms has meant that bond-centered orbitals have largely been
superseded by the use of basis sets containing higher angular momentum.
The higher angular momentum components provide the necessary angular
fluctuations without the need for the additional complexity of bond-centered
basis functions. Another situation in which localized basis functions may
be centered away from atoms is the use of “ghost” atoms when treating
surfaces. In this case, basis functions are placed in the vacuum region as
though atoms were there (although of course, no atomic potential is included).
This approach can provide additional basis functions to help describe the
evanescent wavefunction variations close to the surface.

For the majority of calculations the basis functions are atom-centered
CGOs. A set of basis functions is therefore associated with each atom. The
size of the basis set, and the particular exponents in it, will be optimized
for each species of atom. Additionally, it is sometimes appropriate to treat
different atoms of the same species with different basis sets within the same
calculation (for example, surface atoms may require a larger basis than bulk
atoms in a surface calculation).

In the basis sets specified so far, all of the CGOs are independent basis
functions, with coefficients free to change during the calculation, and each
contributes to the overall dimension of the Hamiltonian. It is possible, how-
ever, to exploit the physical properties of the system to take linear combina-
tions CGOs to form more complex basis functions that provide a comparable
accuracy but with a reduced number of independent parameters. These are
referred to as contracted basis sets and are developed in the following way.
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A small reduction in the basis sets involving d-type (and higher angular
momentum) functions can be obtained by taking linear combinations of the
functions in (1). Formally,

ψi,nlm =
∑

cnlm,n1n2n3φi,n1n2n3 . (2)

In the case containing up to quadratic prefactors there are ten functions φ,
from which we may choose to produce a set of nine functions, ψ, which
transform with angular momentum l = 0, 1, 2.

A more radical approach to reduce the size of a basis set uses combinations
of these ψi,nlm:

Ψnlm =
∑

Cnl
i ψi,nlm , (3)

where the number of functions of the form of Ψ is dramatically less than the
related set of ψ. Particular examples of these contracted bases appear below
in Sect. 2.3.

2.2 Choice of Exponents

As mentioned above, the values of αi may be chosen by consideration of the
total energy. Typically, this optimization process is performed for a prototyp-
ical example of the system to be studied. For example, in the case of studies
of defects in silicon, the basis associated with the Si atoms is chosen to best
represent a bulk Si cell. A problem of optimizing the values of the exponents
is a multidimensional minimization problem, and may be tackled by one of
the many standard minimization procedures available. AIMPRO allows for the
optimization of the exponents by a downhill simplex or a conjugate gradient
minimization of the total energy.

Given that a typical element will require of the order of four different
exponents in its basis set, the free optimization of the exponents is a four-
dimensional minimization problem. Calculations have shown that the four-
dimensional energy surface generally is very flat and undulating, resulting in
many local minima, and causing difficulties in producing a unique choice of
exponent. This is mitigated by the use of “even-tempered” basis sets in which
the n exponents are constrained to be in a geometric series, and although it
is generally true that an unrestricted basis set will lower the total energy, it
is found that this is often not a significant effect.

For contracted basis sets, as with the full Gaussian basis sets, fixed para-
meters (in this case both coefficients and exponents) may be obtained with
reference to an appropriate prototypical system. Each combined contracted
basis function adds just one to the dimension of the Hamiltonian, and yet
contains variations over a number of different length scales that reflect the
properties of the physical system used in the fitting procedure. Once the
contraction coefficients have been optimized, which is typically performed
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Fig. 1. Total energy of Si bulk unit cell during basis-exponent optimization. The
energy is shown as a function of the number of simplex iterations

using a simplex optimization within AIMPRO, they remain fixed during the
subsequent self-consistent field calculations.

The optimization of the exponents is an important step prior to com-
mencing a real calculation. Clearly, a poorly chosen basis may impact on the
accuracy of the final calculation, by affecting the accuracy of the wavefunc-
tion description. However, as we shall demonstrate in the example below, the
physical properties of the material (for example lattice constant and bulk
modulus) are not sensitive to the fine tuning of the basis. Only when the
basis set has been carelessly chosen is there a significant impact upon the
physical properties.

2.3 Case Study: Bulk Silicon

Let us consider the case of a range of basis sets for bulk silicon. Here, we shall
consider the optimization of exponents in a four-exponent basis set, with an-
gular momenta up to d on the first and second exponent, and up to p on the
third and fourth exponent (where the first α is smallest). We refer to this as
a ddpp basis. As an initial guess for the exponents we shall use the values
{0.1, 0.3, 1.5, 4.0}. The range of these values results from a simple considera-
tion of the length scales of the CGOs, the lowest exponent (longest-ranging
Gaussian) allowing our basis to represent functions extending into the space
between adjacent atoms, the highest exponent (shortest-range Gaussian) al-
lowing us to describe the short-ranged variations of the valence pseudowave-
functions. (Note: the basis sets are described here for pseudopotential cal-
culations – if all-electron calculations are to be performed, very much larger
bases would be required, the highest exponents of which would be far greater
than those needed for pseudopotentials.)
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We show in Fig. 1 the total energy as a function of the number of steps
in a simplex optimization of this basis. Note how the reduction in energy is
relatively steep in the early stages followed by a long tail, reflecting how a
modest attempt to obtain exponents that reflect the properties of the system
is sufficient to obtain a reasonably well-converged total energy.

Several of the partially optimized bases were used to compute the lattice
constant and bulk modulus of the Si by fitting to the Birch–Murnaghan
equation of state. These data are presented in Table 1.

Table 1. Total energies (Hartrees) at energy minimum, lattice constants (au ) and
bulk moduli (GPa ) for Si basis sets at various stages of optimization. For compar-
ison, the experimental lattice constant and bulk modulus of silicon are 10.263 au
and 97.9 GPa, respectively [21, 22]

Iterations Total energy Lattice constant Bulk modulus

1 −7.9234 10.24 91
4 −7.9250 10.23 91
6 −7.9269 10.21 94
15 −7.9271 10.21 95
24 −7.9276 10.21 93
30 −7.9280 10.21 94
100 −7.9280 10.20 96

Since the LDA is generally expected to obtain lattice constants to around
1 % accuracy, and bulk moduli to around 5 % to 10 % it can be seen from
Table 1 that the variation in the structural parameters with basis is relatively
small. In particular, the initial, somewhat arbitrary parameters yield reason-
able results, and after only around ten iterations do the changes in lattice
constant and bulk modulus become minimal on this scale.

Table 2. Total energies (Hartrees) at energy minimum, lattice constants (au ) and
bulk moduli (GPa ) for different optimized Si basis sets

Basis No. functions per atom Total energy Lattice constant Bulk modulus

dddd 40 −7.9335 10.17 95

ddpp 28 −7.9280 10.20 96

pdpp 22 −7.9268 10.21 95

pppp 12 −7.8974 10.35 85

We must also consider the role of the angular momentum in the CGOs.
The size of basis set increases with higher angular momentum, slowing the
calculation but providing a more flexible and accurate basis set. There is a
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compromise to make between accuracy and computational cost. Typically,
for materials like diamond and silicon pdpp or ddpp bases are found to be
sufficient. However, in calculations of defects it is often the case that heavier
bases are used for the atoms at the defect itself, such as dddd. This exploits
the localized nature of the CGOs, improving the accuracy of the basis in a
particular region with little effect on the overall accuracy or computational
cost of the calculation.

Table 2 details the effect on the structural properties of silicon for various
basis sets. The additional cost of the extra functions in the dddd basis is
unnecessary since the results are effectively the same as the computationally
cheaper pdpp basis. However, the pppp basis set is seen to be too small and the
omission of any higher angular momentum functions prevents a sufficiently
accurate description of the directional bonds found in covalent semiconduc-
tors.

As with the plain CGO basis, a number of different contracted basis sets
can be defined according to the number of different combinations of the func-
tions, and the angular momentum to which they extend. To label these con-
tracted basis sets we draw on the conventional nomenclature of quantum
chemistry, and specify, for example, a 4G basis to be one in which four CGOs
(the “G”) of different exponents are combined into fixed functions. Separate
combinations are formed for n and l representing the occupied atomic va-
lence states of the element in question. For example, for the s and p orbitals
in silicon this results in a total of four independent functions, one s- and
three p-polynomial combinations. The same contraction coefficients are used
for different components of a given function (for example px, py and pz), al-
though they are of course included as independent basis functions. This level
of contraction is known as a minimal basis set as they cannot change shape
during the calculation.

To improve the flexibility of the basis set, a second set of contracted coef-
ficients may be defined resulting in an additional set of four basis functions (a
total of eight basis functions, two s-types and 6 p-type). In our nomenclature
this would be referred3 to as 44G. Such basis sets are greatly restricted due to
the fact that the highest angular momentum that can be represented is lim-
ited to the angular momentum of the occupied atomic states. Although these
can describe the isolated atom well, higher angular momentum components
are needed to describe directional bonds. To account for these we may intro-
duce additional “polarization” functions of higher angular momentum CGOs
(for example d functions in silicon) with a single free exponent. The inclusion
of polarization functions in a basis set is indicated by a ∗ in the notation, for
example 44G∗. The addition of the polarization functions increases the basis
3 This is similar to the “31” part of the quantum chemists standard 6-31G basis

set. The only difference is that in our two contractions are combinations of all
four underlying Gaussians; the 6-31G basis has 3 functions contracted together
and one function left uncontracted, a more restrictive prescription.
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from 8 to 13 functions per atom, which remains considerably smaller than
the ddpp plain Gaussian basis.

We have extensively studied the effect of reducing the degrees of freedom
in our basis sets by moving to increasingly small contracted sets. In Table 3,
the minimum total energy, lattice parameter and bulk modulus are presented
for contracted basis sets, and compared with the uncontracted ddpp basis.

Table 3. Total energies (Hartrees) at energy minimum, lattice constants (au ) and
bulk moduli (GPa ) for contracted basis sets 44G∗, 4G∗, and 4G, as defined in the
text

Basis No. functions per atom Total energy Lattice constant Bulk modulus

ddpp 28 −7.9280 10.20 96
44G∗ 13 −7.9269 10.19 97
4G∗ 9 −7.9226 10.21 103
4G 4 −7.8854 10.39 91

A 44G∗ basis for materials such as Si and diamond is found to be as ef-
fective as a 28-function ddpp basis. In other words, the 44G∗ basis provides
a convergent description of our wavefunctions for our typical host elements,
at a much reduced cost in terms of the Hamiltonian. These contracted ba-
sis sets are therefore used in many of our calculations, giving an optimum
performance with regard to computational cost. Cheaper bases still, such as
the 4G basis are found to result in wider variations of lattice constant and
bulk modulus, as well as giving poor electronic band structures, particularly
in the conduction band.

Although the 4G bases are not suitable for routine calculations, there are
a number of potential applications for these basis sets. One possibility is that
these extremely cheap bases (just four functions per atom in Si) could be
used for bulk regions in very large unit cell calculations. Fuller bases could
be used to describe the essential regions of the material (for example the
defect region and adjacent atoms) with the 4G bases filling the remainder
of the bulk-like unit cell. For such schemes to work it is necessary to match
the optimum lattice constant of the two bases to avoid unphysical internal
strain at the boundary between the two different bases. Although we have
implemented this approach and tested the idea with encouraging results, it
has yet to be used in a real application.
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2.4 Charge-Density Expansions

In AIMPRO the charge density, n(r), is also fitted to a set of basis functions.
With the PBC n(r) is expanded in PWs, so that the approximate charge
density

ñ(r) =
∑
G

n(G)eiG · r , (4)

where all PWs with G2/2 < Ecut-off are included, with the energy cutoff cho-
sen according to the atomic species present. The number of PWs is sufficient
to make ñ a very accurate representation of the charge density n(r) given by
the underlying Gaussian basis set. This does not incur significant penalties
in either speed or memory as the expansion is performed only for one func-
tion, n(r), rather than each occupied band as is the case in conventional fully
PW basis set calculations. As a consequence, the energy cutoff can be very
large: typical values are 300 Ry and 80 Ry for carbon and silicon, respectively.

In a cluster calculation, the charge density is expanded in uncontracted
Gaussians (1) typically up to d-type functions. More details regarding the
charge-density basis functions in cluster calculations can be found else-
where [11].

3 Electrical Levels

We now turn our attention to the calculation of electrical levels. Since the
marker method, which forms the main part of this section, can be understood
in terms of the more commonly used formation-energy method, we briefly
describe this and its associated problems.

Before we do so, however, it is important to define what is meant by
an electrical level. The electrical levels of a dopant (or any active defect)
correspond to a thermodynamic property of the system, and relate to the
chemical potential, µe of the electrons (sometimes erroneously referred to as
a Fermi level, which is strictly only a zero-temperature quantity). Where µe

lies below, say, the donor level of an impurity, energy is released by moving
an electron from the defect to the electron reservoir at µe, and so this transfer
of charge proceeds. Conversely, if µe is higher in the bandgap than the donor
level of the defect it would cost energy to move the electron from the donor to
the electron reservoir, and therefore it does not happen. It should therefore
be noted that these levels relate to a change of charge state and cannot be
obtained from the electronic-structure of any one of the charge states involved
alone.
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3.1 Formation Energy

The charge-state- (q) dependent, zero-temperature formation energy of a sys-
tem of atoms and electrons (X) is usually written [23]:

Ef(X, q) = Et(X, q) −
( ∑

atoms

µi

)
+ q {Ev(X, q) + µe} + ξ(X, q) , (5)

where Et is the total energy calculated for the system such as that obtained
using AIMPRO, µi and µe are the atomic and electron chemical potentials,
Ev(X, q) is the energy of the valence-band top and ξ(X, q) is a term that
takes into account artifacts introduced by the computational framework. For
PBCs ξ(X, q) reflects defect–defect interactions, whereas for clusters it relates
to defect–surface interactions including quantum confinement. Usually, the
relevant Et(X, q) is that of the lowest-energy configuration of X in charge
state q, but not always, as noted below.

For PBCs ξ may take the form of a power series in moments of the elec-
tron distribution, which can be viewed as terms arising from an array of
monopoles, dipoles, quadrupoles and so on. The magnitudes of each term
may be taken from a simple model, such as that of Makov and Payne [24]
where only the terms in a Madelung energy and a quadrupole term are typ-
ically retained. The material is taken into account simply using the static
dielectric constant, ε. Note, the Madelung term scales as q2 and hence grows
rapidly with q so that, for example, for a cubic supercell of diamond of side
length 2a0, the Madelung correction for q = ±3e is already of the order of
the bandgap! This simple approach has received considerable criticism over
recent years, so other, often computationally demanding, approaches have
been adopted [25–28].

Notwithstanding the details of ξ(X, q), one can use Ef(X, q) to estimate
the electrical levels of X . The approach is to determine the thermodynam-
ically most stable charge state for all relevant values of µe, and the critical
values at which charge states change are the electrical levels. For example, the
acceptor level is given by the value of µe that satisfies Ef(X, 0) = Ef(X,−1):

µe =
[
Et(X,−1) − Et(X, 0)

]
+ [ξ(X,−1)− ξ(X, 0)] − Ev(X,−1) , (6)

as illustrated in Fig. 2. The diagram also illustrates the difficulties in inter-
preting levels that lie in the energy range between the theoretical and exper-
imental bandgaps. Note, usually the electrical levels represent the transition
between the lowest-energy structural configurations of each charge state, but
not always. For example, there may be a considerable energy barrier between
conformations of a set of atoms, so that the electrical levels relate to the
change of charge state of a specific arrangement of atoms. An example of this
is that of boron-vacancy complexes in silicon, where the equilibrium number
of host sites between the impurity and the lattice vacancy is charge state
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Fig. 2. Illustration of the use of the formation energy to obtain an acceptor level
for the system X in silicon. Above the acceptor level X− is thermodynamically
more stable that X0, whereas below the reverse is true. The shaded area indicates
the region between the theoretical and experimental bandgaps. The inclusion of ξ
in the charged formation energy pushes the acceptor level above the theoretical
value for Ec, but it remains deep in the experimental bandgap

dependent [29]. Such metastability must be taken into account when trying
to assign calculated electrical transitions to those measured experimentally.

This approach has perhaps three chief problems, the first of which is the
poorly defined correction term, ξ which we have already touched upon.

The second is that µe is defined relative to the valence-band top in the
defective system, which may be difficult to establish with any precision. If
one does not wish simply to use the approximation Ev(X,−1) = Ev (bulk, 0)
then one might use corrections obtained either by examination of the lowest
occupied Kohn–Sham level [30], or of the electrostatic potentials in bulk and
defective systems [31] (see Sect. 3.2).

The third, and often most critical problem that may affect the location
of electrical levels is the underestimate of the bandgap. For instance, the
bandgap of hexagonal ZnO is around 3.4 eV [4], but simple application of
the LDA- or GGA-DFT leads to bandgaps around 1 eV. Recently, hydrogen
has been shown to be a shallow donor in this material [32, 33], but charge-
dependent formation energies yield donor levels around Ev + 2 eV [34, 35].

However, as previously suggested, for a given material it is often found
that many of the problems introduce systematic errors. Therefore, one chooses
alternative reference states that mitigate the charged systems, bandgap error
and other interactions introduced by the geometry: this is the marker method.
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3.2 Calculation of Electrical Levels Using the Marker Method

We may avoid the problems highlighted above by referencing, say, the ac-
ceptor level of one system to that of another. Equation (6) for two different
systems, X and Y , where the acceptor level µe(Y ) is known combine to yield
the expression:

µe(X) = µe(Y ) +
[
Et(X,−1) − Et(Y,−1)

]
−

[
Et(X, 0) − Et(Y, 0)

]
− [Ev(X,−1) − Ev(Y,−1)]
+ [{ξ(X,−1)− ξ(Y,−1)} − {ξ(X, 0) − ξ(Y, 0)}] . (7)

If terms in ξ cancel and Ev(X,−1) = Ev(Y,−1) this simply reduces to:

µe(X) = µe(Y ) +
[
Et(X,−1) − Et(Y,−1)

]
−

[
Et(X, 0) − Et(Y, 0)

]
. (8)

This defines an unknown acceptor level, µe(X), with respect to the known
marker at µe(Y ) with reference only to total energies. Note, (7) and (8)
explicitly show that the calculations involve differences of energies between
systems with the same charge.

However, we have made at least two rather bold assumptions, and it is
necessary to explore where and why they are likely to be valid.

We first examine the notion that Ev(X, q) = Ev(Y, q). Since one can add
a constant potential to any system (i.e., the zero of the potential energy scale
is often poorly defined in PBC calculations), the valence-band states may be
rigidly offset from those of a defect-free system, and one can estimate the
potential difference between X and Y by finding the average electrostatic
potential in bulk-like regions of these systems [31]. For example, for substi-
tutional impurities in a diamond-structure material, one might characterize
the difference in the background potentials by finding the difference in the
total electrostatic potentials at the T-interstitial sites far from the impurities.
Alternatively, the potential difference between two systems can be estimated
by the difference in the energies of the lowest occupied levels in X and Y [30]
under the assumption that these characterize the average potentials in these
systems. In our experience, such corrections may be up to a few tenths of
an eV, but are usually small [31].

We now turn to the assumption that the ξ terms cancel. The suggested
corrections for PBCs of Makov and Payne [24] assume an array of point
charges, but it is clear from several studies that this approach tends to give a
rather poor estimate. However, it is instructive to consider ξ(X, q) as arising
from a series of multipole interactions. For chemically similar systems, the
larger terms in the series would naturally be close in magnitude. Therefore,
the best accuracy using the marker method is expected when comparing
structurally and chemically similar systems. This remains true even when
considering transitions between highly charged states, which is important
because of the q2 dependence of the simple Makov–Payne type of correction.

However, there are two important areas where the marker method may be
difficult to apply. The first is where the available markers are far in energy and
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chemical nature from that of the system of interest, such as using a shallow
donor as a reference for a very deep donor. Under these circumstances there
is unlikely to be very complete cancellation in the ξ, and hence the error bars
in the calculation become more significant. Furthermore, problems associated
with the underestimate of the bandgap will also become more important. The
second is that in some materials there may be no experimental data. For
example, to our knowledge there are no unambiguous observations of double
donors or acceptors in diamond.

Where there are no appropriate markers, one might use a bulk system
as the reference, Y , in (7) and (8). Such an approach was detailed for boron
in silicon [7] and defects in diamond [8]. Here, the first donor and acceptor
levels of a bulk system are, by definition, Ev and Ec, respectively. However,
one should exercise some caution in using a bulk system as a marker; deep
levels and band edges are typically very different in character. Furthermore,
the levels of shallow defects are referenced to markers at the other extreme of
the bandgap, making the underestimate of the bandgap a significant factor.

Finally, in the preceding discussion we have largely emphasized the use
of the marker method for PBCs, but the principles are the same for cluster
calculations. Indeed, the use of clusters for narrow-gap materials has two
important advantages over the supercell approach. The first is that the lack
of periodicity means that there is no dispersion in the electronic-structure.
Secondly, the confinement of an atomic cluster tends to oppose the typical
underestimation of the bandgap. For materials such as germanium for which
the underestimation is acute, this is a very significant, qualitative effect, as
reflected in the results presented below.

In the final section we review a number of examples of the application of
the marker method using AIMPRO in both supercell and cluster modes.

4 Application to Defects in Group-IV Materials

4.1 Chalcogen–Hydrogen Donors in Silicon

AIMPRO was recently used to analyze the properties of a range of chalcogens
and their complexes with hydrogen in silicon. In this study [31] many of the
issues raised above were explicitly examined, including the role of supercell
size, Brillouin-zone sampling, basis and the average electrostatic potentials.

One significant factor in using chalcogens and their complexes with hy-
drogen in this study is that they have been characterized extensively by
experiment, with spin densities, vibrational modes and for the substitutional
chalcogens, electrical levels being available. It was therefore possible to show
that the calculations were able to reproduce important aspects of the de-
fects of interest other than the electrical characteristics, thereby validating
the conclusions drawn. In particular, Mulliken bond-population analysis in-
dicated that the donor wavefunctions were being faithfully reproduced in
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Fig. 3. Schematics of the partially passivated chalcogen–H complex in silicon.
White and black circles represent host and impurity atoms, respectively, H being
represented by the smaller black circle. Dashed lines indicated the cubic axes

these calculations, and that the characteristics were similar for the different
chalcogen species, indicating that the marker method should be appropriate.
Additionally, for the chalcogens the defect-level dispersions are very similar
suggesting that this effect also would cancel out using an empirical marker.

The chalcogens S, Se, and Te lie onsite, each having two donor levels, as
listed in Table 4. The calculated donor levels listed were obtained using the
formation energies with a Madelung correction and the marker method using
bulk silicon and S as references.

Table 4. Electrical levels relative to Ec ( eV ) of chalcogen and chalcogen–hydrogen
complexes in silicon (see [31]). Experimental data from [36]

Experiment Formation energy Bulk marker Sulfur marker

Defect (0/+) (+/2+) (0/+) (+/2+) (0/+) (+/2+) (0/+) (+/2+)

S 0.29 0.59 0.78 1.25 0.42 0.48 0.29 0.59

Se 0.29 0.54 0.79 1.23 0.40 0.45 0.28 0.55

Te 0.20 0.36 0.75 1.22 0.27 0.28 0.25 0.38

S–H – – 0.41 1.78 0.13 1.18 0.01 1.28

Se–H – – 0.37 1.77 0.10 1.18 −0.02 1.28

Te–H – – 0.27 1.77 0.00 1.18 −0.12 1.28

The shallow nature predicted for the X–H complexes, the structure of
which is shown schematically in Fig. 3, was viewed to be consistent with
the fact that they had not been detected using deep-level transient spec-
troscopy [37, 38], but had been detected via their vibrational modes [39].

Three important conclusions can be drawn from this study. The first is
that the formation-energy approach yields qualitatively erroneous results:
S, Se, and Te have no double-donor level in the bandgap, and the single-
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Fig. 4. Schematics of the VO center in Si and Ge. White and black circles rep-
resent host and oxygen atoms, respectively. The dark bond in (a) indicates the
reconstruction present in the neutral charge state. (b) shows the unreconstructed
center characteristic of the negative charge state

donor levels are far too deep. This can be traced to the underestimate in
the bandgap and the nature of the correction terms, ξ. The second is that,
although the single-donor levels are reasonably reproduced using the bulk-
marker method, the second donor level is very poor, due to an underestimate
of the correlation energy. Finally, the positive result is that, at least for classes
of similar defects, the empirical marker method yields very good agreement
with experiment.

4.2 VO Centers in Silicon and Germanium

The properties of oxygen in silicon and germanium have been studied ex-
tensively as a consequence of the incorporation of O during growth and the
properties that it lends to the materials. Of all the various roles and structures
in which oxygen is involved, one of the most primitive is oxygen substitut-
ing for a host atom. Oxygen is a relatively small atom so that this center
is generally referred to as a complex of (interstitial) oxygen with a lattice
vacancy (VO), the structure of which is shown schematically in Fig. 4. VO
centers in the neutral charge state can be understood as follows. The removal
of a host atom creates four “dangling bonds”. Divalent oxygen passivates two
of these and the remaining two dangling-bonds then combine together in a
reconstruction, resulting in a defect that is fully chemically coordinated.

However, these centers can trap additional electrons by breaking the rel-
atively weak reconstruction, and the resultant dangling bonds lead to states
in the bandgap. Experimentally, the VO center in silicon has an acceptor
level at Ev + 1 eV [40]. However, the DFT calculations using supercells and
formation energies have resulted in a rather poor agreement, predicting an
acceptor level at Ev + 0.4 eV [41]. However, recalling that in these calcula-
tions the bandgap of bulk silicon is underestimated by more than 50 % of the
experimental value, this donor level is approximately the correct depth below
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the theoretical Ec, which might be viewed as agreeing with experiment, and
it is not clear how to interpret this calculation.

The marker method using atomic clusters [6] where the bandgap un-
derestimate is mitigated and using the acceptor level of interstitial carbon
(Ec − 0.10 eV [42]) as a marker yielded an acceptor level for VO in silicon
at Ec − 0.13 eV, in close agreement with the experimental level. Indeed, the
small error is a testament to how robust the method is since, although they
are close by in energy, the character of the acceptor wavefunctions for the
VO and carbon interstitials are not closely related.

The importance of the bandgap error is even greater when considering Ge.
Recent calculations have also adopted the cluster configuration of AIMPRO
to analyze a range of defects in this material [43]. In particular, VO ex-
perimentally has acceptor and double-acceptor levels at Ev + 0.27 eV and
Ev + 0.49 eV, respectively [44]. Using AIMPRO and atomic clusters that have
approximately the experimental bandgap of 0.7 eV the two acceptor levels of
VO have been calculated relative to the acceptor and double-acceptor levels
of substitutional Zn at Ev +40 m eV and Ev +100 m eV, respectively [4]. The
calculated second acceptor level is in excellent agreement with the experimen-
tal result, lying at Ev + 0.47 eV. However, the first acceptor level calculated
at around Ev+0.42 eV is in less good agreement, but still within 0.2 eV. The
reason for the larger deviation in the single-acceptor level is unclear, but even
such an error bar is useful in the context of the more traditional supercell
approaches that suggest this material has no bandgap at all.

4.3 Shallow and Deep Levels in Diamond

In contrast to Si and Ge, diamond, with an indirect bandgap of around
5.5 eV [4], is a good example of an insulator, not obviously to be associated
with the semiconductor industry. However, p- and n-type diamond can be
produced via doping with boron and phosphorus, respectively, with heavily
boron-doped materials becoming metallic and opaque.

However, although phosphorus acts as a donor, the activation energy is
very high at around 0.6 eV, so the room-temperature ionization fraction, and
hence the number of free electrons, is rather small. This has led to an effort
to deduce which, if any, other system may result in a shallow donor level.

As well as the electrical properties of diamond, the optical transparency,
especially in the infrared, of the pure material has led to applications in
high-specification optics. However, as-grown diamond may contain deep-level
defects that absorb and luminesce, and an understanding of these centers is
also obviously of relevance.

Regrettably, the number of definitively characterized donor and acceptor
levels in diamond is relative small, and it is unsurprising that computational
methods have been used in an attempt to assess both shallow and deep cen-
ters. We first address examples of potential shallow donors. Since P is the
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Fig. 5. Location of donor levels in the bandgap relative to Ev for pnictogen donors
in diamond. (a) and (b) shows values calculated using phosphorus and the bulk
supercell being used as a marker, respectively. Empty and filled circles show 64 and
216 atom cells, respectively. The dashed and dotted lines show the experimental
donor levels for P and N, and the shaded area shows the experimental conduction
band

best-established shallow donor in diamond, it seems a good idea to estab-
lish if, as in silicon, the other pnictogens may have useful donor properties.
Figure 5 plots the calculated donor levels using AIMPRO as described in [9].

Figure 5a shows the use of the experimental donor level [45] for P at
Ec − 0.6 eV as a marker for supercells containing 64 or 216 atoms (cubes of
side length 2a0 and 3a0, respectively). The trends are the same for both curves
and both supercells reproduce the experimental donor level of nitrogen.

Figure 5b shows the same data, but referenced to bulk diamond. Now,
the marker is the valence-band top, so it is far (around 5 eV!) from the
anticipated location of the pnictogen donor levels. This exemplifies the need
for appropriate markers for the method to have a quantitative role. However,
irrespective of the marker, the important result in this application is that
shallower donors of a simple nature, i.e., As and Sb, are expected to lead to
improved n-type diamond.

Recently, we also used supercell calculations to compare the use of the
more traditional formation energy approach with the marker method for a
range of centers, and in particular for those for which electrical levels are
known experimentally [8]. Table 5 lists some of these results.

The overall agreement between the marker method and experiment is
conspicuously better than using the formation-energy approach, indicating
that the marker method may usefully be applied to wide-gap materials for
both deep and shallow electrical levels. For the small set of data presented in
Table 5 one could adopt any acceptor and donor as an empirical marker and
get very similar accuracy.
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Table 5. Electrical levels ( eV ) for various centers in diamond from experiment,
compared to those calculated using the formation-energy method and the marker
method using a bulk cell as a marker. For the formation-energy method, we quote
the levels above Ev and below the theoretical and experimental locations of Ec

(Eth
c = Ev + 4.2 eV and Eexpt

c = Ev + 5.5 eV). Asterisks indicate the marker-
method results where the bandgap energy of 5.5 eV has been used to reference
to the opposite band edge. Subscript s indicate substitutional impurities and v
represents a lattice vacancy

Formation energy Bulk marker

Defect Experiment Ev Eth
c Eexpt

c Ev Ec

Acceptors

Bs Ev + 0.37 [46] 0.2 4.0 5.3 0.5* 5.0

Nis Ec − 2.49 [47, 48] 3.3 0.9 2.2 3.0* 2.5

V–Ns Ec − 2.583 [49] 1.8 2.4 3.7 2.2* 3.3

Donors

Ns Ec − 1.7 [50] 3.0 1.2 2.5 4.0 1.5*

Ps Ec − 0.6 [45] 4.2 0.0 1.3 5.2 0.3*

Ns–Ns Ec − 3.8 [51] 0.8 3.6 4.7 1.8 3.7*

5 Summary

The characterization of the electrical properties of defects and dopants using
standard methodologies such as LDA- and GGA-DFT is a demanding prob-
lem. The most common approach of calculating charge-dependent formation
energies has well-publicized frailties associated with periodic boundary condi-
tions for charged systems, but these may be somewhat reduced by employing
schemes where the electrical levels of two or more systems are compared.
Additionally, when comparing total energies for chemically and structurally
similar systems in the PBC approach, the dispersion of the defect levels in
the first Brillouin-zone and multipole interaction, which are present even for
neutral systems, are likely to be comparable and cancel to a large degree.

In addition, for electrical levels in narrow-gap materials, such as germa-
nium, the use of carefully constructed atomic clusters also significantly re-
duces the underestimation of bandgaps in these methods, allowing a fully
quantitative analysis of the levels in these materials. We have also shown
that the marker method is effective in wide-gap materials where excellent
agreement may be obtained over the full range of the bandgap, provided that
one has a suitable marker available.

Since the marker method is applicable when looking at similar systems,
it may be of particular use when studying dilute alloys such as SiGe. Here,
a known marker in silicon (for a Si-rich alloy) could be used to determine
the effect of having a nearby Ge atom, such as that of VO centers in such
alloys [52].
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The use of bulk materials as markers is a qualified success in the sense
that single donor and acceptor levels are in many cases in good agreement
with experiment. However, multiple charges introduce larger errors and, for
example with the chalcogen species in silicon, the second donor levels are in
much less good agreement.

We conclude that where experimental data allow, the most accurate quan-
titative method for predicting electrical levels in crystalline semiconductors
and insulators is by comparison of a chemically and structurally similar de-
fect for which the electrical levels are known. Other marker species, including
the bulk supercells, are likely to introduce larger errors, but in our experience
even then the results are rather favorable.
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Abstract. The calculation of the entire dynamical matrix of a periodic supercell
(containing a defect or not) provides several most useful pieces of information. At
first, the eigenvalues of this matrix are all the normal mode frequencies of the cell,
including the local, pseudolocal, and resonant modes associated with the defect
under study. The eigenvalues can also be used to construct phonon densities of
state which in turn allow the calculation of (Helmholtz) free energies, vibrational
entropies, and specific heats. The eigenvectors of the dynamical matrix can be
used to prepare a system in thermal equilibriumat a desired temperature. This al-
lows constant-temperature MD simulations to be peformed without thermalization
or thermostat. Applications to the calculation of vibrational lifetimes and decay
channels are discussed. Finally, the vibrational, rotational, and charge-carrier con-
tributions to the free energy are described. Configurational entropies are calculated
in realistic systems.

1 Introduction

Vibrational spectroscopy provides essential experimental data about defects
in semiconductors, not only because of the microscopic nature of the infor-
mation it provides but also because many of the quantities measured can be
calculated from first principles. Fourier transform infrared absorption (FTIR)
and Raman spectroscopies often produce sharp lines associated with local vi-
brational modes (LVMs) of impurities lighter than the hosts atoms. These
lines are often above the highest normal mode of the crystal, the Γ phonon
but, when the phonon density of states has a gap (as in the case of GaN [1]),
they can be between the acoustic and optic modes as well. Isotope substitu-
tions provide element identification as well as information about how many
atoms of a given species are part of the defect. Uniaxial stress experiments
give the symmetry of the defect through the splitting of the IR or Raman
lines. Annealing studies provide various activation energies. Examples of such
studies and a discussion of the techniques are found in [2].

By themselves, the measured LVMs, isotope shifts, symmetry, and acti-
vation energies are often insufficient to identify a unique structure for the
defect. However, they are precious to theorists who use first-principles tech-
niques to calculate the structures (symmetry), LVMs and their isotope shifts,
binding, migration and/or reorientation energies, and thus prove or disprove
D. A. Drabold, S. K. Estreicher (Eds.): Theory of Defects in Semiconductors,
Topics Appl. Physics 104, 95–114 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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the assignment of an IR or Raman spectrum to a specific defect. The in-
terplay between vibrational spectroscopy and first-principles theory has led
to the unambiguous identification of many defects and has provided realistic
tests of the accuracy of theory.

For many years, the calculation of defect-related vibrational modes has
been limited to those LVMs that are IR or Raman active. The stretch mode
of a Si–H bond, in a Si vacancy for example, can be predicted quite accu-
rately by calculating the total energy of a supercell containing this defect in
its equilibrium configuration as well as for several (at least 2) positions of H
along the Si–H bond. The 1-dimensional potential along this axis is fitted to
a polynomial and the frequency and zero-point energy of this mode are cal-
culated. The same can also be done for wag modes. There are many examples
of such calculations [3–5].

This method works well, but a lot of additional and very useful informa-
tion can be obtained when the entire dynamical matrix of the supercell is
calculated. For a system of N atoms and therefore 3N normal modes, the
dimension of this matrix is 3N × 3N and its calculation is computationally
expensive. The eigenvalues of the dynamical matrix are all the normal mode
frequencies of the supercell: acoustic and optic phonons as well as defect-
related modes. These can be LVMs, located above the Γ phonon, resonant
and/or pseudolocal vibrational modes (pLVMs). Resonant modes occur when
the strain (associated with a defect) stretches or compresses host–atom bonds,
resulting in new vibrational frequencies near the Γ phonon. pLVMs are lo-
calized impurity-related modes buried in the phonon continuum. Such modes
are sometimes visible experimentally as phonon sidebands in photolumines-
cence (PL) spectra [6,7]. Two copper-related centers in Si have recently been
theoretically identified [8,9] thanks to such pLVMs. Further, the knowledge of
all the normal mode frequencies allows the construction of phonon densities
of state, which are needed to calculate (Helmholtz) free energies.

The eigenvectors of the dynamical matrix make it possible to find (and
identify the symmetry of) all the localized modes associated with any atom
or group of atoms in the supercell. The eigenvectors can also be used to pre-
pare the supercell in thermal equilibrium and any temperature, thus allowing
constant-temperature molecular dynamics (MD) simulations to be performed
without the need for thermalization or even a thermostat. This in turn makes
it possible to calculate vibrational lifetimes and decay channels of specific
modes as a function of temperature. For all these reasons, the calculation of
dynamical matrices is well worth its cost.

Our results are obtained from self-consistent, first-principles theory based
on local density-functional theory in 64-host-atom periodic supercells. The
calculations are performed with the SIESTA code [10, 11]. The exchange-
correlation potential is that of Ceperley–Alder [12] as parameterized by
Perdew and Zunger [13]. Norm-conserving pseudopotentials in the Kleinman–
Bylander form [14] are used to remove the core regions from the calculations.
The basis sets for the valence states are linear combinations of numerical
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atomic orbitals of the Sankey type [15–17], generalized to be arbitrarily com-
plete with the inclusion of multiple-zeta orbitals and polarization states [10].
We use double-zeta (two sets of s and p orbitals) for first- and second-row
atoms (H through Ne) and add a set of polarization functions (e.g., one set
of d orbitals) for third-row atoms and below. The charge density is projected
on a real-space grid with an equivalent cutoff of 150 Ry to calculate the
exchange-correlation and Hartree potentials. A 2 × 2 × 2 Monkhorst–Pack
k-point sampling [18] is used to optimize the structures.

An overview of dynamical matrices is given in Sect. 2. Examples of LVMs
and pLVMs are given in Sect. 3. The calculation of vibrational lifetimes is
given in Sect. 4. Vibrational free energies and specific heats are discussed in
Sect. 5, and the properties of defects at finite temperatures in Sect. 6.

2 Dynamical Matrices

The calculation of dynamical matrices is a well-known topic discussed in
many textbooks, such as [19]. Further, the calculation of the force-constant
matrix F is implemented in many (if not all) software packages that have MD
capabilities. The brief summary below is therefore only necessary in order to
define the notation to be used in this Chapter and make a few comments.

We consider a solid represented by periodic supercells of N atoms of mass
mα (with α = 1, 2, . . . , N). The nuclei oscillate around their equilibrium
positions. The dynamical matrix is related to the force-constant matrix by

Dαβ,ij =
Fαβ,ij√
mαmβ

, (1)

where i, j = x, y, z are Cartesian indices.
The calculation of Fαβ,ij is computationally intensive for the type of sys-

tems required in the study of defects in semiconductors. Today’s typical su-
percells contain of the order of 100 atoms, and there is little doubt that several
hundred (or even thousand) atoms will become the norm in the near future.
Once F is known, changing the masses of selected atoms (that is, playing
with isotopes) is trivial. Techniques to calculate F are well known, ranging
from the direct “frozen phonon” approach implemented in many MD soft-
ware packages to MD-based methods based on correlation functions [20, 21],
or linear-response theory [22–25]. Note that dynamical matrices can also be
computed using order-N methods [26].

The eigenvalues of the dynamical matrix are the normal mode frequencies
of the system ωs, and the corresponding eigenvectors es

α,i are orthonormal:

∑
α,i

es
α,ie

s′

α,i = δss′ and
∑

s

es
α,ie

s
βj = δαβδij . (2)
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In the harmonic approximation, the normal-mode coordinates qs are

qs(t) = As cos(ωst + ϕs) =
∑
α,i

√
mαuα,ie

s
α,i , (3)

where the amplitudes As are temperature dependent and the uα,i are Carte-
sian displacements of the nucleus α away from equilibrium.

This relationship can be used to prepare a system in equilibrium at a
temperature T , then perform MD runs at constant temperature without the
need for thermalization or even a thermostat [27]. Indeed, the unknown am-
plitudes of the normal modes can be obtained by requiring that the kinetic
energy of each mode is, on the average, kBT/2, that is

〈1
2

(
∂qs

∂t

)2 〉
=

〈
1
2ω2

sA2
s sin2(ωst + ϕs)

〉
= 1

4ω2
sA2

s = 1
2kBT . (4)

Thus, the average amplitude of the normal mode s is 〈As〉 =
√

2kBT/ωs.
Note that assigning the amplitudes As = 〈As〉 to each mode s implies that

the total energy of each mode is exactly kBT . It is better to pick a random
distribution

ζs =
∫ Es

0

1
kBT

e−E/kBT dE (5)

with 0 < ζs < 1. This leads to As =
√
−2kBT ln(1 − ζs)/ωs. Thus, in the

harmonic approximation, the Cartesian coordinates and corresponding ve-
locities needed to prepare the system in equilibrium at the temperature T
are

uαi =

√
2kBT

mα

∑
s

1
ωs

√
− ln(1 − ζs) cos(ωst + ϕs)es

αi , (6)

and

∂uαi

∂t
= −

√
2kBT

mα

∑
s

√
− ln(1 − ζs) sin(ωst + ϕs)es

αi . (7)

The initial phases 0 ≤ ϕs < 2π are random, as each mode has a random
amount of kinetic and potential energy at the time t = 0. A similar transfor-
mation has been used by Gavartin and Stoneham [28] to calculate the energy
dissipation in quantum dots. However, we discuss it here in the context of
establishing initial conditions with the appropriate random distribution of
energies and phases. This is used in Sect. 4 to calculate vibrational lifetimes
and decay channels from first principles.



Dynamical Matrices and Free Energies 99

Fig. 1. LVMs and pLVMs associated with H+
bc in the Si64 supercell. The plots

of d2(α) =
∑

i
|es

α,i|2, where α is H (left), or its two Si nearest neighbors (right)
show the vibrational modes localized on the impurity and its two Si neighbors. The
vertical dashed lines show the calculated Γ phonon

3 Local and Pseudolocal Modes

The simplest and most immediate consequence of the knowledge of the dy-
namical matrix is the identification of all the localized modes of a defect,
and their symmetry. Indeed, a plot of

∑
i |es

α,i|2 vs. s (that is, vs. the normal
mode frequencies ω) for a specific atom α (or set of atoms) provides quan-
titative information about the localization of the modes associated with the
given atom(s). For example, Fig. 1 shows the localized modes associated with
bond-centered (bc) hydrogen in crystalline Si (H+

bc): the asymmetric stretch
(IR active) of H is a LVM at 2004 cm−1 (observed [29] at 1998 cm−1), the two
degenerate wag modes (not observed) are pLVMs, far below the Γ phonon,
at 264 cm−1, and the symmetric stretch is a pLVM at 452 cm−1 (also not
observed). The latter does not involve any H motion at all, but shows up
when

∑
i |es

α,i|2 includes the two Si nearest neighbors to H.
Figure 2 shows the eigenvectors of the dynamical matrix in one of the

two degenerate wag modes at 264 cm−1. The H displacement in this mode
accounts for about 70 % the displacements of all the atoms in the cell. Note
that the eigenvectors only give the relative amplitudes of the atomic displace-
ments. Their absolute values depend on the temperature, and are exaggerated
in the figure.

Thus, plotting
∑

i |es
α,i|2 quantifies the localization of all the local modes

associated with an atom or group of atoms. The corresponding eigenvectors
allow the identification of the symmetry of the mode, which is needed to
establish whether a mode is IR active or not, and whether it can produce
phonon sidebands in PL spectra or not [6]. This is precisely how two low-
frequency copper-related defects have recently been identified [8, 9]. A very
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Fig. 2. Eigenvectors of the dynamical matrix in one of the 264 cm−1 wag modes
of H+

bc. The H atom is the small black ball, the gray balls are all Si. The size of the
arrows is exaggerated to make the smaller oscillation amplitude more visible. The
arrows only show the relative amplitudes of the motion of the atoms in this mode

useful software package1 readily reads dynamical matrices and graphically
displays the eigenvectors for any chosen normal mode.

4 Vibrational Lifetimes and Decay Channels

The vibrational lifetimes of the LVMs of light impurities in Si have recently
been measured by transient bleaching spectroscopy [30, 31]. Surprisingly, the
lifetimes of nearly identical H-related LVMs differ by some two orders of
magnitude. For example, at low temperatures, the measured lifetimes of
the 2072 cm−1 mode of the divacancy–dihydrogen complex (VH · HV), the
1998 cm−1 mode of H+

bc [30], and the 2062 cm−1 mode of the H∗
2 pair [31] are

295 ps, 8 ps, and 4 ps, respectively. Since the decay of all these modes must
involve at least four phonons (six phonon processes are proposed [29, 31]), it
is not clear why the lifetimes of LVMs with almost identical frequencies vary
by two orders of magnitude or why any of them would be short-lived at all.
1 For information about the Molekel visualization package, see www.cscs.ch/

molekel/.
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The calculations of vibrational lifetimes begin with the dynamical ma-
trices of the supercells containing the defects. The eigenvectors of this ma-
trix determine the equilibrium background temperature of the cell at the
time t = 0, as discussed in Sect. 2. This is used to prepare the cell in equi-
librium at the same sample temperatures as in the experimental work. The
initial excitation of the LVM of interest is assigned to be its zero-point en-
ergy plus one phonon, that is 3�ω/2 (kinetic energy at t = 0). This mimics
the laser excitation of the specific LVM. Then, constant-temperature (clas-
sical) MD simulations are performed, with a time step of 0.3 fs in the case
of H. Since ab initio MD simulations are limited to real times of a few times
10 ps, it is critical to be able to begin the MD runs at a relatively elevated
background temperature, because the measured lifetimes are much shorter at
higher temperatures. The calculations are then repeated at lower tempera-
tures to monitor the increase in the lifetime until such low temperatures that
the calculations become computationally prohibitive. Note that at very low
temperatures, all the normal modes of the system have amplitudes consistent
with their zero-point energy. In classical MD simulations, these amplitudes
go to zero, the modes become harmonic and the lifetimes very long [27].

At every time step, the 3N Cartesian coordinates of the atoms are written
as linear combinations of the 3N normal modes of the supercell. Thus, the
energies of all the modes can be plotted as a function of time. This approach
allows not only the decay of the LVM of interest to be calculated, but also
the identification of the receiving modes, all of it as a function of time for
various background temperatures of the cell. The pLVMs of the defect play
a critical role in the decay process.

We illustrate this approach with the case of the asymmetric stretch of
H+

bc [30]. The result of the run performed at a background temperature of
75 K is shown in Fig. 3. The calculated decay of the LVM produces a good
exponential fit leading to a calculated lifetime of 7.8 ps at 75 K, a value that
agrees very well with experiment [30]. An analysis of the time dependence of
the energies of the normal modes of the cell shows that both wag modes and
the symmetric stretch of the defect (at 262 cm−1 and 452 cm−1, respectively)
play important roles in the decay.

5 Vibrational Free Energies and Specific Heats

Although the calculation of potential-energy surfaces is playing a most useful
role in our understanding of the behavior of defects in semiconductors, the
real-world involves nonzero temperatures. Samples undergo various thermal
anneals, they are implanted and exposed to light, and most devices function
at or above room temperature. The physics and chemistry of defects is ob-
viously temperature dependent, as one observes processes such as diffusion
and association or dissociation at various temperatures.
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Fig. 3. Plot of the energy (eV) of the asymmetric stretch mode of H+
bc at 2004 cm−1

in the Si64 supercell, at the background temperature of 75 K vs. time (ps). The
energies of 194 other modes of the cell are plotted as well. The first step of the
decay involves the pLVMs of the defect, which themselves have very short lifetimes

In all these processes, the Gibbs free energy is the most relevant quan-
tity since virtually all experiments are done at constant pressure. However,
we focus here on the Helmholtz free energy. Working at constant volume
rather than constant pressure is appropriate up to several hundred degrees
Celsius in most semiconductors because their thermal expansion coefficient is
very small. In Si for example, this coefficient is 4.68×10−6 K−1 at room tem-
perature and the phonon frequencies shift slowly with T . Indeed, the differ-
ence between the constant-pressure and constant-volume specific heats [32]2

CP −CV is 0.0165 J/mol · K at room temperature, a correction of only 0.08%
to CP = 20 J/mol · K. Thus, in the case of semiconductors such as Si and
in the temperature range where the use of harmonic dynamical matrices is
justified, calculating the phonon density of states g(ω) at T = 0 K and ig-
noring the temperature dependence of the lattice constant are reasonable
approximations. Note that this ignores the frequency shifs associated with
the anharmonicity. This greatly simplifies the calculations. In fact, it renders
them possible since calculating temperature-dependent phonon densities of
state is a formidable task.
2 In this paper, “cal/g atom” should read “cal/mol” (or the numbers be divided

by the atomic mass of Si).
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Fig. 4. Phonon densities of state g(ω) calculated from harmonic dynamical matrices
of the Si64 supercell evaluated at 90 q points in the BZ of the cell. The dashed line
(first peak at low frequency) was obtained with a double-zeta basis set and a 1×1×1
Monkhorst–Pack k-point sampling, the solid line (second peak) with a double-zeta
polarized basis set and a 2× 2× 2 k-point sampling, and the long-dash line with a
double-zeta polarized basis set and a 1 × 1 × 1 k-point sampling. As expected, the
solid line best matches the experimental data [33]

The phonon densities of states of perfect (defect-free) crystals are nor-
mally calculated from the dynamical matrix of the primitive unit cell evalu-
ated at thousands of q points in the Brillouin zone (BZ) of the crystal. When
studying defects, large periodic supercells must be used, and the BZ of the
supercell is distinct from that of the perfect solid. The eigenvalues of the dy-
namical matrix only provide a small number of normal mode frequencies, and
the phonon density of states extrapolated from those few hundred frequen-
cies lead to rather poor g(ω)s. However, evaluating the dynamical matrix at
many q points in the BZ of the supercell works very well. Figure 4 shows
three phonon densities of state obtained from harmonic dynamical matrices
extrapolated at about 90 q points in the BZ of the supercell. The dynam-
ical matrices were calculated with different basis sets and Monkhorst–Pack
k-point sampling in the Si64 supercell. The best fit to the measured data [33]
is obtained with the largest basis set (double-zeta polarized) and k-point
sampling (2 × 2 × 2).

In the harmonic approximation, the Helmholtz free energy is given by

Fvib(T ) = kBT

∫ ∞

0

ln{sinh(�ω/2kBT )}g(ω) dω , (8)
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Fig. 5. Calculated and measured peak in the specific heat over T 3 for various
isotopically pure samples of Ge. The dashed line (expt: crosses) is for 73Ge, the
solid line (expt: circles) is for the natural isotopic abundance, and the dotted line
(expt: squares) is for 70Ge

where kB is the Boltzmann constant. In the perfect cell, the integration is
carried out up to the Γ phonon. With a defect in the supercell, the integral
extends up to the highest normal mode of the cell (perturbed Γ phonon) and
becomes a simple sum for the higher LVMs. Note that Fvib(T = 0) gives the
total zero-point energy. Once Fvib is calculated, the vibrational entropy and
specific heat at constant volume are given by

Svib = −
(

∂Fvib

∂T

)
V

CV = −T

(
∂2Fvib

∂T 2

)
V

. (9)

The latter can be compared to the measured Cp in order to determine up
to what temperature the constant-volume and harmonic approximations are
appropriate. We have demonstrated that the approximations work quite well
up to some 700 K in the case of c-C, Si, Ge, and GaN (see [1, 34, 35]), and
that the agreement with even fine features is very good at low temperature.
Figure 5 shows the calculated isotope-dependent peak in C/T 3 in Ge. The
temperature at which it is predicted to occur and the splitting associated
with various isotopes quantitatively reproduce the experimental data [36].

These tests give us confidence that the phonon densities of states cal-
culated in the manner described above are also accurate when defects are
present in the same supercell, and therefore that the calculated Helmholtz
vibrational free energies are accurate up to several hundred degrees Celsius.
Of course, the Fvib obtained for a defect in a 64-host-atom cell correspond to
a defect concentration of about 1.5 atomic per cent, which is very high. How-
ever, the few calculations we have performed with 128- and 216-atom cells
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show that cell-size effects are not very significant, probably because g(ω) is
only the weight function used in the integration, and small changes in this
function have a minor impact on the result.

6 Theory of Defects at Finite Temperatures

We are always interested in energy differences. This could be the energy
difference between two configurations of the same defect, the energy difference
between a bound complex and its dissociation products (binding energy), etc.
At finite temperatures, such a total free-energy difference may contain several
contributions:

∆F = ∆U + ∆Fvib + ∆Fe/h + ∆Frot + · · · − T∆Sconfig . (10)

∆U is the potential-energy difference obtained (in this Chapter) from first-
principles density-functional theory. The vibrational free energy ∆Fvib has
been discussed above.

Depending on the defect under study, there may be different concentra-
tions of electrons (in the conduction band) or holes (in the valence band)
because different configurations of a given defect have different electrical ac-
tivities. This has nothing to do with the electrons or holes provided by the
background dopants, which can be numerous. Instead, ∆Fe/h refers only to
the change in the number of free carriers associated with the two configu-
rations of the defect under study and the contributions of the background
(dopant-associated) charge carriers cancel out. Unless one is dealing with un-
usually high changes in carrier concentrations, this term is very small and
can be neglected [37].

Additional contributions to the free energy are associated with energy
levels arising from rotational, magnetic, spin or other degrees of freedom
specific to a particular defect. These terms can often be calculated directly
from the appropriate partition functions [37]. One example is provided by
the rotational free energies of interstitial H2, HD, and D2 molecules (for a
review of interstitial hydrogen molecules in semiconductors, see [38]) in Si.
The rotational energies are Ej = j(j + 1)�2/MR2, where M is the nuclear
mass and R the internuclear separation. Since H2 consists of two protons
(fermions), there are three ortho states (even combinations of spin: ↑↑, ↓↓,
and ↑↓ + ↓↑) for which only odd values of j are allowed, and one para state
(odd combination of spin: ↑↓ − ↓↑) for which only even values of j are allowed.
This leads to the familiar set of two Raman lines with 3 : 1 intensity ratio.
Since D2 consists of two bosons, the total wavefunction must be symmetric,
and a similar argument leads to two Raman lines with 1 : 2 intensity ratios.
Thus, the rotational free energy per molecule is given by

Frot(T ) = −gokBT ln Zo − gpkBT ln Zp , (11)
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where the partition functions are

Zo = Σj=1,3,5,...(2j + 1)e−j(j+1)θ/T (12)

Zp = Σj=0,2,4,...(2j + 1)e−j(j+1)θ/T , (13)

and {go, gp} = {3/4, 1/4} for H2 and {1/3, 2/3} for D2. Since HD has no
symmetry restrictions, all the values of j are allowed (single Raman line)
and Frot(T ) = −kBT ln Z with Z = Σj(2j + 1)e−j(j+1)θ/T . The effective
temperature θ = �

2/2IkB contains the (classical) moment of inertia I of the
molecule, which depends on the host. For free H2, θ = 85.4 K. In Si, the
molecule has a longer bond length than in free space [39] and θ = 73.0 K,
48.7 K and 36.5 K for H2, HD and D2, respectively. The values of the rota-
tional free energies at 77 K, 300 K, and 800 K for interstitial H2, HD, and
D2 in Si are in Table 1. The largest rotational free energy per molecule oc-
curs in the case of HD. When comparing the free energies of the interstitial
H2 molecule with the interstitial H∗

2 complex (which consists of a Si–Si re-
placed by two Si–H bonds: Si–Hbc · · ·Si–Hab along a trigonal axis) which has
no rotational degrees of freedom, the sum ∆Fvib + ∆Frot clearly favors H2

at higher temperatures [37]. This prediction is consistent with the fact that
samples hydrogenated at high temperatures then rapidly quenched [40] show
the presence of only H2 molecules.

Table 1. Rotational free energy Frot (eV) for interstitial H2, HD, and D2 in Si

T (K) 77 300 800

H2 −0.005 −0.030 −0.129
HD −0.004 −0.048 −0.194
D2 −0.004 −0.040 −0.168

The importance of the configurational entropy term depends on the situ-
ation. When comparing the two metastable configurations of the CH∗

2 com-
plex [37], ∆Sconfig is exactly zero. When comparing interstitial H2 and H∗

2,
the configurational entropy contribution is not zero but very small. Indeed,
interstitial H2 occupies tetrahedral interstitial (t) sites, while H∗

2 is at a bc
site. Since there are twice as many bc as t sites, a (very) small ∆Sconfig

results.
The situation is very different when calculating binding free energies.

Indeed, for a complex {A, B} with dissociation products A and B, there are
often vastly different numbers of configurations for the dissociated species
than for the complexes, sometimes leading to large values for ∆Sconfig. The
calculation must be done using realistic concentrations of the species involved,
and its details depend on the specific situation.

The difference in configurational entropy per complex is ∆Sconfig =
(kB/[{A, B}]) ln(Ωpair/Ωnopair), where [{A, B}] is the number of complexes,
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and Ωpair and Ωnopair are the number of configurations with all possible com-
plexes forming and with all complexes dissociated, respectively. We set {A, B}
to be “dissociated” when no B species is within a sphere of radius rc (effective
capture radius) of any A. The results are not very sensitive to the actual value
of rc. The sites of A, B, and {A, B} are known and the concentrations [A] and
[B] are estimated from experiment. If [A] is larger than [B], the maximum
number of complexes is [{A, B}] = [B]. Although a real sample has traps
for the dissociation products A and/or B that are distinct from isolated A
and/or B in a perfect crystal, we ignore this additional complication.

We consider here two boron–oxygen complexes in Si. Both of them con-
tain an interstitial oxygen dimer ({Oi}2) trapped at either substitutional (Bs)
or interstitial (Bi) boron. Thus, we consider the binding free energies of the
{Bs, Oi, Oi} and {Bi, Oi, Oi} complexes (both in the +1 charge state). We do
not discuss here the reasons why these complexes are important, how they
form, and the consequences of complex formation for the sample at hand.
These issues are discussed elsewhere [41, 42]. The configurations of the com-
plexes and their dissociation products have been obtained from conjugate
gradient geometry optimizations in the appropriate charge states. The bind-
ing energies at T = 0 K are ∆U = 0.54 eV and 0.61 eV for {Bs, Oi, Oi} and
{Bi, Oi, Oi}, respectively. All the vibrational free energies have been calcu-
lated. We are faced now with the calculation of ∆Sconfig.

Since we know the equilibrium sites of all the species involved, we know
the number of equivalent orientations. However, we need to assume the con-
centrations of the various species in order to calculate the total number of
configurations. We assume a sample with N = 5 × 1022 substitutional sites,
[{Oi}2] = 1014 oxygen dimers, [Bs] = 1019 substitutional and [Bi] = 1014

interstitial boron impurities. The numbers depend on the sample, but these
are realistic values that could correspond to an actual experimental situation.
In a 1 cm3 sample, the number of sites for Bs, split-interstitial sites for Bi

and staggered or square configurations [42] for {Oi}2 is 5 × 1022.
At low temperatures, all the Bss trap one {Oi}2. The number of ways one

can arrange [{Oi}2] dimers among N sites is N !/[{Oi}2]!(N − [{Oi}2])!. Each
{Oi}2 traps at one Bs and each {Bs, Oi, Oi} has 12 equivalent orientations.
leading to 12[{Oi}2] possibilities. The remaining [Bs] − [{Oi}2] borons are
distributed among the remaining N − 12[{Oi}2] sites. Thus, the number of
configurations for {Bs, Oi, Oi} complexes is

Ωpairs =
12[{Oi}2]N !(N − 12[{Oi}2])!

[{Oi}2]!(N − [{Oi}2])!([Bs] − [{Oi}2])!(N − [Bi] − 11[{Oi}2])!
.

(14)

At high temperatures, all the {Bs, Oi, Oi} complexes are dissociated. We
can arrange [Bs] borons among N substitutional sites in N !/[Bs]!(N − [Bs])!
ways. If rc = 10 Å, no oxygen dimer is within a sphere of radius 10 Å of
any boron, implying that about 150 substitutional sites around each Bs are
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not allowed, which means that the number of sites available for the [{Oi}2]
oxygen dimers is N −150[Bs]. The number of configurations for the {Oi}2’s is
therefore (N − 150[Bs])!/[{Oi}2]!(N − 150[Bs]− [{Oi}2])!. Thus, the number
of configurations for the dissociated complexes is

Ωnopairs =
N !(N − 150[Bs])!

[Bs]!(N − [Bs])![{Oi}2]!(N − 150[Bs] − [{Oi}2])!
. (15)

Using Sterling’s formula and an expansion for ln(1 + ε) with ε � 1, we get

∆Sconfig = kB

(
ln

12[Bs]
N

+
278[Bs]

N
− [{Oi}2]

[Bs]

)
. (16)

Similar calculations for {Bi, Oi, Oi} lead to

∆Sconfig = kB

(
ln

24[{Oi}2]
N

− 1 + 32
[Bi]
N

+
[{Oi}2]

N

)
. (17)

With the concentrations assumed, this gives ∆Sconfig = −0.515 meV/K and
−1.538 meV/K for {Bs, Oi, Oi} and {Bi, Oi, Oi}, respectively.

The difference between these situations is huge, and the reason for it is
quite obvious. Consider an {A, B} complex that dissociates into A and B. If A
and/or B are abundant (as is the case for Bs), there are many configurations
resulting in pairs and relatively few configurations with A away from B.
On the other hand, when both A and B are scarce (as is the case for Bi

and {Oi}2), there are far fewer ways to make pairs and a great number of
dissociated configurations. The binding free energies of the {Bs, Oi, Oi} and
{Bi, Oi, Oi} complexes are plotted as a function of temperature in Fig. 6. As
shown in [41], the contribution of ∆Fvib is very small and the slope is almost
entirely determined by the difference in configurational entropy.

Thus, for a given {A, B} complex, the smaller the concentration of A or B,
the larger the configurational entropy associated with the dissociated species
and the smaller the entropy associated with complex formation. Then, the
slope of the binding free energy Eb(T ) is much steeper. The opposite holds
if A and/or B exist in high concentrations. In the example discussed in this
Chapter, changing one component of the complex from Bs to Bi changes the
relevant concentration from 1019 to 1014, and this change of five orders of
magnitudes roughly triples ∆Sconfig.

Note that above the temperature T0 where Eb(T0) = 0, the interactions
become repulsive. The value of T0 depends on Eb(0) and on the slope, that is
on ∆Sconfig, which in turn depends on the concentrations of the dissociation
products in the sample.

7 Discussion

First-principles calculations of the properties of defects in periodic supercells
have become quantitative in many respects. The configurations, energetics,



Dynamical Matrices and Free Energies 109

Fig. 6. Binding free energies of the {Bs, Oi, Oi} and {Bi, Oi, Oi} complexes in Si.
The latter complex will not form above room temperature, where the interactions
between Bs and {Oi}2 are repulsive because of configurational entropy

selected LVMs, spin densities and, to a lesser extent, electrical activities of
localized defects can be predicted with very good accuracy. However, the
knowledge of the entire dynamical matrix of the system provides much more
information.

The eigenvalues of this matrix give all the local, pseudolocal, and resonant
defect-related modes, as well as the crystal phonon frequencies. They can be
used to obtained high-quality phonon densities of states that in turn allow the
calculation of vibrational free energies. Although the latter are limited to the
constant-volume (and, in our case, harmonic) approximation, the calculated
specific heats show that the results are reliable up to several hundred degrees
Celsius.

The eigenvectors of the dynamical matrix allow the localization of local
modes to be quantified and their symmetry predicted. The eigenvectors can
also be used to prepare a system in thermal equilibrium at any temperature
without the need for lengthy thermalizations or even a thermostat. This fea-
ture is needed to calculate vibrational lifetimes as a function of temperature.

The calculation of defect energetics at finite temperatures is relatively
straightforward once the vibrational free energy is known. Indeed, rotational
and other contributions can be obtained (or approximated) analytically. The
most tricky, and sometimes most critical, part is the contribution of the
configurational entropy. One example has been discussed here in detail. The
result depends on the concentrations of the species involved, that is, on the
sample.

The binding free energy of an {A, B} complex in a crystal varies lin-
early with temperature, with a slope largely dominated by the difference in
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configurational entropy between {A, B} and A away from B. If R is a dis-
sociation rate, R exp{−Eb/kBT } = R exp{∆Sconfig/kB} exp{−Eb(0)/kBT },
and an Arrhenius plot yields a straight line with slope −Eb(0)/kB and in-
tercept (ln R + ∆Sconfig/kB). Thus, Arrhenius plots of the dissociation of an
{A, B} complex in samples containing different concentrations of A and/or B
should produce parallel lines since the slopes are the same but the intercepts
differ. This suggests a way to measure configurational entropies. If we take
R = 1011 and ∆Sconfig = −0.5 meV/K or −1.0 meV/K, the intercepts will be
at 25.3 − 5.8 = 19.5 or 25.3 − 11.6 = 13.7, a measurable change.

Even though the potential energy surface describing the interactions be-
tween A and B has a pronounced minimum when the {A, B} complex forms,
these interactions become repulsive at temperatures T > T0, where the criti-
cal temperature T0 is defined from Eb(T0) = 0. If complex formation begins
at a temperature near (but below) T0, the variations of the slope of Eb(T )
with time (that is: as complex formation takes place and the concentrations of
the various species change) will cause the interactions to shift from attractive
to repulsive, probably resulting in a maximum precipitate size.

Finally, since the difference in configurational entropy depends on the
concentrations [A] and [B] in the sample, the binding free energy of a spe-
cific complex {A, B} at a specific temperature will be different in samples
containing different concentrations of A or B.

Many of these consequences of the temperature dependence of binding
free energies are unexpected, not to say counterintuitive, because many of
us are used to thinking in terms of potential energy alone. Yet, regardless
of the value of the configurational entropy or the way it is calculated, the
consequences are inescapable.
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Abstract. In this chapter we review a series of novel techniques that make possi-
ble the efficient calculation of free energies in condensed-matter systems, without
resorting to the quasiharmonic approximation. Employing these techniques, it is
possible to obtain the free energy of a given system not just at a predefined tem-
perature, but in a whole range of temperatures, from a single simulation. This makes
possible the study of phase transitions, as well as the determination of equilibrium
concentrations of defects as a function of temperature, as will be illustrated by
examples of specific applications. The same techniques, coupled with a scheme to
integrate the Clausius–Clapeyron equation, can lead to the efficient determination
of phase diagrams, a capability that will be illustrated with the calculation of the
phase diagram of silicon.

1 Introduction

The free-energy plays a central role in understanding the thermal proper-
ties of materials. From it, other properties of a material may be derived,
such as the internal energy, the volume, entropy, etc. The phase behavior
of a material is controlled by the values of the free-energy of its different
phases, and the concentrations of defects or impurities, as well as their parti-
tion among coexisting phases, are defined by their chemical potentials, which
are themselves obtained from the free-energy. It is clear, therefore, that it
is highly desirable to have efficient computational tools that can evaluate
the free-energy of modeled materials in different conditions of temperature
and pressure (or volume). These methods should be accurate, and ideally it
should be possible to combine them with first-principles electronic structure
methods, which provide an accurate picture of the structure, bonding and
energetics of materials.

In this Chapter we provide a self-contained description of recent theoret-
ical developments that have contributed to making free-energy calculations
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more accessible and efficient, and we illustrate their capabilities with a se-
ries of applications, mostly in the field of semiconductors, the topic of this
book. Our intention in writing this Chapter has been to illustrate the po-
tential of these techniques, some of which are still relatively little known.
On the other hand, we have not intended to provide an exhaustive review
of free-energy techniques, nor to dwell overmuch on the technical details of
implementation. Both topics are covered at length in the excellent book by
Frenkel and Smit [1], and also to some extent in the earlier book by Allen
and Tildesley [2]. Nor has it been our intention to list the many examples of
applications of free-energy techniques to problems in materials science, chem-
ical physics, geology or biomolecular systems. Applications in some of these
fields are reviewed to some extent in the articles by Rickman and LeSar [3]
and by Ackland [4]. A very recent review of some of the techniques that will
be discussed here, in particular the reversible scaling technique, is that of
de Koning and Reinhardt [5].

2 The Calculation of Free-Energies

Unlike the total internal energy, which depends only on the positions and ve-
locities of the system at a single point in phase-space, the free-energy depends
on all configurations (all state points) in the phase-space volume accessible to
the system of interest in its given conditions of temperature and volume (or
pressure). This is, in essence, why it is more arduous to calculate the free-en-
ergy in atomistic simulations of condensed-matter systems. From statistical
mechanics we have that the free-energy at temperature T has the form

F = −kBT lnZ , (1)

where kB is Boltzmann’s constant and Z is the partition function. In canon-
ical ensemble conditions, i.e., constant number of particles N , constant vol-
ume V and constant temperature T , the partition function has the following
expression:

ZNV T =
1

N ! h3N

∫
V

dΓ e−βH(Γ ) , (2)

where Γ represents a point in phase-space, i.e., the 6N -dimensional space
formed by the 3N momenta and 3N coordinates of the system, dΓ is the
corresponding volume element, h is Planck’s constant, H is the Hamiltonian
of the system, β = (kBT )−1, and only configurations of volume V contribute
to the integral. By writing an integral we are implicitly assuming that the
system under consideration is being described by classical mechanics. In the
quantum case the integral would be replaced by a discrete sum over quantum
states.
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Frequently it is desirable to consider the system under conditions of con-
stant temperature and constant pressure (instead of constant volume), condi-
tions that correspond to the so-called isothermal-isobaric or NPT ensemble.
In this case, the partition function Z is generalized to

ZNPT =
1

N ! h3N

∫ ∞

0

dV e−βPV

[∫
V

dΓ e−βH(Γ )

]
. (3)

In this case the free-energy is called the Gibbs free-energy (and we will la-
bel it G), to distinguish it from the canonical free energy (also called the
Helmholtz free energy).

The partition function plays the role of a normalization factor in thermo-
dynamical averages. Consider, for example, some property A, which depends
on the positions, and/or velocities of the particles in the system. Then, the
canonical thermal average of A would be given by

〈A〉NV T =

∫
V

dΓ A(Γ ) e−βH(Γ )∫
V dΓ e−βH(Γ )

, (4)

where the denominator can be recognized as the canonical partition function
of (2) save for some factors that are canceled when taking the quotient of inte-
grals. Such thermal averages are readily estimated by the standard simulation
techniques of (canonical) molecular dynamics (MD) or Monte Carlo (MC),
but it is important to note that these techniques directly estimate the quotient
of integrals appearing in (4), and they cannot evaluate each of the integrals
separately. Also, note that the free-energy is not itself a thermal average [it
does not have the form of (4)], and therefore it cannot be obtained by direct
MD or MC simulation.

2.1 Thermodynamic Integration and Adiabatic Switching

Equations (2) and (3) clearly illustrate the difficulty of evaluating the free-
energy. These integrals are multidimensional, with as many dimensions as
degrees of freedom in the system, and except for very simple models such as
the ideal gas or the harmonic solid, they cannot be evaluated analytically.
Furthermore, their high dimensionality precludes any attempt of evaluation
by numerical quadrature methods. Thus it would seem that we are faced
with an unsurmountable difficulty, though fortunately this is not the case.
A way out of the problem is given by considering the dependence of the
Hamiltonian H on some parameter λ, and asking ourselves how does the
free-energy change with λ. It is immediately apparent that

∂F

∂λ
=

∫
V

dΓ
(

∂H
∂λ

)
e−βH(Γ )∫

V dΓ e−βH(Γ )
=

〈
∂H

∂λ

〉
. (5)

Equation (5) shows that, while the free energy itself is not a thermal av-
erage, its derivative with respect to any parameter λ is a thermal average,
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and therefore it can be evaluated by employing conventional simulation tech-
niques. This observation forms the basis of the technique known as the ther-
modynamic integration or coupling parameter [6, 7] method for evaluating
free-energies, or rather free-energy differences. Consider a system, for exam-
ple a solid, described by some potential U(r), where r stands for the set of
(generalized) coordinates specifying the positions of all degrees of freedom,
for which we wish to evaluate the free-energy at some given temperature and
volume. Now imagine that there is another system, similar in some sense to
the system of interest, for which the free-energy is known at the temperature
and volume at which we wish to know it for the system of interest. We noted
earlier that one of the systems for which the canonical partition function can
be evaluated analytically is the harmonic solid in which each atom is tied
to its equilibrium lattice site by means of a harmonic spring. We will refer
to the system for which the free-energy is known as the reference system,
and will assume it is described by a potential Uref(r). Let us now define
the λ-dependent Hamiltonian

Hλ =
1
2

∑
i

p2
i

mi
+ λU(r) + (1 − λ)Uref(r) . (6)

Notice that when λ = 0 the Hamiltonian corresponds to that of the reference
system (in our example the Einstein solid), while when λ = 1 it is that of the
system of interest. A direct application of (5) tells us that the derivative of
the free-energy Fλ associated with Hλ at λ ∈ [0, 1] is

∂Fλ

∂λ
= 〈U(r) − Uref(r)〉λ . (7)

Thus, to obtain the free-energy difference between the system of interest and
the reference all we need to do is to integrate over λ,

∆F = F − Fref =
∫ 1

0

dλ 〈U(r) − Uref(r)〉λ . (8)

Since Fref is known, the sought F follows immediately. As stated above,
the λ-dependent thermal averages 〈U(r)−Uref(r )〉λ are readily obtained from
standard simulation techniques. In practice, a discrete set of λ values in
the interval [0, 1] is chosen (usually of the order of 5 to 10), and at each
one of them an equilibrium simulation is carried out with Hamiltonian Hλ,
from which the average 〈U(r) − Uref(r)〉λ is obtained. Then the integral
in (8) is evaluated numerically. Note that because one samples directly the
potential U(r) − Uref(r ) using either MD or MC simulation techniques, no
harmonic approximation is involved here, and thus anharmonic effects are
automatically taken into account.

For this procedure to work, the chosen reference system must be in some
sense similar to the target system. By this we mean that as λ is changed,
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the system described by Hamiltonian Hλ (6) should not undergo any phase
transitions. If that were to occur, some of the work spent in transforming the
reference system into the system of interest (or vice versa) would actually be
spent in the latent heat of the phase transition, and the resulting free-energy
estimate would be inaccurate. Also, with a view to making the numerical
integration of (8) accurate, it is desirable that the quantity U(r)−Uref(r) is
subject to fluctuations as small as possible, and this is another criterion of
similarity between target and reference systems. We have already mentioned
that a useful reference for free-energy calculations of solids is the Einstein
crystal, but this would not be a good reference for a liquid. Fortunately, there
are a number of simple model liquids, such as the Lennard–Jones fluid [8] or
the inverse-power fluid [9], which have been extensively studied, and for which
the free-energy has been tabulated over a wide range of temperature and
pressure (density) conditions, and therefore these models serve the purpose
of reference systems for liquids. Of course, for systems in the gas phase the
ideal gas is an adequate reference.

Equation (8) reminds us again of the fact that it is harder to obtain
free-energies than it is to calculate thermal averages. A thermal average is
typically obtained from a single equilibrium (MD or MC) simulation, while
to evaluate the free-energy of the same system one needs several simula-
tions. The effort is increased further if the free-energy must be evaluated at
other temperatures or volumes (pressures). It can easily be seen that the
amount of work necessary to find a coexistence point, let alone map out a
phase boundary (where two coexisting phases have the same free-energy),
soon becomes a daunting task, if one must resort to the schemes described
thus far. Fortunately, starting in the early 1990s, a number of alternative
techniques of increased efficiency have been developed, which considerably
ameliorate this situation, and thanks to them the task of calculating phase
boundaries, and even entire phase diagrams is nowadays more accessible. The
first such development was proposed by Watanabe and Reinhardt [10], who
showed that accurate estimations of ∆F could be obtained from a single sim-
ulation with Hamiltonian Hλ (6), during which the parameter λ is slowly
(i.e., quasiadiabatically) switched from 0 to 1 (or vice versa). Thus, the task
of performing several equilibrium simulations at different values of λ to ob-
tain ∆F is reduced to that of performing a single nonequilibrium simulation
on a system that quasiadiabatically transmutes from the reference system
to the system of interest (or the reverse). During this nonequilibrium simu-
lation one computes the irreversible work (reversible in the adiabatic limit)
Wirr(t, λ=0→1), given by

Wirr(t, λ=0→1) =
∫ t

0

dt′ λ̇ {U [r(t′)] − Uref[r(t′)]} , (9)

where λ̇ = dλ/ dt′ is the rate of change of λ, and the time variable corre-
sponds to either real time in an MD simulation, or to simulation time in



120 E. R. Hernández et al.

an MC simulation (each MC sweep corresponding to a unit of simulation
time). In the adiabatic limit, Wirr(t = ∞, λ = 0 → 1) would be equal to the
free-energy difference ∆F , but since in practice strict adiabaticity cannot
be attained, Wirr(t, λ = 0→ 1) is only an approximation to ∆F , due to en-
tropic dissipation effects (see below). Nevertheless, experience shows that (9)
provides satisfactorily accurate results with modest computational efforts,
indeed more modest than those required in a full thermodynamic integration
calculation. We will refer to the method of Watanabe and Reinhardt as the
adiabatic switching method.

The adiabatic switching method is based on two key observations. The
first one is that, by virtue of Liouville’s theorem, any classical trajectory,
even one generated by a time-dependent Hamiltonian, preserves the phase-
space volume. In other words, the trajectory generated by a time-dependent
classical Hamiltonian will evolve on a phase-space hypersurface that, though
itself changing shape with time, encloses a fixed amount of phase-space vol-
ume. The second observation, due to Hertz [10], applies when the evolution
of the Hamiltonian is slow, or adiabatic. Under these conditions, the evolv-
ing hypersurface of phase-space on which the trajectory moves corresponds,
at each instant t, to a constant energy shell of energy H(t). Therefore, a
trajectory generated by an adiabatically evolving Hamiltonian preserves the
entropy, defined as S = kB ln Ω, where Ω is the (invariant) phase-space vol-
ume enclosed by the adiabatically evolving phase-space hypersurface. This is
the mechanical analog of the observation in thermodynamics that an adia-
batic process (i.e., one that proceeds along a succession of equilibrium states)
exerted on a system preserves its entropy. The consequence of this is that,
since ∆S = 0 when λ in (6) is adiabatically switched along the trajectory
generated by Hλ in canonical ensemble conditions, the free-energy change
involved in this switching process can be measured by the internal energy
change alone. As pointed out above, in the limit of strict adiabaticity, we
would have that ∆F = Wirr(t = ∞, λ = 0 → 1), but since the switching
process cannot be truly adiabatic there will be some entropic dissipative ef-
fects, which will cause Wirr(t, λ=0→1) to be an upper bound of ∆F . In fact,
one can also run the switching simulation in reverse, i.e., switching λ from 1
to 0, and the resulting irreversible work, −Wirr(t, λ=1→0) then provides a
lower bound to ∆F . This proves to be a convenient way of determining error
bars for the estimated free-energy [5].

2.2 Reversible Scaling

Another important development allows one to obtain the free energy in a
quasicontinuous range of temperatures, starting from a reference temper-
ature at which the free-energy is known, from either a previous adiabatic
switching or thermodynamic integration calculation. This method, known as
reversible scaling, was introduced by de Koning et al. [11], and is based on the



Free-Energies in Semiconductors 121

formal equivalence that exists, from a statistical-mechanics perspective, be-
tween scaling the temperature and scaling the potential. Indeed, the canonical
partition function of a system described by potential U(r) at temperature T
is

ZNV T =
1

N ! Λ3N (T )

∫
V

dr e
−U(r)

kBT , (10)

where the factor Λ(T ) = (h2/2πmkBT )1/2 results from integrating out the
momenta, and we have assumed that all particles are identical. Now, con-
sider a system described by a scaled potential, λU(r), at a different temper-
ature T0. For this system, the partition function would be

ZNV T0(λ) =
1

N ! Λ3N (T0)

∫
V

dr e
−λU(r)

kBT0

=
λ3N/2

N ! Λ3N (T0/λ)

∫
V

dr e
− U(r)

kBT0/λ . (11)

Now, it is easy to see that, except for a factor of λ3N/2, the partition function
of the scaled system at temperature T0/λ and that of the unscaled system at
temperature T are identical, if we impose that T0 = λT . From this it is easy
to derive the following relation between the free-energies of the scaled and
unscaled systems:

F (T )
T

=
Fs(T0, λ)

T0
+

3
2
NkB ln λ . (12)

In words, we have related the free-energy of a system at temperature T to
that of an appropriately scaled system at temperature T0 such that T0 = λT .
From a formal point of view not much has been done. However, using the
technique of adiabatic switching described in Sect. 2.1 it is very simple to
calculate Fs(T0, λ), at fixed temperature T0 but in a quasicontinuous range
of λ values in some interval λ ∈ [λmin, λmax], and by virtue of (12), each of
these Fs(T0, λ) values corresponds to the free-energy of the unscaled system
in a quasicontinuous range of temperatures T ∈ [T0/λmax, T0/λmin]. Fs(T0, λ)
is obtained as

Fs(T0, λ) = Fs(T0, λ0) + WNV T
irr (λ0→λ), (13)

where Fs(T0, λ0) is the free-energy of the scaled system at the initial value of
the scaling parameter λ0 (usually either λmin or λmax) and WNV T

irr (λ0→λ) is
the work done by switching the scaling parameter from λ0 to λ, which, using
the adiabatic switching technique is estimated as

WNV T
irr (λ0→λ) =

∫ t

0

dt′ λ̇ U [r(t′)] . (14)
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Thus, instead of having to run a separate adiabatic switching or thermo-
dynamic integration calculation to obtain the free-energy of the system of
interest for each temperature in a discrete set spanning the desired range
of temperatures, one can perform a single adiabatic switching calculation of
the scaled system at some appropriately chosen temperature T0, and simply
quasicontinuously vary the scaling parameter λ from λmin to λmax (or vice
versa). Note that in (14) each time step leads to a new value of λ and a corre-
sponding value of WNV T

irr (λ0→λ), which, through (12), leads to an estimate
of F (T ) at temperature T = T0/λ.

For the sake of simplicity, we have presented the method in the context of
the canonical ensemble, but the same ideas can be applied in the isothermal-
isobaric case [12], which is of more interest when it comes to studying phase
transitions. In this case one finds that it is necessary not only to scale the
potential energy but the pressure as well, so that the scaled system pressure
is Ps(λ) = λP , P being the pressure of the unscaled system. Then (12)
transforms into

G(T, P )
T

=
Gs[T0, Ps(λ)]

T0
+

3
2
NkB ln λ , (15)

relating the Gibbs free-energies of the scaled and unscaled systems, and
Gs(T0, Ps, λ) = Gs[T0, Ps(λ0), λ0] + WNPT

irr (λ0→λ), with

WNPT
irr (λ0→λ) =

∫ t

0

dt′ λ̇

{
U [r(t′)] +

dPs(λ)
dλ

V (t′)
}

, (16)

which is obtained from an adiabatic switching calculation carried out under
isobaric-isothermal conditions.

The reversible scaling technique discussed above provides an efficient pro-
cedure for calculating coexistence points between different phases of a given
material or substance. Using reversible scaling in the isothermal-isobaric en-
semble one can easily obtain the Gibbs free energy of the two different phases,
at constant pressure P , in a range of temperatures bounding the values where
the coexistence point is expected to be located. The temperature at which
the two free energies match is by definition the coexistence temperature of
the two phases at pressure P . This strategy is illustrated for the particular
case of the melting point of Si in the diamond phase at 0 pressure in Fig. 1.
Si was simulated with the semiempirical tight-binding (TB) [13] Hamiltonian
due to Lenosky and coworkers [14], which describes very well the structural
and thermal properties of Si in several of its phases [15].

2.3 Phase Boundaries and Phase Diagrams

If one wishes to map out an entire phase boundary, rather than just a sin-
gle coexistence point between two phases in equilibrium, one option would
be to iterate the procedure illustrated in Fig. 1 to obtain new coexistence
temperatures at different pressures. However, an alternative method exists
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Fig. 1. Gibbs free-energy of the diamond and liquid phases of Si in the neigh-
borhood of the zero-pressure melting point, as obtained from reversible scaling
simulations with the Lenosky et al. [14] model. The simulations contain 128 atoms
in each phase, and four k-points were used to sample the Brillouin zone. It can be
seen that the two free-energies become equal at approximately 1551 K, and above
this temperature the liquid becomes thermodynamically more stable. More details
of these calculations can be found in [15, 16]

that is often more efficient and practical, since it does not require any fur-
ther calculation of free-energies along the phase boundary. This technique
was pioneered by Kofke [17, 18], and is known as Gibbs–Duhem or Clausius–
Clapeyron integration. In this method, starting from some previously deter-
mined coexistence point along the desired phase boundary, one numerically
solves the Clausius–Clapeyron equation:

dT

dP
= T

∆V

∆H
. (17)

This equation relates the slope of the phase boundary, dT/ dP , at the
current coexistence point, given by temperature T and pressure P , with the
differences of molar volumes ∆V and molar enthalpies ∆H of the coexisting
phases. Thus, if ∆V and ∆H are known at the current coexistence point,
one can estimate how the equilibrium temperature will change if the pressure
changes by some small amount. ∆V and ∆H can be obtained from standard
equilibrium simulations using MD or MC. Note that the interface between the
coexisting phases need not be taken into account: each phase is independently
simulated in a separate simulation box, at identical conditions of temperature
and pressure. Once the average volume and enthalpy of each phase is known
with sufficient accuracy, new coexistence conditions are derived from (17),
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and the process is iterated until the phase boundary has been mapped out.
The stability and accuracy of the method have been analyzed in detail by
Kofke [18]. This method has been extensively employed, and some particular
examples of its use will be illustrated in the next section.

A parallelism can be established between Kofke’s Clausius–Clapeyron in-
tegration method and thermodynamic integration. In the latter, one performs
a series of equilibrium simulations at different λ values in the range [0, 1] with
the aim of obtaining the free-energy of the system. In Clausius–Clapeyron in-
tegration, one performs a series of equilibrium simulations at different values
of the independent variable (T or P ), and uses (17) to find how the dependent
variable (P or T ) adapts to the change in the independent variable such that
the two phases remain in equilibrium. However, as we saw in Sect. 2.1, the
calculation of the free energy can be made more efficiently using adiabatic
switching, where instead of several (ca. 5–10) equilibrium simulations, a single
nonequilibrium quasiadiabatic simulation is employed. It is therefore natural
to ask if a similar gain in efficiency is possible in Clausius–Clapeyron inte-
gration, and the answer is affirmative, as de Koning et al. [12] have shown.
The Clausius–Clapeyron equation (17) is arrived at by demanding that the
change in free-energy due to a small change in the independent variable be
the same in both phases. For illustrative purposes, let us consider the case
in which the temperature T plays the role of independent variable, while the
pressure P is the dependent one. As in the reversible scaling method, let us
now consider scaled versions of the two phases at constant temperature T0

and pressure Ps. When λ = 1 these correspond to some initial coexistence
point. The free-energies of the scaled phases will be GS,a and GS,b, respec-
tively. In the scaled case, now the temperature is fixed, and the role of the
independent variable is played by λ. Therefore, as λ is changed, the scaled
phases will depart from equilibrium, unless the scaled pressure Ps(λ) evolves
in such a way as to make the change in GS,a equal to that in GS,b. By re-
quiring that this be the case, one arrives at a Clausius–Clapeyron equation
for Ps(λ), which reads

dPs(λ)
dλ

= −∆U

∆V
, (18)

where ∆U is the difference of internal energies between the two phases. If λ
is stationary, the values of ∆U and ∆V would be obtained from standard
equilibrium simulations, and everything would be exactly as in the case of
the Clausius–Clapeyron integration of Kofke, but working with the scaled
phases. However, (18) suggests that, as in the reversible scaling method, λ
can be varied quasicontinuously (i.e., quasiadiabatically). In these conditions,
∆U and ∆V will adapt to the changing value of λ, and Ps(λ) will evolve ac-
cording to (18) such that the scaled phases remain in equilibrium. Through
the scaling relations T = T0/λ, P = λPs(λ), the equilibrium pressure P (T )
at temperature T will be obtained for the unscaled phases. De Koning et al.
demonstrated the usefulness of the method by calculating the melting curve
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of the Lennard–Jones model for pressures between 0 up to 160 reduced
units, obtaining results matching those obtained previously by Agrawal and
Kofke [19] employing the standard (equilibrium) Clausius–Clapeyron inte-
gration method. In the next section we will see another application, in which
this dynamic Clausius–Clapeyron integration method has been recently used
to obtain the phase diagram of Si as predicted by a semiempirical TB model.

3 Applications

Let us now discuss some examples of applications of the techniques described
in Sect. 2 to the study of thermal properties of defects, phase transitions and
phase diagrams. Our focus, given the theme of this book, will be mostly on
semiconductors, though occasionally we will mention examples of applications
to other types of materials, due to their importance or to their illustrative
value. Let us remark that we do not intend to provide an exhaustive review of
the literature concerned with thermal properties of semiconducting materials,
as this would be beyond the scope of this Chapter. Our aim is rather to
illustrate the capabilities of the novel techniques discussed above.

3.1 Thermal Properties of Defects

Most calculations of the free-energy and other thermal properties of defects
in semiconductors to be found in the literature rely on the use of the quasi-
harmonic approximation, and since this topic is going to be covered at length
in Chap. 8, we will not dwell much on it here. However, we must mention
two studies that employed techniques described in Sect. 2, and that therefore
go beyond the quasiharmonic approximation. Both studies illustrate nicely
the potential of the techniques discussed in this Chapter, and make evident
the need for incorporating the effects of anharmonicity at sufficiently high
temperatures.

The first example is the study of Jääskeläinen et al. [20], who computed
the free-energy of formation of the vacancy and self-interstitial in Si as a
function of temperature. A thorough study of self-diffusion requires accurate
free-energy calculations (aimed at predicting temperature-dependent equi-
librium concentrations) and extensive diffusivity simulations (aimed at com-
puting migration energies and diffusivity prefactors) for all relevant kinds of
native defects. In their study, Jääskeläinen and coworkers considered only
self-interstitial (I) and vacancy (V) defects.
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Once the formation free-energies F f
I,V = Ef

I,V + TSf
I,V, as well as migra-

tion energies Em
I,V and diffusivity prefactors d0

I,V are known, the self-diffusion
coefficient DSD(T ) can be cast in the form

DSD(T ) = d0
I exp

(
−Ef

I − TSf
I

kBT

)
exp (−Em

I /kBT )

+ d0
V exp

(
−Ef

V − TSf
V

kBT

)
exp (−Em

V /kBT ) , (19)

so that a direct theory vs. experiment comparison is possible.
The thermodynamic integration (TI) method [1] was adopted by Jääske-

läinen et al. [20] to evaluate F f
I,V in c-Si by means of the tight-binding (TB)

model provided by Kwon et al. [21]. The ensemble average appearing in (8)
was performed during constant-volume, constant-temperature molecular dy-
namics (TBMD) simulations in a 64±1 atom periodically repeated cell. The
thermodynamical integration was performed over 16 λ points, while free-
energy calculations were performed at four different temperatures, namely
300 K, 500 K, 1000 K and 1400 K. The formation entropy Sf

I for the self-
interstitial defect was found to be almost constant with temperature, the
average value being Sf

I = 11.2kB. First-principles calculations [22] predict
a value of Sf

I ∼ 10kB when including anharmonic terms through TI calcu-
lations as well. The case of a vacancy is more complicated due to its high
mobility [23], which effectively adds a sizeable contribution of migration en-
tropy in the TI free-energy calculations. This is confirmed by the fact that
the computed value of Sf

V varied in the range 10.2kB to 11.7kB in the se-
lected temperature interval, with an average value of Sf

V ∼ 10.8kB. In the
case of the vacancy, in order to prevent the double counting of the migra-
tion entropy, which is already taken into account by the TBMD simulations
aimed at measuring d0

V, short observation runs were performed, taking care
to select only those simulations where V diffusion actually did not take place.
The resulting average formation (i.e., configurational + vibrational) entropy
was Sf

V ∼ 8.8kB.
These TBMD results for Sf

I and Sf
V are in good qualitative agreement with

first-principles calculations by Blöchl and coworkers [22] in the sense that the
difference in the entropies of formation for interstitials and vacancies is of the
order of 1kB to 2kB in both studies, with a larger formation entropy for the
interstitial.

Diffusivity constants were finally obtained by using the migration pref-
actors and energies computed by means of the same TBMD functional, fol-
lowing Tang et al. [23]. The overall reliability of this TI-TBMD approach
is summarized in Fig. 2, where the silicon TBMD total self-diffusion co-
efficient DSD = DI + DV is compared with state-of-the-art experimental
data [24, 25]. As can be seen, there is extremely good agreement between the
different sets of experimental data and the theoretical results. These temper-
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Fig. 2. Temperature dependence of the total self-diffusion coefficient in silicon.
The continuous line is the experimental results of [24], the dotted line is the experi-
mental measurements of [25], and the dot-dash line is the theoretical results of [20].
Reprinted with permission from Jääskeläinen et al. [20], Copyright (2001) by the
American Physical Society

ature-dependent self-diffusion values should be therefore useful in modeling
Si bulk processing.

As noted above, Jääskeläinen et al. implicitly assumed that the main con-
tributors to self-diffusion in Si are the vacancy and interstitial defects, thus
neglecting the possible contribution of other kinds of defects, such as clusters
of interstitials or vacancies. Indeed, both first-principles simulations [26] and
tight-binding temperature-accelerated MD simulations have revealed that
small clusters of defects can also make substantial contributions to the mobil-
ity. In particular, the study of Cogoni et al. [27] shows quite conclusively that
in all ranges of temperatures the mobility of the interstitial dimer is compara-
ble to that of the single interstitial. At sufficiently high temperatures (above
1400 K) even the trimer diffuses fairly rapidly. However, it should be noted
that to better estimate the significance of these clusters of interstitials to
self-diffusion in Si, their concentrations, as well as their mobilities have to be
taken into account. Since their formation energies are larger than that of the
single interstitial, it is likely that in equilibrium conditions their net contribu-
tion to self-diffusion will be rather small. On the other hand, the processing
of Si samples may incur nonequilibrium defect populations, and under these
conditions the contribution of clusters of interstitials to self-diffusion could
be important.

Let us now focus on another aspect of the thermal properties of Si. At
room temperature, Si is a brittle material, but as the temperature is raised,
a dramatic change in its mechanical properties takes place in a very narrow
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range of temperatures around 873 K, and Si becomes a ductile material [28].
It is accepted that this change is due to the fact that at this temperature
dislocations can be more easily nucleated and emitted at the tip of cracks,
blunting the crack tip and making its propagation through the material more
difficult. In Si there are two sets of closely packed {111} slip planes, called
shuffle and glide. While dislocations nucleated at the shuffle set have high
Peierls stress and low mobility, the dislocations on the glide set can split into
partials, having a smaller Peierls stress and higher mobility. It is believed
that the brittle–ductile transition in silicon can be related to the change in
dominance of one set over the other. Over 10 years ago, Rice and collab-
orators [29–31] proposed a model in which the resistance to nucleation of
dislocations at the crack tip can be measured by the so-called unstable stack-
ing energy, which is the lowest energy barrier that needs to be crossed when
one half of a crystal slips relative to the other half. Through a combination of
density-functional theory calculation with Vineyard’s transition state theory,
Kaxiras and Duesbery [32] have shown that an abrupt transition from shuffle
to glide dominance happens with temperature. In this approach, the temper-
ature effects were considered without taking into account the real dynamics
of the atoms on either side of the slip plane. The calculations by de Kon-
ing et al. [33] using the adibatic switching method within MD simulations
fully included such temperature effects. Figure 3 shows the phase diagram
for preferable nucleation of dislocations on shuffle plane versus glide set. One
can see from the figure that the inclusion of all anharmonic effects in the
calculations by de Koning et al. did not change substantially the diagram
previously obtained by Kaxiras and Duesbery.

3.2 Melting of Silicon

Probably the first calculation of the melting point of crystalline Si from sim-
ulation was carried out by Broughton and Li [34], employing the well-known
Stillinger–Weber [35] potential. Broughton and Li calculated the zero-pres-
sure melting point by obtaining the free-energy of the crystal and liquid
phases at different temperatures. The free-energy of the crystal was calcu-
lated by thermodynamic integration at different temperatures, taking as a
reference system the harmonic solid. For the liquid phase, the free-energy was
obtained by first switching off the attractive two-body part of the potential
to avoid the occurrence of a possible first-order liquid–vapour transition, and
then expanding the system to zero density. They obtained a melting temper-
ature of 1691 K, with an estimated error of ±20 K. This value is in very good
agreement with the currently accepted experimental value of 1687 K [36], an
agreement that is perhaps not so surprising, as the Stillinger–Weber poten-
tial was parametrized on the basis of data from both the crystal and liquid
phases. The careful free-energy tabulation of the Stillinger–Weber potential
for the crystal and liquid phases of Si achieved by Broughton and Li has al-
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Fig. 3. Coexistence curves separating the preferable nucleation of dislocations on
shuffle planes versus glide set. The full line is the results obtained from the EDIP
potential after applying a correction for the overestimation of γus, the unstable
stacking energy, by this potential. The dotted line shows the results obtained with
DFT LDA calculations, and the dashed horizontal line gives the value of the ex-
perimental brittle fracture stress. Figure reprinted with permission from de Koning
et al. [33]. Copyright (1998) by the American Physical Society

lowed subsequent studies (see below) to use this model as a reference system
for free-energy calculations of Si employing higher levels of theory.

In a subsequent study, Clancy and Cook [37] compared several empirical
potential models in their ability to describe the thermal behavior of Si and
Ge; in particular they considered the well-known Tersoff potential [38–40],
and a form of the embedded atom potential modified to describe covalent
bonding (modified embedded atom method, MEAM) [41]. In this work the
melting point for each model was determined by employing the two-phase
coexistence method, i.e., by simulating the solid and liquid in a large cell
in direct coexistence. It was found that the Tersoff model for Si led to a
melting temperature of 2547 K, well above the experimental value of 1687 K,
while the MEAM showed the opposite behavior, underestimating the melting
temperature at 1475 K. Both models correctly predict, as does the Stillinger–
Weber potential, a slight increase of the density upon melting, though all
models underestimate somewhat the crystal and liquid densities. A similar
study, comparing several tight-binding models in their ability to reproduce



130 E. R. Hernández et al.

the liquid structure, and the melting temperature of Si has been recently
carried out by Kaczmarski et al. [15].

Very soon after the proposal of the adiabatic switching technique by
Watanabe and Reinhardt [10], Sugino and Car [42] employed this technique,
combined with first-principles Car–Parrinello dynamics [43], to study the
melting of Si. These authors employed as a reference system the Stillinger–
Weber potential for both the crystal and liquid phases, for which the free
energy had been previously determined by Broughton and Li [34] as a func-
tion of temperature, as discussed above. Sugino and Car thus calculated the
free-energy difference between the reference model and a first-principles de-
scription of Si employing density-functional theory (DFT) with the local-den-
sity approximation (LDA) for the exchange and correlation energy, combined
with the pseudopotential approximation. They predicted a melting temper-
ature of 1350 ± 100 K, some 300 K below the experimental value. This error
was attributed to the relative destabilization of the solid phase with respect to
the liquid in the LDA, which would result in a reduction of the melting point.
Any small error in the difference of free energies translates into a rather large
error in the melting temperature, and hence these kind of calculations re-
quire very stringent accuracy constraints. More recently, Alfè and Gillan [44]
have revisited the theme of the melting of Si from first-principles simulations.
These authors, employing the LDA approximation obtained a melting tem-
perature of 1300 ± 50 K, in good agreement with the value reported earlier
by Sugino and Car. They also performed calculations employing a general-
ized gradient approximation (GGA) to the exchange and correlation energy,
obtaining in this case a somewhat improved value of the melting tempera-
ture of 1492 ± 50 K, which, although still below the experimental value by
nearly 200 K, clearly improves upon the LDA result. This observation con-
firms the suggestion made by Sugino and Car that the underestimation of
the melting point was most likely attributable to errors in the exchange and
correlation functional, and not in any other of the approximations involved
in the simulations (pseudopotential, basis set, etc.). It is worth noting that Si
is a troublesome case, as the melting point separates two phases of different
electronic character: while the crystal is semiconducting, the liquid is metal-
lic. Errors due to the approximate nature of the functionals may, in general,
be of different size in insulators and metals. Indeed, when systems in which
the electronic character of the material does not change upon melting have
been studied, DFT methods can predict melting temperatures within a few
tens of K of the experimental result. This is the case for Al, which has been
studied by de Wijs et al. [45], who reported a value of Tm = 890 ± 20 K,
compared to an experimental value of 933.47 K.

Both liquid silicon (l-Si) and water present an anomalous behavior of the
density and specific heat with temperature. Also, like water, l-Si is a very poor
glass former, in the sense that it is extremely difficult to experimentally obtain
the amorphous phase by quenching from the melt. In the case of silicon, as a
matter of fact, this has never been achieved. Due to these similarities, it has
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Fig. 4. Kauzmann plot for the environment-dependent interatomic potential
(EDIP)-Si. Normalized entropy difference between the disordered and crystalline
phases according to the EDIP model as a function of normalized temperature.
Reprinted with permission from [46]. Copyright (2004), American Institute of
Physics

been proposed that, as in water, supercooled l-Si could present polymorphism,
as well as polyamorphism. Experiments have suggested the existence of a
first-order-like liquid–liquid (l–l) transition in supercooled l-Si [47, 48]. Also,
it has been considered, based on experimental results, that the transition from
amorphous silicon (a-Si) to l-Si (l–a transition) would also be a discontinuous
transition [47]. From the computational point of view, MD simulations using
the Stillinger–Weber potential [49] have determined a l–l transition at about
1060 K, but have not found evidence of a l–a transition. Other computational
results, using the EDIP [50] model for silicon, found a first-order-like l–a
transition at 1170 K and no evidence of a l–l transition [51]. In a recent
study using the reversible scaling method within MC simulations and also
using the EDIP model, Miranda and Antonelli [46] have shown that a l–l
transition occurs at 1135 K and a l–a transition takes place at 843 K. Figure 4
shows the normalized excess entropy of the liquid phase with respect to the
crystalline phase as a function of the normalized temperature. From the figure
one can see that as the temperature is lowered, first a discontinuous transition
takes place, and as the temperature is lowered further, a glass-like transition
occurs, beyond which the excess entropy becomes constant. This would be
in agreement with recent experiments [52] that have indicated that a glass-
like transition takes place at about 1000 K. Also, the configurational entropy
obtained by Miranda and Antonelli for the amorphous phase is in agreement
with that obtained by Vink and Barkema [53] using a methodology based on
graph and information theories.
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Fig. 5. Phase diagram of water. The left panel shows the phase diagram predicted
by the TIP4P potential; the left panel that obtained from the SPC/E model, and the
central panel displays the experimental phase diagram. The SPC/E phase diagram
has been shifted by 0.1 GPa in order to make phase I visible, as this phase appears at
small negative pressures, according to this model. Figure reprinted with permission
from Sanz et al. [54]. Copyright (2004) by the American Physical Society

3.3 Phase Diagrams

As discussed above, the efficient free-energy techniques exposed in Sect. 2,
combined with Kofke’s Clausius–Clapeyron integration method, can be em-
ployed to calculate phase diagrams of materials entirely from simulation. Two
particularly interesting examples of applications of these techniques are the
determination of the phase diagram of water by Sanz et al. [54], and the
phase diagram of carbon by Ghiringhelli et al. [55].

The phase diagram of water is very rich, with at least nine stable ice
phases documented. Many different empirical potentials aiming at describing
this complicated system have been proposed in the literature, and Sanz and
coworkers [54] have compared two of them, namely the so-called TIP4P model
of Jorgensen et al. [56], and the SPC/E model of Berendsen et al. [57], in their
ability to reproduce the experimental phase diagram of water. Sanz et al.
used standard thermodynamic integration to locate coexistence points be-
tween the different phases, and then obtained the corresponding coexistence
lines by using Clausius–Clapeyron integration as proposed by Kofke [17, 18].
The theoretical phase diagrams derived from TIP4P and SPC/E models are
compared with the experimental water phase diagram in Fig. 5.

As can be seen in Fig. 5, the phase diagram predicted by the TIP4P model
agrees fairly well with the experimental one, while that resulting from the
SPC/E model deviates noticeably. The TIP4P model correctly predicts ice
phases I, II, III, V, VI, VII and VIII to be stable, as indeed they are found
to be in real water, while the SPC/E model, on the other hand, predicts
wrongly that phases III and V are metastable (i.e., there is no temperature–
pressure domain in which these phases are found to have the lowest Gibbs
free-energy).

A second example, more within the theme of this book, is provided by
the phase diagram of carbon obtained by Ghiringhelli et al. [55]. If mod-
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Fig. 6. Phase diagram of carbon as obtained by Ghiringhelli and coworkers [55].
This figure shows the phase diagram only up to pressures of 60GPa, but the dia-
mond melting line was followed up to pressures of 400 GPa. The solid black triangle,
blue diamond and red square are the three coexistence points from which later the
phase boundaries were obtained by Clausius–Clapeyron integration. The pink solid
circle is an experimental estimate of the liquid–graphite–diamond triple point. Fig-
ure reprinted with kind perission from Ghiringhelli et al. [55]. Copyright (2005) by
the American Physical Society

eling water accurately is a significant challenge for empirical potentials, as
the work of Sanz et al. [54] so nicely illustrates, the situation with carbon
is by no means easier. The three phases considered in the study of Ghir-
inghelli and coworkers, namely graphite, diamond and the liquid phase, have
markedly different structures and types of bonding, and devising an empir-
ical potential that is capable of reproducing not only these structural and
bonding differences, but also the thermodynamic behavior of each phase, is
a significant achievement. In this study, the recently developed model of Los
and Fasolino [58] was used. Ghiringhelli et al. proceeded, as in the previously
discussed example of water, by first locating coexistence points between the
different phases (graphite–diamond, graphite–liquid, and diamond–liquid),
and then using Clausius–Clapeyron integration to determine the correspond-
ing phase diagram. A portion of the phase diagram they obtained is shown
in Fig. 6, where also some experimentally measured coexistence points are
shown for comparison.1

The phase diagram of carbon is a challenge not only for simulation, but
even more so for experiments. Indeed the melting temperature of graphite
1 Shortly after this Chapter was sent to the printer, first principles calculations of

the phase diagram of carbon were published by Wang, Scandolo and Car, [59].
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occurs well above 4000 K. The melting line of diamond has not to date been
experimentally characterized. The situation is a little better for the graphite–
diamond coexistence line, for which some measurements exist. As can be seen
from Fig. 6, the carbon model of Los and Fasolino [58] predicts a phase di-
agram that agrees well with the available experimental data. In particular,
the slope of the graphite–diamond coexistence curve seems to be well repro-
duced, although the model predicts this transition to occur at slightly higher
pressures than observed experimentally. The graphite melting line occurs at
somewhat lower temperatures (ca. 4000 K) than the experimental values, and
is predicted to be monotonic with a slight positive pressure derivative, while
it appears that the experimental curves show a maximum at around 6 GPa.
It should be noticed, however, that the experimental values do not corre-
spond to real measurements, and are in fact indirect estimations based on
the ambient-pressure value [55].

A final example that we wish to discuss is that of the phase diagram of Si
obtained recently by Kaczkarski and coworkers [16]. These authors employed
the tight-binding model of Lenosky et al. [14], as it is known that no empiri-
cal potential currently available predicts correctly the structure of the liquid
phase in this system. The range of temperatures and pressures considered
by Kaczmarski et al. encompassed four phases, namely the diamond phase,
which is the stable one at ambient conditions, the liquid phase, the β-Sn
structure, into which the diamond phase transforms when subject to a suf-
ficient amount of compressive pressure, and the Si36 clathrate phase, which
becomes stable at negative (expansive) pressures. As in the case of C, not
much experimental data exists concerning the equilibrium conditions of these
phases of Si. It is known, however, that the zero-pressure melting point of
the diamond phase occurs at 1687 K, and that its melting line has a negative
slope, which results from the fact that the liquid phase is denser than the
solid, while having a higher enthalpy. In fact, some potential models and even
some tight-binding ones, fail to reproduce this behavior correctly, and would
consequently produce a qualitatively wrong melting behavior, even if some
of them predict the zero-pressure melting point rather accurately. In a pre-
vious study, Kaczmarski et al. [15] compared different tight-binding models
in their ability not only to accurately reproduce the melting temperature of
the Si diamond phase, but also the structural properties of the liquid. The
choice of the model due to Lenosky et al. for the study of the phase diagram
was based on the results of that comparison.

One difference between the previous examples of water and C and the
work of Kaczmarski et al. [16] is that in the latter the dynamical version
of the Clausius–Clapeyron integration method due to de Koning et al. was
used. Also, coexistence points were located from free-energies obtained from
the reversible scaling and adiabatic switching techniques. The combined use
of these techniques considerably reduced the computational costs compared
to what would have been required if standard thermodynamic and Clausius–
Clapeyron integration had been used instead.
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Fig. 7. Silicon phase diagram as predicted by the Lenosky model. The continuous
and dashed black curves are calculated coexistence lines. Dashed curves indicate
phase boundaries in regions where the separated phases are metastable, while con-
tinuous black curves separate thermodynamically stable phases; uncertainty bounds
estimated at specific points of the phase diagram (marked by filled circles) are pro-
vided by the error bars. For comparison purposes, a schematic phase diagram sum-
marizing the experimental data is shown with red dotted lines, and experimental
data at specific temperatures and pressures is shown in the form of colored symbols.
The asterisk corresponds to the zero-pressure melting point of phase I (diamond),
1687 K [36]; the brown circle is the zero-pressure melting point of the (metastable)
clathrate phase (C), at 1473 K [60]; the blue diamond is the diamond–liquid–β-Sn
triple point, with estimated coordinates of 1003 ± 20 K and 10.5 ± 0.2 GPa [61];
red squares and triangles indicate the pressures at which the β-Sn phase (II) was
first observed and where the diamond phase ceased to be detected, respectively, in
the experiments of Voronin et al. [61]; left and right pointing orange triangles give
the same information as obtained by Hu et al. [62]; finally, the downward-pointing
green triangle is the estimated diamond–clathrate–liquid triple point, at 1710 K
and −2.5 GPa [60]. Figure reprinted from [16]. Copyright (2005) by the American
Physical Society

Figure 7 shows the computed phase diagram for Si, compared with avail-
able experimental data. It is seen that the overall features of the phase di-
agram are qualitatively well reproduced by the model. In particular, the
negative slope of the melting line of the diamond phase is correct, even if the
actual absolute slope value is probably underestimated. The diamond–β-Sn
coexistence line is also predicted to have a negative slope, though again the
value seems to be smaller than the experimental one. The coexistence line
between the diamond and clathrate phases is in good agreement with the
only available experimental data on this transition [60].
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4 Conclusions and Outlook

In this Chapter we have given an overview of recent theoretical developments
in the methodology of free-energy calculations, and we have also provided a
selection of applications, most of them in the field of semiconductors, which
illustrate current capabilities and provide a glimpse of what the future may
bring in this topic. Many outstanding problems still remain, however, and ap-
plications in fields such as metallurgy and mineral science, particularly when
variable chemical composition is involved, are still extremely challenging. We
feel sure, nevertheless, that future theoretical and methodological develop-
ments will render such problems more accessible than they are at present.
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Abstract. The continuum variational and diffusion quantum Monte Carlo (VMC
and DMC) techniques are stochastic methods for obtaining expectation values of
many-body wavefunctions. These methods are capable of achieving very high accu-
racy, yet the scaling with system size is sufficiently favorable to allow applications to
condensed-matter systems. Defects in semiconductors pose a variety of challenges
to computational electronic-structure methods. As well as the large system sizes
required, one is faced with calculating energy differences between rather disparate
interatomic bonding configurations, and calculating excited state energies, some-
times including the energies of multiplets. Applications of VMC and DMC to defects
in semiconductors are still in their infancy but, as I will describe, these methods
possess features that make them well suited for addressing some important issues in
the field. In this chapter I first discuss why we expect VMC and DMC calculations
to be valuable in studying defects in semiconductors. I then review the techniques
themselves, concentrating on the issues most pertinent to calculations for defects
in solids. I describe recent applications to self-interstitial defects in crystalline sil-
icon, the low-energy electronic states of the neutral vacancy in diamond, and the
Schottky defect energy in magnesium oxide. The chapter ends with a perspective
on the future of such studies.

1 Introduction

Quantum Monte Carlo (QMC) methods in the variational (VMC) and diffu-
sion (DMC) forms are stochastic methods for evaluating expectation values
of many-body wavefunctions. (For a review of the VMC and DMC methods
and applications to solids, see [1].) One of the main attractions of these
methods is that the computational cost scales roughly as the square or cube
of the number of particles, which is very favorable compared with quantum-
chemical many-body techniques, allowing applications to condensed-matter.
Applications of QMC to defects in semiconductors are still in their infancy
but, as I will describe, these methods possess features that make them well
suited for addressing important issues in the field. In this Chapter I first dis-
cuss why we expect VMC and DMC calculations to be valuable in studying
defects in semiconductors. I then review the techniques themselves, concen-
trating on the issues most pertinent to defects in solids. Finally, I describe
recent applications to point defects in crystalline silicon, diamond and mag-
nesium oxide, ending with a perspective on the future of such studies.
D. A. Drabold, S. K. Estreicher (Eds.): Theory of Defects in Semiconductors,
Topics Appl. Physics 104, 141–164 (2007)
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It is important to treat electron-correlation effects accurately when de-
scribing the energetics of condensed-matter systems. Defects in semiconduc-
tors are not special in this regard, but they exemplify almost all the difficulties
that may be encountered. For example, we would like to calculate the for-
mation and migration energies of defects. These quantities are related to the
energy differences between structures, which may involve atoms with different
coordination numbers and bond lengths. We might also be interested, for ex-
ample, in the properties of a 3d transition metal impurity in a semiconductor,
whose electronic properties are difficult to describe accurately. We may also
be interested in the excited electronic states of defects, which may involve
calculating the energies of multiplets. These are severe tests of electronic-
structure methods, which can only be met by techniques that incorporate a
sophisticated description of electronic correlation.

QMC methods have the potential to provide very accurate energies and,
in principle, there are no restrictions on the types of electronic state that can
be treated. The N2 −N3 scaling of the computational cost with the number
of electrons N allows applications to quite large systems, which are certainly
sufficient for studies of defects in semiconductors. However, the prefactor is
large, and a QMC calculation is generally much more expensive than the
corresponding density-functional theory (DFT) one.

The DMC calculations of Ceperley and Alder [2] provided accurate ener-
gies for the homogeneous electron gas, which have been used in constructing
parameterized density functionals. Since then, the DMC method has been
used in studies of the electrons in molecules, clusters and solids. The power
of the DMC method for describing electronic correlation in large systems
has been amply demonstrated by recent applications, including studies of
point defects in semiconductors [3, 4], the reconstruction of the silicon (001)
surface [5] and its interaction with H2 [6], and the calculation of optical
excitation energies [7, 8]. The methodology of QMC calculations is being im-
proved rapidly that, together with advances in computing technologies, will
allow them to be applied to more complicated systems. I believe that QMC
will play an important role in the future of electronic-structure computations.
They will not replace DFT studies, but rather complement them by providing
higher accuracy, albeit at considerably higher cost.

2 Quantum Monte Carlo Methods

The VMC method is conceptually very simple, the energy being calculated
as the expectation value of the Hamiltonian with an approximate many-
body trial wavefunction. In the more sophisticated DMC method the estimate
of the ground-state energy is improved by performing an evolution of the
wavefunction in imaginary-time.
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2.1 The VMC Method

The variational theorem of quantum mechanics states that, for a proper trial
wavefunction ΨT, the variational energy,

EV =
∫

Ψ∗
T(R)ĤΨT(R) dR∫
Ψ∗

T(R)ΨT(R) dR
, (1)

is an upper bound on the exact ground-state energy E0, i.e., EV ≥ E0.
In (1), ΨT is the many-body wavefunction, the symbol R denotes the 3N -
dimensional vector of the electron coordinates, and Ĥ is the many-body
Hamiltonian.

The VMC method was first used by McMillan in a study of liquid 4He [9].
To facilitate the stochastic evaluation, EV is written as

EV =
∫

p(R)EL(R) dR , (2)

where the probability distribution p is

p(R) =
|ΨT(R)|2∫
|ΨT(R)|2 dR

, (3)

and the local energy, EL, is

EL(R) = Ψ−1
T ĤΨT . (4)

In VMC one uses a Metropolis algorithm [10] to sample the distribution p,
generating M configurations, Ri, drawn from p. The variational energy is then
estimated as

EV � 1
M

M∑
i=1

EL(Ri) . (5)

Equation (2) is an importance sampling transformation of (1). Equa-
tion (2) exhibits the zero-variance property; as the trial wavefunction ap-
proaches an exact eigenfunction (ΨT → φi), the local energy approaches the
corresponding eigenenergy, Ei, everywhere in configuration space. As ΨT is
improved, EL becomes a smoother function of R and the number of sampling
points, M , required to achieve an accurate estimate of EV is reduced.

VMC is a simple and elegant method. There are no restrictions on the form
of trial wavefunction that can be used and it does not suffer from a fermion
sign problem. The main problem is, essentially, that you get out what you
put in. Even if the underlying physics is well understood it is very difficult to
prepare trial wavefunctions of equivalent accuracy for different systems, and
therefore the energy differences between them will be biased. We use the VMC
method mainly to optimize parameters in trial wavefunctions, see Sect. 2.4,
and our main calculations are performed with the more sophisticated DMC
method, which is described in the next section.
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2.2 The DMC Method

The DMC procedure largely overcomes the problem of bias inherent in VMC.
In DMC the operator exp(−tĤ) is used to project out the ground-state
from the initial state. This can be viewed as solving the imaginary-time
Schrödinger equation,

− ∂

∂t
Φ(R, t) =

(
Ĥ − ET

)
Φ(R, t) , (6)

where t is a real variable measuring the progress in imaginary-time and ET

is an energy offset. The solution of (6) can be obtained by expanding Φ(R, t)
in the eigenstates of the Hamiltonian,

Φ(R, t) =
∑

i

ci(t)φi(R) , (7)

which leads to

Φ(R, t) =
∑

i

exp[−(Ei − ET)t]ci(0)φi(R) . (8)

For long times one finds

Φ(R, t → ∞) � exp[−(E0 − ET)t] c0(0)φ0(R) , (9)

which is proportional to the ground-state wavefunction, φ0. If we interpret
the initial state,

∑
i ci(0)φi, as a probability distribution, then the time-evo-

lution process can be thought of as taking a set of points in configuration
space distributed according to the initial state and subjecting them to diffu-
sion and branching (branching is also referred to as “birth” and “death” of
configurations). The diffusion process arises from the kinetic energy operator
and the branching from the potential energy. So far we have assumed that
the wavefunction can be interpreted as a probability distribution, but a wave-
function for more than two identical fermions must have positive and negative
regions. One can construct algorithms that use two distributions of config-
urations, one for positive regions and one for negative, but such algorithms
suffer from a fermion sign problem that manifests itself by the signal-to-noise
ratio decaying exponentially with imaginary-time.

The fixed-node approximation [11, 12] allows us to avoid these problems.
This method is equivalent to placing infinite potential barriers everywhere
on the nodal surface of a trial wavefunction ΨT. (The nodal surface is the
3N −1 dimensional surface in configuration space on which the wavefunction
is zero and across which it changes sign.) The infinite potential barriers have
no effect if the trial nodal surface is correct, but if it is incorrect the energy is
always raised. The DMC projection can then be done separately in each nodal
pocket, which gives the lowest-energy solution in each pocket. It therefore
follows that the DMC energy is always less than or equal to the VMC energy
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with the same trial wavefunction, and always greater than or equal to the
exact ground-state energy, i.e., EV ≥ ED ≥ E0. In addition, it turns out that
all the nodal pockets of the exact fermion ground-state are equivalent [13]
and, if ΨT has this tiling property, we do not need to sample all of the pockets.

Such a fixed-node DMC algorithm is extremely inefficient and a vastly
superior algorithm can be obtained by introducing an importance sampling
transformation [14, 15]. Consider the mixed distribution,

f(R, t) = ΨT(R)Φ(R, t) , (10)

which has the same sign everywhere if the nodal surface of Φ(R, t) is con-
strained to be the same as that of ΨT(R). Substituting in (6) for Φ we obtain

−∂f

∂t
= −1

2
∇2f + ∇ · [vf ] + [EL − ET]f , (11)

where the 3N -dimensional drift velocity is defined as

v(R) = Ψ−1
T (R)∇ΨT(R) . (12)

The three terms on the right-hand side of (11) correspond to diffusion, drift,
and branching processes, respectively. The importance sampling transforma-
tion has several consequences. First, the density of configurations is increased
where ΨT is large. Second, the rate of branching is now controlled by the local
energy that is generally a much smoother function than the potential energy.
Finally, the importance sampling actually enforces the fixed-node constraint
in (11). In practice one has to use a short-time approximation (for a review
of the VMC and DMC methods and applications to solids see [1]) for the
Green’s function diffusion equation that means that occasionally configura-
tions attempt to cross the nodal surface, but such moves are simply rejected.

This algorithm generates the distribution f , but fortunately we can cal-
culate the corresponding DMC energy using the formula

ED =
∫

fEL dR∫
f dR

(13)

� 1
M

M∑
i=1

EL(Ri) . (14)

The importance-sampled fixed-node fermion DMC algorithm was first used
by Ceperley and Alder [2].

It is not possible to obtain directly from f the proper expectation values
of operators that do not commute with the Hamiltonian, such as the charge-
density or pair-correlation functions. There are, however, three methods by
which such expectation values can be obtained: the approximate (but often
very accurate) extrapolation technique [16], the forward-walking technique
(explained in Hammond et al. [17]) that is formally exact but statistically
poorly behaved, and the reptation QMC technique of Baroni and Moroni [18],
which is formally exact and well behaved, but quite expensive.
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2.3 Trial Wavefunctions

It should be clear that the trial wavefunction is of central importance in
VMC and DMC calculations. The trial wavefunction introduces importance
sampling and controls both the statistical efficiency and the accuracy ob-
tained. In DMC the accuracy depends only on the nodal surface of the trial
wavefunction via the fixed-node approximation, while in VMC it depends on
the entire trial wavefunction, so that VMC energies are more sensitive to the
quality of the approximate wavefunction than DMC energies.

QMC calculations require a compact trial wavefunction, and most studies
of electronic systems have used the Slater–Jastrow form, in which a pair of
up- and down-spin determinants is multiplied by a Jastrow correlation factor,

ΨT = eJ(R)D↑(R↑)D↓(R↓) , (15)

where eJ is the Jastrow factor and the D are determinants of single-particle
orbitals. The quality of the single-particle orbitals is very important, and
they are often obtained from DFT or Hartree–Fock (HF) calculations.

The Jastrow factor is a positive, symmetric, function of the electron coor-
dinates, which is chosen to be small when electrons are close to one another,
thereby introducing electron-correlation into the wavefunction. The Jastrow
factor is also used to enforce the electron–electron Kato cusp conditions [19].
The idea is that when two electrons are coincident the contribution to the
local energy from the Coulomb interaction diverges, and therefore the exact
wavefunction must have a cusp at this point so that the kinetic energy oper-
ator supplies an equal and opposite divergence. It seems very reasonable to
enforce these conditions on a trial wavefunction as they are obeyed by the
exact wavefunction, and in VMC, and more particularly DMC, calculations
they are very important because divergences in the local energy can lead to
poor statistical behavior.

Many excellent QMC results have been obtained using Slater–Jastrow
wavefunctions, but it may be profitable to consider other forms. One variant
is to use more than one pair of determinants,

ΨT = eJ(R)
∑

i

αiDi,↑(R↑)Di,↓(R↓) , (16)

where the αi are coefficients. This approach is not suitable for improving
the energy per atom of a solid because the number of determinants required
would have to increase exponentially with system size. It is, however, useful
when considering a point defect with an open-shell electronic configuration
in a solid, in which case the electronic states of the multiplet may be de-
scribed by a small number of determinants. An example of this is described
in Sect. 6.3. Another possibility is to include backflow correlations, which
may be derived by demanding that the wavefunction conserves the local cur-
rent [20]. This approach has been used successfully in QMC studies of the
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electron gas [21], but it has not been explored much for electrons in real
atomic systems [22]. Including backflow correlations improves the nodal sur-
face of a wavefunction and leads to a compact form that is suitable for use in
QMC calculations, although it is more complicated than the Slater–Jastrow
form and the computational cost is increased.

2.4 Optimization of Trial Wavefunctions

Optimizing trial wavefunctions is perhaps the most important technical issue
in QMC calculations, and it consumes large amounts of human and comput-
ing resources. It is standard to include a number of variable parameters in
the Jastrow factor whose values are determined by a stochastic optimization
procedure. The determinant coefficients, αi, in (16) may also be optimized,
and in some calculations the orbitals themselves have been optimized.

Developing better wavefunction-optimization techniques is currently a
very active field, with many new approaches being tested. Rather than delv-
ing into the technical details of this enterprise, I will mention some of the
key issues. Ideally the wavefunction should be optimized within DMC, but
this is generally much too costly and so optimizations are performed at the
VMC level. Two measures of wavefunction quality have generally been con-
sidered. The most obvious idea is to minimize the expectation value of the
VMC energy, although more commonly the variance of the VMC energy has
been minimized. There are good reasons to suppose that better DMC results
would be obtained by using energy-minimized trial wavefunctions, rather
than variance-minimized ones. First, it seems likely that a better nodal sur-
face would be obtained by minimizing the energy rather than the variance.
Second, it turns out that the variance of the DMC energy is approximately
proportional to the difference between the VMC and DMC energies, rather
than the variance of the VMC energy [23]. Why then has it been more com-
mon to minimize the variance of the VMC energy? The answer is simply that
it has proved easier to devise algorithms for minimizing the variance that are
stable and efficient in the presence of statistical noise [24–26]. Most of the
current effort is being devoted to developing energy-minimization schemes,
although the applications to defects in semiconductors described in this Chap-
ter were performed using variance minimization.

2.5 QMC Calculations within Periodic Boundary Conditions

QMC calculations for defects in solids may be performed using cluster models
or periodic boundary conditions, just as in other techniques. Periodic bound-
ary conditions are preferred because they give smaller finite-size effects. In
the standard supercell approach a point defect in an otherwise perfect crys-
tal is modeled by taking a large cell containing a single defect and repeating
it throughout space. Just as in other techniques, one must ensure that the
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supercell is large enough for the interactions between defects in different su-
percells to be small.

In techniques involving many-electron wavefunctions such as QMC it is
not possible to reduce the problem to solving within a primitive unit cell
(when a defect is present the primitive unit cell is the supercell). Such a
reduction is allowed in single-particle methods because the Hamiltonian is
invariant under the translation of a single electronic coordinate by a transla-
tion vector of the primitive lattice, but this is not a symmetry of the many-
body Hamiltonian. Consequently QMC calculations may be performed only
at a single k-point. It is possible to perform QMC calculations at different
k-points [27, 28] and average the results [29], but this is not exactly equiv-
alent to a Brillouin-zone integration within single-particle theories. In the
applications described in this Chapter a single k-point was used.

Many-body techniques such as QMC also suffer from another source of
finite-size effects – the interaction of the electrons with their periodic images.
Such an effect is absent in local DFT calculations because the interaction
energy is written in terms of the electronic charge density, but the effect
is present in HF calculations. These “Coulomb finite-size effects” are often
corrected for using extrapolation techniques (see [1] and references therein),
and they may also be reduced using the so-called model periodic Coulomb
(MPC) interaction [30].

2.6 Using Pseudopotentials in QMC Calculations

The cost of a DMC calculation increases rapidly with the atomic number, Z,
as roughly Z5.5 [23, 31]. This effectively rules out applications to atoms with
Z greater than about 10, and consequently pseudopotentials are commonly
used in DMC calculations. The use of nonlocal pseudopotentials within VMC
is quite straightforward, but DMC poses an additional problem, because the
matrix element of the imaginary-time propagator is not necessarily positive,
which leads to a sign problem analogous to the fermion sign problem. To cir-
cumvent this difficulty an additional approximation known as the pseudopo-
tential localization approximation has been used [32]. If the trial wavefunction
is accurate the error introduced by the localization approximation is small
and is proportional to (ΨT − φ0)2 [33], although the error term can be of
either sign. Recently, Casula et al. [34] have introduced a fully variational
technique for dealing with nonlocal pseudopotentials within DMC.

Currently it is not possible to generate pseudopotentials entirely within a
QMC framework, and therefore they are obtained from other sources. There is
evidence that indicates that HF theory provides better pseudopotentials than
DFT for use within QMC calculations [35], and recently we have developed
smooth relativistic HF pseudopotentials for H to Ba and Lu to Hg that are
suitable for use in QMC calculations [36, 37].
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3 DMC Calculations for Excited States

It might appear that the DMC method cannot be applied to excited states
because the imaginary-time propagation would evolve it towards the ground-
state. However, the fixed-node constraint ensures convergence to the lowest-
energy state compatible with the nodal surface of the trial wavefunction. If
the nodal surface is exactly that of an eigenstate then DMC gives the exact
energy of that state. If the nodal surface is approximately that of an excited-
state then the DMC energy gives an approximation to the energy of that
excited state. There is, however, an important difference from the ground-
state case, in that the existence of a variational principle for the energy of
an excited-state depends on the symmetry of the trial wavefunction [38]. In
practice, DMC works quite well for excited-states [39, 40].

4 Sources of Error in DMC Calculations

Here we summarize the potential sources of errors in DMC calculations.

– Statistical error. The standard error in the mean is proportional to
1/

√
M , where M is the number of moves. It therefore costs a factor

of 100 in computer time to reduce the error bars by a factor of 10. On
the other hand, a random error is much better than a systematic one.

– The fixed-node error. This is the central approximation of the DMC tech-
nique, and is often the limiting factor in the accuracy of the results.

– Timestep bias. The short-time approximation leads to a bias in the f dis-
tribution and hence in expectation values. This bias can be serious and is
often corrected for by using several different timesteps and extrapolating
to zero timestep.

– Population control bias. In DMC the f distribution is represented by a
finite population of configurations that fluctuates due to the branching
procedure. The population is usually controlled by occasionally changing
the trial energy, ET, in (11) so that the population returns towards a tar-
get size. This procedure results in a population-control bias . In practice,
the population control bias is normally extremely small, in fact so small
that it is difficult to detect.

– Pseudopotential errors including the localization error. Pseudopotentials
inevitably introduce errors that can be significant in some cases. The
localization error also appears to be quite small, although this has not
been tested in many cases.

– Finite-size errors within periodic boundary conditions. It is important to
study the finite-size effects carefully, and to correct for them. A number of
correction procedures have been devised, mainly involving extrapolation
to the thermodynamic limit.
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In electronic-structure theory one is almost always interested in the differ-
ence in energy between two similar systems. All electronic-structure methods
for complex systems rely on large cancelations of the errors in the energy dif-
ferences between systems. In DMC this helps with all the above sources of er-
ror except the statistical errors. Fixed-node errors tend to cancel because the
DMC energy is an upper bound, but even though DMC often retrieves 95%
or more of the correlation energy, noncancelation of nodal errors is a severe
problem for DMC calculations. As mentioned before, the most straightfor-
ward way forward is simply to improve the quality of the trial wavefunctions,
but perhaps it might also be possible to balance the errors in different systems
more successfully than is currently possible.

5 Applications of QMC to the Cohesive Energies
of Solids

A number of VMC and DMC studies have been performed of the cohesive
energies of solids. The cohesive energy is calculated as the energy difference
between the isolated atom and an atom in the solid. This is a severe test of
QMC methods because the trial wavefunctions used for the atom and solid
must be closely matched in quality. Data for Si [30], Ge [28], C [4], Na [41] and
NiO [42] have been collected in Table 1. The local spin density approximation
(LSDA) data shows the standard overestimation of the cohesive energy, while
the QMC data is in good agreement with experiment. These studies have
been important in establishing DMC as an accurate method for calculating
the energies of solids.

Table 1. LSDA, VMC and DMC cohesive energies of solids in eV per atom (eV per
2 atoms for NiO), compared with the experimental values. The numbers in brackets
indicate standard errors in the last significant figure. All calculated values contain
a correction for the zero-point energy of the solid

Method Si Ge C Na NiO

LSDA 5.28 4.59 8.61 1.20 10.96
VMC 4.48(1) 3.80(2) 7.36(1) 0.9694(8) 8.57(1)
DMC 4.63(2) 3.85(2) 7.346(6) 1.0221(3) 9.442(2)
Exp. 4.62 3.85 7.37 1.13 9.45



Quantum Monte Carlo Techniques and Defects in Semiconductors 151

6 Applications of QMC to Defects in Semiconductors

6.1 Using Structures from Simpler Methods

In the applications of QMC to defects in semiconductors reported to date, the
structures were obtained from DFT calculations and the energies recalculated
within QMC. Surely this leads to a bias in the energy differences that might
be considerable? The answer must certainly be yes, it does lead to a bias,
but here I argue that it may often be quite small. We can pose the question
more clearly as “is it sensible to calculate structures using a simple method
of limited accuracy and then recalculate the energy difference between the
structures with a sophisticated method of much higher accuracy?”.

Consider a system with a single structural coordinate Q, and suppose
there are two structures of interest, denoted by 1 and 2, corresponding to
local minima in the energy at coordinates Q1 and Q2, with energies E1 and
E2. Around the two energy minima the energy can be expanded as

Around Q1 E(Q) = E1 + α1(Q − Q1)2 (17)

Around Q2 E(Q) = E2 + α2(Q − Q2)2 . (18)

Suppose further that we have a simple method for calculating the energy
E(Q) that gives a smoothly varying error of the form

∆E(Q) = βQ , (19)

where β is a constant.
Within the simple method the errors in the coordinates of the equilibrium

structures are obtained by minimizing E + ∆E, which gives

∆Q1 = − β

2α1
, ∆Q2 = − β

2α2
, (20)

and the error in the energy difference between these structures is

∆(E1 − E2) = β(Q1 − Q2) −
β2

4

(
1
α1

− 1
α2

)
. (21)

Now suppose that we use the structures from the simple method, but recal-
culate the energies within a sophisticated method that gives a negligible error
in the energy. The error in the energy difference between the structures is
then

∆(E1 − E2) =
β2

2

(
1
α1

− 1
α2

)
. (22)

Within the simple method the error in the energy difference is first order
in β, while for the sophisticated method it is second order. The error in
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Fig. 1. The energy E versus a structural coordinate Q showing two minima for
a model system. Solid line: exact energy, dashed line: approximate energy from a
simple theory that has an error of 0.1Q. The error in the energy difference between
the two minima obtained from the simple theory is 0.186, while the error in the
energy difference calculated using the accurate energy curve, but evaluated at the
minima obtained from the simple theory, is 0.000 45

the energy difference within the simple method is proportional to Q1 − Q2,
so that the error is large if the structures are very different, while in the
sophisticated method the error is independent of Q1 − Q2. This behavior
is illustrated in Fig. 1. We therefore conclude that using the sophisticated
method to calculate the energy difference between structures obtained from
the simple method leads to only quite small errors. Note also that within this
model the quadratic coefficients in the energy, α1 and α2, are unaltered by
the linear error term, so that the simple method gives accurate values for the
vibrational frequencies.

The model is, of course, highly simplified, but it illustrates my contention
that it is reasonable to take structures from DFT calculations and recalculate
the energy differences between them within QMC.

6.2 Silicon Self-Interstitial Defects

The diffusion of dopant impurity atoms during thermal processing limits how
small silicon devices can be made, and understanding this effect requires a
knowledge of diffusion on the microscopic scale in situations far from equi-
librium. Dopant diffusion is mainly controlled by the presence of intrinsic
defects such as self-interstitials and vacancies, and therefore it is important
to improve our understanding of these defects.

Both experimental and theoretical techniques have been brought to bear
on these defects but, unfortunately, it has not been possible to detect silicon
self-interstitials directly and we must rely on theoretical studies to elucidate
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their microscopic properties. Electron paramagnetic resonance studies [43]
have determined unambiguously that the symmetry of neutral vacancies in
silicon is D2d, which is consistent with a Jahn–Teller distortion. Positron-
lifetime experiments have given a value for the enthalpy of formation of a
neutral vacancy in silicon of 3.6 ± 0.2 eV [44].

The self-diffusivity of silicon at high temperatures follows an Arrhenius
behavior with an activation energy in the range 4.1 eV to 5.1 eV [45]. Sig-
nificant difficulties arise with the interpretation of experimental data when
the contributions to the self-diffusivity from different mechanisms are consid-
ered. The self-diffusivity is usually written as the sum of contributions from
independent diffusive mechanisms. The contribution of a particular micro-
scopic mechanism can be written as the product of the diffusivity, Di, and
the concentration, Ci, of the relevant defect, i.e.,

DSD =
∑

i

DiCi . (23)

Gösele et al. [46] give estimates of the contributions to the self-diffusivity as

DICI = 914 exp(−4.84/kBT ) cm2 · s−1 , (24)

from self-interstitials and

DVCV = 0.6 exp(−4.03/kBT ) cm2 · s−1 , (25)

from vacancies, where kBT is in units of eV. It is believed that self-diffusivity
in silicon is dominated by vacancies at low temperatures and self-interstitials
above 1300 K. The experimental situation regarding the individual values of
Di and Ci is, however, controversial. Indeed, experimental data has been used
to support values of the diffusivity of the silicon self-interstitial, DI, which
differ by ten orders of magnitude at the temperatures of around 1100 K at
which silicon is processed [47].

The main challenge to theory is to identify the important defects and to
predict their properties, comparing with experimental data where available.
This includes identifying the diffusive mechanisms of the defects, providing
accurate values for the Di and the equilibrium values of Ci, and reproducing
the experimental data for the self-diffusivity. This programme represents an
enormous challenge, and although many theoretical studies of point defects
in silicon have been performed, the goal is still far away.

A number of different structures for silicon self-interstitials have been
postulated, including the split-〈110〉, hexagonal and tetrahedral defects, see
Fig. 2. The consensus view from modern DFT calculations is that the split-
〈110〉 and hexagonal structures are the lowest-energy self-interstitials in sili-
con [48–50], and that the tetrahedral interstitial is unstable. However, even
here there has been a surprise. Recent DFT calculations have shown that the
hexagonal interstitial is unstable to a distortion out of the hexagonal ring by
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0.48 Å, which lowers the formation energy by 0.03 eV [50]. Another surprise
has been that, within DFT, it turns out that the lowest-energy point defect
in silicon is neither an interstitial nor the vacancy! Goedecker et al. [49] found
that a fourfold coordinated defect (FFCD) had a formation energy at least
0.5 eV lower than the interstitials and vacancy. It is not clear whether this
defect could play a role in self-diffusion, as its possible diffusive mechanisms
have not yet been studied.

There are some discrepancies between DFT values reported for the for-
mation energies of the split-〈110〉 and hexagonal self-interstitials and for the
associated migration energies. However, modern calculations [48–50] indicate
that the sum of the DFT formation and migration energies is significantly
smaller than the exponent of 4.84 eV deduced from experimental studies,
see (24).

An interesting suggestion by Pandey and coworkers [51, 52], based on the
results of DFT calculations, was that an exchange of neighboring atoms in the
perfect lattice atoms would contribute to self-diffusion in silicon. In Pandey’s
concerted exchange mechanism two nearest-neighbor atoms interchange via a
complicated 3-dimensional path that allows the atoms to avoid large energy
barriers [51, 52]. One of the main planks of Pandey’s argument was that the
calculated value for the activation energy for this concerted exchange was
within the experimental range for self-diffusion of 4.1 eV to 5.1 eV [45]. How-
ever, as we have already noted, DFT gives even lower energies for interstitials
and vacancies, and therefore Pandey’s argument is unsatisfactory.

All of the calculations mentioned so far assumed no thermal motion at all,
but it is also important, of course, to study finite-temperature effects. Two
DFT molecular dynamics studies have been reported [53, 54], but the energy
barriers to interstitial self-diffusion are very small (at least within DFT) and
highly accurate calculations are required to obtain reliable results. It is rather
easier to calculate the equilibrium concentration of defects including the ef-
fects of thermal vibrations, and a recent study [50] using DFT perturbation
theory gave results that are broadly in agreement with the rather scattered
experimental data.

Given this background, what role can QMC calculations play in unravel-
ling this complicated problem? In the medium term its role must be to give
accurate values for the energies of various defect structures. Given that the
LSDA and generalized gradient approximation (GGA) self-interstitial defect-
formation energies can differ by 0.5 eV it is valuable to quantify the errors in
DFT calculations of the defect formation energies. As argued in Sect. 6.1, it
should be sufficient to use defect structures obtained from DFT calculations
for this purpose.

6.2.1 DFT Calculations on Silicon Self-Interstitials

Leung et al. [3] and Needs [48] reported LSDA and PW91-GGA results for
various interstitial defect formation energies and the saddle point of Pandey’s
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Fig. 2. The structures of the split-〈110〉, hexagonal, and tetrahedral interstitial
defects, the saddle point of the concerted-exchange mechanism, and the perfect
silicon crystal. After Needs [48]

concerted-exchange mechanism, see Table 2. This work also indicated that the
LSDA and PW91-GGA equilibrium defect structures are very similar. One of
the features of the various defect structures is the wide range of interatomic
bonding they exhibit. In the split-〈110〉 structure the two atoms forming the
defect are fourfold coordinated, but two of the surrounding atoms are five-
fold coordinated. The hexagonal interstitial is sixfold coordinated and its
six neighbors are fivefold coordinated. The tetrahedral interstitial is fourfold
coordinated and has four neighbors, which are therefore fivefold coordinated.
At the saddle point of Pandey’s concerted exchange two bonds are broken so
that the exchanging atoms and two other atoms are fivefold coordinated.

The DFT energy barriers to diffusive jumps between the low-energy struc-
tures were calculated, which gave a path for split-〈110〉-hexagonal diffusion
with a barrier of 0.15 eV (LDA) and 0.20 eV (PW91-GGA), and a barrier for
hexagonal–hexagonal diffusive jumps of 0.03 eV (LDA) and 0.18 eV (PW91-
GGA).
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Table 2. LDA, PW91-GGA, and DMC formation energies in eV of the self-
interstitial defects and the saddle point of the concerted-exchange mechanism. a16-
atom supercell, b54-atom supercell

Defect LDA GGA DMCa DMCb

Split-〈110〉 3.31 3.84 4.96(24) 4.96(28)
Hexagonal 3.31 3.80 4.70(24) 4.82(28)
Tetrahedral 3.43 4.07 5.50(24) 5.40(28)
Concerted exchange 4.45 4.80 5.85(23) 5.78(27)

6.2.2 QMC Calculations on Silicon Self-Interstitials

The DMC calculations were performed for 16- and 54-atom fcc structures
obtained from LDA calculations. The Slater–Jastrow trial wavefunctions were
formed from determinants of LDA orbitals and Jastrow factors containing
up to 64 parameters, whose optimal values were obtained by minimizing the
variance of the energy.

The DMC defect-formation energies are shown in Table 2. Note that the
DMC results for the 16- and 54-atom simulation cells are consistent, indicat-
ing that the residual finite-size effects are small. The clearest conclusion is
that the DMC formation energies are roughly 1 eV larger than the PW91-
GGA values and 1.5 eV larger than the LDA values. The hexagonal interstitial
has the lowest formation energy within DMC, while the split-〈110〉 interstitial
is slightly higher in energy, and the tetrahedral interstitial has a considerably
higher energy. The saddle point of the concerted exchange has an energy that
is too high to explain self-diffusion in silicon.

Calculating the energy barriers to diffusion within DMC is currently pro-
hibitively expensive, but they can be roughly estimated as follows. The tetra-
hedral interstitial is a saddle point of a possible diffusion path between neigh-
boring hexagonal sites. The DMC formation energy of 5.4 eV for the tetrahe-
dral interstitial is therefore an upper bound to the formation plus migration
energy of the hexagonal interstitial. The true formation plus migration en-
ergy is expected to be less than this. Within the LDA there is a diffusion path
for the hexagonal interstitial with a barrier of only 25% of the tetrahedral-
hexagonal energy difference. Applying the same percentage reduction to the
DMC barrier then gives an estimate of the formation plus migration energy of
the hexagonal interstitial of 5 eV. This estimate is in good agreement with the
experimental activation energy for self-interstitial diffusion of 4.84 eV [46].

This study demonstrated the importance of a proper treatment of electron
correlation when calculating defect-formation energies in silicon. DFT pre-
dicts formation plus migration energies that are smaller than those deduced
from experiment. The larger defect-formation energies found in the DMC
calculations indicate a possible resolution of this problem, which might be an
important step in improving our understanding of self-diffusion in silicon.
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6.3 Neutral Vacancy in Diamond

The vacancy in diamond is a dominant defect associated with radiation dam-
age, and it exhibits a wider variety of physical phenomena than its counter-
part in silicon. Self-diffusion in diamond is relevant to growing single-crystal
diamond thin films on nondiamond substrates. DFT studies have suggested
that self-diffusion in diamond is dominated by vacancies [55] and that inter-
stitials do not play a significant role.

A vacancy may be formed by removing an atom, leaving four dangling-
bonds. The simplest model of the electronic structure of a vacancy is a one-
electron molecular defect picture in which symmetry-adapted combinations
of the four dangling-bond states have a1 and t2 symmetry. These levels are,
respectively, singly and triply degenerate. In the neutral defect four electrons
are placed in the dangling-bond states, giving a a2

1t
2
2 configuration. This sys-

tem is unstable to Jahn–Teller distortion and a spontaneous reduction in
symmetry occurs in which the t2 states split into a doubly occupied a1 and
empty e state, and a structure with D2d symmetry results. This model is ap-
propriate for the vacancy in silicon but, because of the large electron–electron
interaction effects, not for diamond.

The prominent GR1 optical transition at 1.673 eV [56] is associated with
the neutral vacancy. Uniaxial stress perturbations show that the GR1 transi-
tion is between a ground state that is orbitally doubly degenerate with sym-
metry E and an orbitally triply degenerate excited-state of T symmetry [57].
Both the ground and excited-states undergo Jahn–Teller relaxations, but the
effects are dynamic during absorption and the vacancy therefore appears to
maintain the Td point group of an atomic site in diamond [58].

Correlation effects among the electrons in the dangling-bonds are very
important, but the strong coupling to the solid-state environment must also
be included. The electronic states of the defect form a multiplet requiring
a multideterminant description [59, 60]. The GR1 optical transition can-
not be expressed as a transition between one-electron states, which makes
a first-principles approach very difficult. For example, approaches based on
one-electron states, such as Kohn–Sham DFT or the GW self-energy ap-
proach [61, 62], cannot give a full description of the multiplet structure. Von
Barth has suggested an approximate scheme for obtaining multiplet energies
from DFT calculations [63], but unfortunately this scheme does not permit
the calculation of the energy of what is believed to be the excited-state of
the GR1 band [64, 65]. QMC appears to be an ideal method for this prob-
lem, as one can use a multideterminant description of the defect states while
maintaining the favorable scaling with system size.

6.3.1 VMC and DMC Calculations on the Neutral Vacancy
in Diamond

Hood et al. [4] performed VMC and DMC calculations of the neutral va-
cancy in diamond using periodic boundary conditions and a simulation cell
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containing 53 atoms. The relaxed ionic positions were obtained from an LSDA
calculation in which each of the t2 states was fractionally occupied. The near-
est-neighbor atoms of the vacancy were found to relax outwards by 0.1 Å,
while the relaxation of the next nearest neighbors was negligible.

The trial wavefunctions were of the Slater–Jastrow type with the single-
particle orbitals obtained from an LSDA calculation using a Gaussian basis
set. To calculate the multiplet structure of the electronic states of the vacancy,
symmetrized multideterminants were used with the configuration in which the
a1 states were fully occupied and the t2 states were doubly occupied. This
gives rise to 1A1, 1E, 1T2, and 3T1 states, with orbital degeneracies of 1, 2,
3, 3, respectively. The corresponding trial wavefunctions took the form,

Ψ1A1 = eJ(R)
(
Dx

↑Dx
↓ + Dy

↑Dy
↓ + Dz

↑D
z
↓

)
(26)

Ψ1E = eJ(R)
(
2Dx

↑Dx
↓ − Dy

↑Dy
↓ − Dz

↑D
z
↓

)
(27)

Ψ1T2 = eJ(R)
(
Dy

↑Dz
↓ − Dz

↑D
y
↓

)
(28)

Ψ3T1 = eJ(R)Dyz
↑ D↓ . (29)

In this notation, the superscripts x, y, z label which of the t2 orbitals are
included in the determinant, in addition to the a1 and lower-energy orbitals.
The values of the parameters in the Jastrow factors were optimized by min-
imizing the variance of the local energy [24, 25].

Figure 3 shows the DMC energies of the states obtained by Hood et al. [4].
The 1E state was found to be the ground-state, in agreement with experi-
ment. The state with the lowest-energy electronic excitation from the ground-
state that is spin and orbitally dipole allowed was the 1T2 state, and these
states are identified as giving rise to the GR1 line. The associated DMC tran-
sition energy was calculated to be 1.51(34) eV, which lie within the statistical
error bars of the experimental value of 1.673 eV.

The vacancy-formation energy was calculated to be 6.98 eV within the
LSDA, and 5.96(34) eV within DMC. Both of these values include a correc-
tion for the Jahn–Teller relaxation energy of the vacancy, which is estimated
to be 0.36 eV [64]. The DMC formation energy indicates that it is approx-
imately one eV more favorable to form a neutral vacancy in diamond than
predicted by the LSDA. The vacancy-formation energy in diamond has yet
to be measured.

6.4 Schottky Defects in Magnesium Oxide

Alfè and Gillan [66] recently used DMC to study the Schottky defect forma-
tion energy in MgO. Although MgO is classified as an insulator rather than
a semiconductor, these calculations illustrate very nicely the methodology
that can be used to calculate the energetics of charged defects within QMC.
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Fig. 3. DMC energy differences from the ground-state
in eV with statistical errors for the lowest-symmetry
states of the neutral vacancy in diamond. The dotted
arrow indicates the lowest spin and orbitally dipole
allowed transition. After Hood et al. [4]

Oxide materials are, of course, of great importance as insulating layers in
semiconductor devices.

The Schottky defect energy of MgO is defined to be the energy change
when a Mg2+ and an O2− ion are removed from a perfect MgO crystal, the
ions being replaced to form an additional unit cell of perfect crystal. The
Schottky defect energy, ES, governs the concentration of vacancies present in
thermal equilibrium.

The methodology used for calculating ES follows that used in DFT cal-
culations. One way to model the Schottky defect would be to remove an Mg
atom and an O atom from a large supercell, but in electronic-structure calcu-
lations it is normally preferable to study supercells containing only a single
defect, because otherwise the interactions between the defects would be large.

Consider a crystal containing N cation and N anion sites. Let EN (ν+, ν−)
denoted the total energy of a crystal containing ν+ cation vacancies and ν−

anion vacancies. The Schottky defect energy is then

ES = EN (1, 0) + EN (0, 1) − 2(N − 1)
N

EN (0, 0) . (30)

The systems with a single Mg2+ vacancy and a single O2− vacancy were mod-
eled by supercells subject to periodic boundary conditions. These supercells
would each carry a net charge, in which case the electrostatic energy of the
system cannot be defined, and therefore an appropriate uniform background
charge was added to each supercell to make them charge neutral. In the limit
of large N the presence of the uniform background charges makes no differ-
ence to ES. In reality, a finite value of N must be used, which introduces
finite-size errors. The finite-size error due to the interaction between the pe-
riodic images of the defects was corrected for by a standard method [67].

The DMC calculations used N = 27, i.e., 53 atoms for the defective crys-
tals and 54 for the perfect crystals, and the relaxed atomic positions were
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obtained from LSDA calculations. Slater–Jastrow wavefunctions were used,
with orbitals obtained from plane-wave LSDA calculations, and optimized
Jastrow factors. For efficient evaluation within the QMC calculations the or-
bitals were re-expanded in a basis of B-splines or “blips”, which are functions
that are strongly localized in real space [68].

The DMC calculations gave ES = 7.5 ± 0.53 eV, while equivalent LSDA
calculations using the same pseudopotentialand cell size gave ES = 6.99 eV,
and a highly converged LSDA calculation gave ES = 6.76 eV. It is very diffi-
cult to measure the Schottky defect energy, but it is estimated to lie within
the range 4 eV to 7 eV.

7 Conclusions

QMC techniques provide a unified treatment of both the ground- and ex-
cited-state energies of correlated electron systems. They are therefore widely
applicable and hold great promise as a computational method to enhance our
understanding of defects in solids.

Considering that QMC is very costly, there seems little point in using it
unless the results are reliably more accurate than those obtained from less
costly methods such as DFT. The pursuit of higher accuracy in QMC calcu-
lations is, in my opinion, the most important practical issue facing today’s
practitioners. Very high accuracy has already been demonstrated for small
systems, but the situation for larger systems is less clear. I believe that many
careful studies are required before we can confidently assert that QMC tech-
niques reliably achieve highly accurate results for complicated systems such
as defects in semiconductors.

QMC techniques are currently in a phase of rapid development. The most
challenging problem in fermion QMC is the infamous fermion sign problem.
Solving the sign problem is certainly extremely difficult and perhaps im-
possible [69]. It is thought that exact fermion methods that avoid the sign
problem will be exponentially slow on a classical computer. However, it is
clear that QMC methods can deliver highly accurate results provided the
trial wavefunctions are accurate enough. It is important to appreciate that
trial wavefunctions can be improved using optimization techniques, whereas
improving DFT results requires the development of better density function-
als, which seems likely to be a much harder problem. Another important
issue is that currently it is not possible to calculate accurate atomic forces
within QMC for large systems, and therefore it is not possible to relax defect
structures. So far this problem has been avoided by using relaxed structures
obtained from DFT calculations. The problem of calculating accurate forces
within QMC for large systems is unlikely to be insurmountable, and I believe
that a satisfactory solution will be developed in due course. Although QMC
methods have a long way to go before they are routinely applied to defects
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in semiconductors I hope that I have persuaded the reader that such a goal
is both desirable and possible.

I have discussed applications of the DMC method to self-interstitials in
silicon, the neutral vacancy in diamond and Schottky defects in magnesium
oxide. These studies have demonstrated the feasibility of DMC studies of
defects in semiconductors, and have already produced interesting results that
challenge those from other methods.
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Germany
A.Schindlmayr@fz-juelich.de

2 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4–6, 14195
Berlin-Dahlem, Germany
scheffler@fhi-berlin.mpg.de

Abstract. We present a quantitative parameter-free method for calculating defect
states and charge-transition levels of point defects in semiconductors. It combines
the strength of density-functional theory for ground-state total energies with qua-
siparticle corrections to the excitation spectrum obtained from many-body pertur-
bation theory. The latter is implemented within the G0W0 approximation, in which
the electronic self-energy is constructed non-self-consistently from the Green’s func-
tion of the underlying Kohn–Sham system. The method is general and applicable
to arbitrary bulk or surface defects. As an example we consider anion vacancies
at the (110) surfaces of III–V semiconductors. Relative to the Kohn–Sham eigen-
values in the local-density approximation, the quasiparticle corrections open the
fundamental band gap and raise the position of defect states inside the gap. As a
consequence, the charge-transition levels are also pushed to higher energies, leading
to close agreement with the available experimental data.

1 Introduction

The electric properties of semiconductors, and hence their applicability in
electronic devices, are to a large degree governed by defects that are either
intrinsic or incidentally or intentionally introduced impurities. Considerable
efforts, therefore, focus on determining the factors that lead to the formation
of point defects and their influence on a material’s electric properties.

The progress in the understanding of the atomic structure of point de-
fects at cleaved III–V semiconductor surfaces, which serve as an illustration
in this work, was recently reviewed by Ebert [1]. The possibility to image
individual defects using scanning tunneling microscopy (STM) with atomic
resolution, in particular, has yielded a wealth of data, but as STM provides
a somewhat distorted picture of the electronic states close to the Fermi en-
ergy, these results cannot (and should not) be identified directly with the
atomic geometry. Electronic-structure calculations have hence turned out to
be an indispensable tool for the interpretation of the experimental findings.
A deeper discussion of this point together with an example for the practical
structure determination of a semiconductor surface is given in [2]. For point
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defects at the (110) surfaces of III–V semiconductors several calculations
were reported [3–8]. They are based on density-functional theory [9], where
the exchange-correlation energy is typically treated in the local-density ap-
proximation (LDA) [10] or generalized gradient approximations (GGA) [11].
The agreement with experimental STM data appears to be very good. For
example, the enhanced contrast of the empty pz orbitals of the two Ga atoms
nearest to an anion vacancy in p-type GaAs(110) observed under positive bias
and initially interpreted as an outward relaxation [12] could thus be under-
stood to result, instead, from a downward local band bending accompanied
by an inward relaxation [3]. The band bending itself is caused by the positive
charge of the defect. Another controversy centers on the lateral relaxation of
the positively charged anion vacancy. While STM images show a density of
states preserving the mirror symmetry of the surface at the defect site [12],
early theoretical studies of the lattice geometry based on total-energy min-
imization produced conflicting evidence for [3] and against [4, 5] a possible
breaking of the mirror symmetry. Well-converged electronic-structure calcu-
lations later confirmed that the distortion is indeed asymmetric [6–8] and that
the apparently symmetric STM image results from the thermally activated
flip motion between two degenerate asymmetric configurations.

In contrast, theoretical predictions of the electronic properties of point
defects have been less successful and still show significant quantitative de-
viations from experimental results. The principal quantities of interest are
the location of defect states in the fundamental band gap as well as the
charge-transition levels. We will carefully distinguish in this chapter between
these two quantities: “defect states” or “defect levels” on the one hand and
“charge-transition levels” on the other. The former are part of the electronic
structure and can, in principle, be probed by photoemission spectroscopy, al-
though standard spectroscopic techniques are often not applicable due to the
low density of the surface defects. The Franck–Condon principle is typically
well justified, because the rearrangement of the atoms happens on a much
slower timescale than the photoemission process. Nevertheless, the coupling
of the electrons to the lattice may be visible in the linewidths and lineshapes.
The defect levels thus contain the full electronic relaxation in response to
the created hole in direct photoemission or the injected extra electron in in-
verse photoemission, but no atomic relaxation. Although investigations of
electronic properties frequently rely on the Kohn–Sham eigenvalues from
density-functional theory, these only provide a first approximation to the
true band structure, and quantitative deviations from experimental results
must be expected. In particular, for many materials the eigenvalue gap both
in the LDA and the GGA underestimates the fundamental band gap signifi-
cantly. Likewise, the position of defect states in the gap cannot be determined
without systematic errors. With these words of warning we note, however,
that the Kohn–Sham eigenvalues constitute a good and well-justified start-
ing point for calculating band structures and defect states [13]. Therefore, a
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perturbative approach starting from the Kohn–Sham eigenvalue spectrum is
indeed appropriate.

While the measurement of the defect levels (see the discussion on the page
previous of this Chapter) probes the geometry before the electron is added
or removed, the charge-transition levels are thermodynamic quantities and
specify the values of the Fermi energy where the stable charge state of the
defect changes. Therefore, the charge-transition levels are affected noticeably
by the atomic relaxation taking place upon the addition or removal of an
electron. A quantitative analysis must hence be able to accurately compare
the formation energies of competing configurations with different numbers of
electrons. Density-functional theory at the level of the LDA or GGA is capa-
ble of giving a good account of the atomic geometries for many materials. A
critical feature is the nonlinearity of the exchange-correlation functional. The
pseudopotential approximation, which effectively removes the inner shells
from the calculation by modeling their interaction with the valence electrons
in terms of a modified potential, linearizes the core–valence interaction and
thus does not treat this contribution correctly. In particular, freezing the d
electrons in the core of a pseudopotential leads to poor lattice constants and
a distorted electronic structure for some III–V semiconductors, such as GaN,
where the Ga 3d states resonate strongly with the N 2s states [14]. For GaAs
and InP this is a lesser problem, because the cation d states are energetically
well below the anion 2s states and thus are relatively inert. As a result, the
LDA and the GGA yield only small deviations from the experimental lattice
constants and provide a good starting point for quasiparticle band-structure
calculations. However, when competing configurations with a different num-
ber of electrons are compared, the relevant energy differences lack the required
quantitative accuracy. As we will show in more detail below, the reason is
that these jellium-based approximations of the exchange-correlation energy
ignore important features of the exact functional, such as the discontinuity
of the exchange-correlation potential with respect to a change in the particle
number. As a consequence, previous calculations of charge-transition levels
based on the LDA exhibit systematic errors, for example for anion vacancies
at InP(110) [6].

As an alternative approach to the electronic structure of point defects,
we employ techniques adapted from many-body perturbation theory that we
have found to be very fruitful in the past [15]. Exchange and correlation
effects are here described by a nonlocal and frequency-dependent self-energy
operator. The solutions of the ensuing nonlinear eigenvalue equations have
a rigorous interpretation as excitation energies and can be identified with
the electronic band structure. We discuss the calculation of defect states
as well as charge-transition levels within this framework and show that the
results improve significantly upon earlier values obtained from the Kohn–
Sham scheme in the LDA. As an example we consider anion vacancies at
GaAs(110) and InP(110), but the method is general and can also be applied to
other defects at surfaces as well as in the bulk. The (110) surfaces are not only



168 Arno Schindlmayr and Matthias Scheffler

the natural cleavage planes of III–V semiconductors, but they have several
characteristics that make them particularly interesting for defect studies. As
no surface states exist inside the fundamental band gap [16, 17], the Fermi
energy of a system that is clean and free from intrinsic defects is not pinned
but controlled by the doping of the crystal. Only imperfections, such as anion
vacancies or antisite defects, can introduce gap states and pin the Fermi
energy at the surface. STM can probe filled and empty surface states by
reversing the bias voltage [12], and both the GaAs(110) and the InP(110)
surface are well characterized experimentally.

This Chapter is organized as follows. We start in Sect. 2 by reviewing
the computational methods. In Sect. 3 we then explain the physics of the
defect-free GaAs(110) and InP(110) surfaces. The calculation of defect lev-
els is discussed in Sect. 4 and that of charge-transition levels in Sect. 5,
together with a comparison with the available theoretical and experimental
data. Finally, Sect. 6 summarizes our conclusions. Unless explicitly indicated
otherwise, we use Hartree atomic units.

2 Computational Methods

A quantitative analysis of the electronic properties of point defects requires
computational schemes that describe not only the ground state but also
the excitation spectrum. While density-functional theory with state-of-the-
art exchange-correlation functionals can be used to determine ground-state
atomic geometries, many-body perturbation theory is the method of choice
for excited states. In this work we take the Kohn–Sham eigenvalues in the
LDA as a first estimate and then apply the G0W0 approximation for the
electronic self-energy as a perturbative correction. The latter provides a good
account of the discontinuity as well as other shortcomings of the LDA. For
this reason we first review both schemes, emphasizing their strengths as well
as limitations.

2.1 Density-Functional Theory

Density-functional theory is based on the Hohenberg–Kohn theorem [9],
which observes that the total energy EN,0 of a system of N interacting
electrons in an external potential Vext(r) is uniquely determined by the
ground-state electron density nN (r). While the Hohenberg–Kohn theorem
itself makes no statement about the mathematical form of this functional, it
has inspired algorithms that exploit the reduced number of degrees of free-
dom compared to a treatment based on many-particle wavefunctions. In the
Kohn–Sham scheme [10], which underlies all practical implementations, the



Quasiparticle Calculations for Point Defects at Semiconductor Surfaces 169

density is constructed from the orbitals of an auxiliary noninteracting system
according to

nN (r) = 2
∞∑

j=1

fN,j |ϕN,j(r)|2 . (1)

The occupation numbers fN,j are given by the Fermi distribution; at zero
temperature they equal one for states below the Fermi energy and zero for
states above. The factor 2 stems from the spin summation. Here we only
consider nonmagnetic systems and thus assume two degenerate spin channels
throughout, although the formalism can easily be generalized if necessary.
The energy functional is decomposed as

EN,0 ≡ E[nN ] = Ts[nN ] +
∫

Vext(r)nN (r) d3
r + EH[nN ] + Exc[nN ] , (2)

where Ts[nN ] is the kinetic energy of the auxiliary noninteracting system
and EH[nN ] the Hartree energy. The last term incorporates all remaining
exchange and correlation contributions and is not known exactly. In practical
implementations it must be approximated, for example by the LDA, which
replaces the exchange-correlation energy Exc[nN ] by that of a homogeneous
electron gas with the same local density [10]. A variational analysis finally
shows that the total energy is minimized if the single-particle orbitals satisfy

[
− 1

2∇
2 + Vext(r) + VH([nN ]; r) + Vxc([nN ]; r)

]
ϕN,j(r) = εKS

N,jϕN,j(r) .

(3)

The Hartree potential VH([nN ]; r) and the exchange-correlation potential
Vxc([nN ]; r) are defined as functional derivatives of the corresponding en-
ergy terms with respect to the density. The eigenvalues εKS

N,j are Lagrange
parameters that enforce the normalization of the orbitals.

We use the Kohn–Sham scheme to determine the equilibrium geometry
of clean surfaces and surface defects by relaxing the atomic coordinates and
allowing the system to explore its energetically most favorable configuration.
Although the Kohn–Sham eigenvalues differ from the true excitation energies
and constitute only an approximation to the quasiparticle band structure,
they are often numerically close in practice. This follows from the transition-
state theorem of Slater [18] and Janak [19] and allows a correction within
perturbation theory. Here, we are interested in the position of the defect state,
which may be occupied or unoccupied, relative to the surface valence-band
maximum. As the defect state is separated from the valence-band maximum
by a finite energy difference, the location obtained from the Kohn–Sham
eigenvalue spectrum contains two sources of errors: In addition to the cho-
sen approximation for the exchange-correlation functional, there is another
systematic error that is due to fundamental limitations of the Kohn–Sham
scheme and would also be present if the exact functional was employed. In
order to understand the latter, we now briefly sketch its origin.
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One rigorous result is that the eigenvalue of the highest occupied Kohn–
Sham state matches the corresponding quasiparticle energy [20], which is in
turn equal to the ionization potential that marks the threshold for photoe-
mission, i.e., εKS

N,N = EN,0−EN−1,0. If the highest occupied state corresponds
to the valence-band maximum, then the unoccupied defect state equals the
electron affinity εKS

N+1,N+1 = EN+1,0−EN,0, because it is the next to be popu-
lated by one extra electron added to the system. Unfortunately, this is not the
same as the eigenvalue εKS

N,N+1 of the first unoccupied state obtained from (3).
The difference is due to the fact that the exchange-correlation potential of
an insulator Vxc([nN+1]; r) = Vxc([nN ]; r) + ∆xc + O(1/N) with ∆xc > 0
changes discontinuously upon addition of an extra electron [21,22]. A similar
argument can be made if the defect state is occupied. As a consequence, the
Kohn–Sham eigenvalue gaps differ systematically from the gaps in the true
quasiparticle band structure. The magnitude of the discontinuity is still a
matter of controversy but is believed to be significant. For pure sp-bonded
semiconductors like GaAs the LDA underestimates the experimental band
gap by about 50%. The GGA, designed only to improve the total energy,
yields a very similar eigenvalue spectrum as the LDA when applied to the
same atomic geometry. An entirely different construction that permits a more
systematic treatment of exchange and correlation is the optimized effective
potential method [23]. When evaluated to first order in the coupling con-
stant, this approach yields the exact exchange potential, which can be used
in band-structure calculations [24]. Remarkably, for many semiconductors the
resulting Kohn–Sham eigenvalue gaps are very close to the true quasiparticle
band gaps [25]. The significance of this observation is under debate, how-
ever, because there are indications that it may not uphold if correlation is
treated on the same footing. Preliminary results suggest that the eigenvalue
gaps are again close to the LDA values if correlation is included within the
random-phase approximation [26, 27], but there is currently too little data
to make a definite statement, and all existing calculations at this level also
contain additional simplifications, for example a shape approximation for the
potential in the linearized muffin-tin orbital method in [27].

The reasoning above suggests that density-functional theory is still, in
principle, applicable for calculating the difference in total energy between
ground-state configurations with different electron numbers, which is needed
to determine the energetically most favorable charge state of a point defect.
However, all jellium-based functionals lack the derivative discontinuity ∆xc

of the exact exchange-correlation potential. This neglect reduces the electron
affinity EN+1,0−EN,0 both in the LDA and the GGA if the additional electron
occupies a state separated from the valence-band maximum by a finite energy
difference. For systems in contact with an electron reservoir, such as defects in
solids, it hence lowers the threshold for an increase of the electron population.
This is consistent with the observation that the calculated charge-transition
levels for materials like InP are significantly smaller than the available values
deduced from experimental measurements [6]. The exact exchange potential,
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an implicit functional of the density defined in terms of the Kohn–Sham
orbitals, includes a derivative discontinuity [13], but the latter exceeds the
experimental band gap significantly and must hence be partially canceled by
a correlation contribution with similar magnitude and opposite sign [25]. As
the total energies are by construction close to the corresponding Hartree–
Fock values, the electron affinities EN+1,0 − EN,0 are grossly overestimated,
and no reliable charge-transition levels can be obtained in this way.

Our implementation of density-functional theory employs the plane-wave
pseudopotential method in combination with the LDA. We use the parame-
trization by Perdew and Zunger [28], which is in turn based on the quan-
tum Monte-Carlo data of Ceperley and Alder for the homogeneous electron
gas [29]. The norm-conserving pseudopotentials are of the fully separable
Kleinman–Bylander form [30]. We choose d as the local component for all
pseudopotentials except for In, where p is used instead. The Kohn–Sham
wavefunctions are expanded in plane waves with a cutoff energy of 15 Ry.
Our calculations are performed with the FHImd code [31, 32]. The bulk lat-
tice constants obtained in this way, 5.55 Å for GaAs and 5.81 Å for InP in the
absence of zero-point vibrations, are in good agreement with previously pub-
lished data [33] and slightly smaller than the experimental values at room
temperature by 1.8% and 1.1%, respectively [34]. We use the theoretical
lattice constants in order to prevent errors resulting from a nonequilibrium
unit-cell volume during the relaxation of the surface geometries.

2.2 Many-Body Perturbation Theory

Many-body perturbation theory [35] provides powerful techniques to analyze
the electronic structure in the gap region, because the framework is designed
specifically to give access to excited states. Quasiparticle excitations created
by the addition or removal of one electron are obtained from the one-particle
Green’s function

G(r, r′; t − t′) = −i〈ΨN,0|T {ψ̂(r, t)ψ̂†(r′, t′)}|ΨN,0〉 , (4)

where |ΨN,0〉 denotes the ground-state wavefunction of the interacting elec-
tron system in second quantization, ψ̂†(r′, t′) = exp(iĤt′)ψ̂†(r′) exp(−iĤt′)
and ψ̂(r, t) = exp(iĤt)ψ̂(r) exp(−iĤt) are the electron creation and annihi-
lation operators in the Heisenberg picture, respectively, and the symbol T
sorts the subsequent list of operators according to ascending time arguments
from right to left with a change of sign for every pair permutation. The
Green’s function can be interpreted as a propagator: For t > t′ it describes
a process in which an extra electron is added to the system at time t′. The
resulting wavefunction is, in general, no eigenstate of the Hamiltonian Ĥ but
a linear combination of many eigenstates |ΨN+1,j〉. Between the times t′ and
t each projection evolves with its own characteristic phase, and a Fourier
analysis of this oscillatory behavior immediately yields the energy spectrum
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εN,j = EN+1,j −EN,0 of the accessible excited states. Likewise, for t′ > t the
Green’s function describes the propagation of an extra hole between t and t′,
yielding the energies εN,j = EN,0−EN−1,j. In mathematical terms, we insert
a complete set of eigenstates between the field operators in (4) and Fourier
transform to the frequency axis. The resulting expression

G(r, r′; ω) = lim
η→+0

∞∑
j=1

fN,j

ψN,j(r)ψ∗
N,j(r

′)
ω − εN,j − iη

+ lim
η→+0

∞∑
j=1

(1 − fN,j)
ψN,j(r)ψ∗

N,j(r
′)

ω − εN,j + iη
(5)

shows that the poles of the Green’s function correspond directly to the quasi-
particle energies εN,j. Significantly, these not only yield the true band struc-
ture, but the highest occupied state also equals the exact ionization potential
EN,0 − EN−1,0 and the lowest unoccupied state the exact electron affinity
EN+1,0 − EN,0. Therefore, many-body perturbation theory provides a con-
venient way to analyze both defect states and the energetics of charge tran-
sitions. The wavefunctions ψN,j(r) = 〈ΨN−1,j|ψ̂(r)|ΨN,0〉 for occupied and
ψN,j(r) = 〈ΨN,0|ψ̂(r)|ΨN+1,j〉 for unoccupied states are obtained from the
quasiparticle equations

[
− 1

2∇
2 + Vext(r) + VH(r)

]
ψN,j(r)

+
∫

Σxc(r, r′, εN,j)ψN,j(r′) d3
r′ = εN,jψN,j(r) . (6)

The self-energy Σxc(r, r′, ε) incorporates all contributions from exchange and
correlation processes. In contrast to the exchange-correlation potential of
density-functional theory, it is nonlocal, energy dependent and has a finite
imaginary part, which is proportional to the damping rate resulting from
electron–electron scattering. Together with other relevant decay channels,
such as scattering from phonons or impurities, this mechanism is responsible
for a finite lifetime of the excitations.

For real materials the self-energy can only be treated approximately. Like
the majority of practical applications, we use the G0W0 approximation [36]

Σxc(r, r′; t − t′) = lim
η→+0

iG0(r, r′; t − t′)W0(r, r′; t − t′ + η) . (7)

The Fourier transform of G0(r, r′; t− t′) on the frequency axis is constructed
in analogy to (5) from the eigenstates of an appropriate mean-field system,
in our case from the Kohn–Sham orbitals ϕN,j(r) and eigenvalues εKS

N,j. The
dynamically screened Coulomb interaction W0(r, r′; t− t′) can be modeled in
different ways. Many implementations use plasmon-pole models, in which the
frequency dependence is described by an analytic function whose parameters
are determined by a combination of known sum rules and asymptotic lim-
its [37,38]. This simplification has the advantage that it facilitates an analytic
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treatment, but it ignores details of the dynamic screening processes in a ma-
terial and thus constitutes a potential source of errors. Here we take the full
frequency dependence of the dielectric function into account by employing
the random-phase approximation

W0(k, ω) = v(k) + v(k)P0(k, ω)W0(k, ω) (8)

with the bare Coulomb potential v(k) = 4π/|k|2 and the polarizability

P0(r, r′; t − t′) = −2iG0(r, r′; t − t′)G0(r′, r; t′ − t) . (9)

The inclusion of dynamic screening derives from the concept of quasiparticles,
which comprise an electron or hole together with its surrounding polariza-
tion cloud. The composite is called a quasiparticle because it behaves in many
ways like a single entity. The polarization cloud is created by the repulsive
Coulomb potential and reduces the effective charge of the quasiparticle com-
pared to that of the bare particle at its center. The G0W0 expression (7)
constitutes the leading term in the expansion of the self-energy and is of first
order in the dynamically screened interaction. Finally, we exploit the formal
similarity between (6) and the Kohn–Sham equations (3) by evaluating the
quasiparticle energies within first-order perturbation theory as

εN,j = εKS
N,j + 〈ϕN,j |Σxc(εN,j) − Vxc[nN ]|ϕN,j〉 . (10)

The treatment within first-order perturbation theory is justified if the eigen-
values of the underlying Kohn–Sham system are already sufficiently close
to the expected quasiparticle band structure. This is guaranteed by the
transition-state theorem [18, 19]. Besides, the orbitals ϕN,j(r) are usually
a good approximation to the true quasiparticle wavefunctions. For the homo-
geneous electron gas both are plane waves and thus coincide exactly. Numer-
ical calculations for bulk semiconductors indicate an overlap close to unity
between the Kohn–Sham orbitals in the LDA and the quasiparticle wave-
functions obtained from (6) with the G0W0 approximation for states near
the band edges [39]. Larger effects have been observed for surfaces, especially
for image states, because the latter are located outside the surface in a region
where the LDA potential is qualitatively wrong [40,41]. Changes in the wave-
functions of other surface states can also be identified but have only a minor
influence on the quasiparticle energies in the gap region. For GaAs(110) this
has been confirmed explicitly [42].

In principle, the equations (4) to (9) could be solved self-consistently by
successively updating the self-energy with the quasiparticle orbitals derived
from it. This approach is appealing on formal grounds because it makes the
results independent of the original mean-field approximation. In addition, the
self-consistent Green’s function satisfies certain sum rules, including particle-
number conservation [43]. In practice, however, this procedure produces a
poor excitation spectrum. The reason lies in the mathematical structure of
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Hedin’s equations, which describe the recipe for constructing the self-energy
from the Green’s function by means of functional-derivative techniques [36].
The G0W0 approximation is the result of a single iteration. Further iter-
ations would not only ensure self-consistency in the Green’s function but
would also introduce higher-order self-energy terms, so-called vertex correc-
tions. If the latter are neglected, then the spectral features deteriorate, as
was first demonstrated for the homogeneous electron gas [44]. For bulk semi-
conductors self-consistency appears to lead to a gross overestimation of the
fundamental band gap [45] in combination with poor spectral weights and
linewidths. We hence follow the established procedure for practical applica-
tions and terminate the cycle at the G0W0 approximation. Of course, the
final results depend on the input Green’s function in this case.

Another point that has been raised in the same context concerns possible
errors resulting from the pseudopotential approach, which has traditionally
dominated applications of the G0W0 approximation. Numerical deviations
must be expected because the matrix elements of the self-energy in (10) are
influenced by the pseudoization of the wavefunctions – that is the neglect
of core states plus appropriate smoothening of the valence states in the core
region – and the treatment of the core–valence interaction in pseudopoten-
tial calculations. Indeed, a number of early all-electron implementations of
the G0W0 approximation, based on the linearized augmented plane-wave or
the linearized muffin-tin orbital method, found quasiparticle band gaps for
prototype semiconductors that were significantly smaller than previously re-
ported values and blamed the discrepancy on the pseudopotential approxima-
tion [46,47]. However, this claim was later refuted by all-electron calculations
using plane waves [48,49]. The issue is currently still under debate, but there
is mounting evidence that a large part of the observed discrepancy is due to
insufficient convergence of the early calculations in combination with deficien-
cies of the linearized basis sets for the description of high-lying unoccupied
states [48, 50]. If these factors are properly accounted for, then the deviation
is significantly reduced, and the all-electron results are again in good agree-
ment with experimental measurements. A certain discrepancy with respect
to pseudopotential calculations still remains, although the difference is small
compared to that from the Kohn–Sham eigenvalues. While some errors of the
pseudopotential approach can be partially suppressed, for example through
a better description of the core–valence interaction [51], many others are
inherent. In particular, the pseudopotential construction also entails an in-
correct description of high-lying states. A careful analysis of the quantitative
implications of the pseudopotential approximation is the subject of active
research.

The good quantitative agreement between the G0W0 approximation and
experimental band structures has been demonstrated for a wide range of bulk
materials, including III–V semiconductors [52–54]. Due to the high compu-
tational cost in present implementations, which stems from the evaluation
of the nonlocality of the propagators, their frequency dependence, and the
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Fig. 1. Bulk band structure of GaAs. The G0W0 approximation (straight lines)
opens the too small Kohn–Sham eigenvalue gap in the LDA (dashed lines) and is
in very good agreement with the experimental band gap. The calculation is carried
out at the theoretical lattice constant 5.55 Å, and the valence-band maximum is set
to zero in both schemes

need to include a large number of unoccupied states, there have been rela-
tively few applications to more complex systems so far, however. Furthermore,
these often contain additional simplifications: the two available studies of the
quasiparticle band structure of GaAs(110) both employed plasmon-pole mod-
els instead of the more accurate random-phase approximation [55, 56], and
the only published results for InP(110) were obtained within an even more
restrictive tight-binding formalism [57].

For a quasiparticle band-structure calculation the matrix elements of
the self-energy in (6) must be evaluated in the frequency domain for states
with a given wavevector k. Therefore, most practical implementations of the
G0W0 approximation choose a reciprocal-space representation for all propa-
gators. The cell-periodic part of the wavefunctions is often expanded in plane
waves [52, 55], although localized basis sets like Gaussian orbitals have also
been used [54]. The disadvantage of the representation in reciprocal space
is that the products (7) and (9) turn into numerically expensive multidi-
mensional convolutions. Therefore, we employ a representation in real space
and imaginary time [58, 59], in which the self-energy and the polarizability
can be calculated by simple multiplications. The projection on wavevectors
and imaginary frequencies used to solve the Dyson-type equation (8) can be
done efficiently by exploiting fast Fourier transforms. The imaginary time
and frequency arguments are chosen because the functions are smoother on
these axes and can be sampled with fewer grid points, although they contain
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exactly the same information. The physical self-energy on the real frequency
axis is eventually recovered by an analytic continuation.

As an illustration of the G0W0 approximation we show the calculated
bulk band structure of GaAs in Fig. 1. The band gap is direct and located at
Γ in the center of the Brillouin zone. While the LDA underestimates the fun-
damental band gap and yields a Kohn–Sham eigenvalue gap of only 0.78 eV
at a lattice constant of 5.55 Å, the subsequent addition of the self-energy cor-
rection opens the band gap to 1.55 eV, which is in very good agreement with
the experimental value of 1.52 eV [34]. As we measure all energies relative to
the valence-band maximum, we set the latter to zero and align the two sets
of curves at this point. The principal effect of the G0W0 approximation is a
rigid upward shift of the conduction bands, although the dispersion is also
slightly modified, as can be seen by the reduced bandwidth at the bottom of
the valence band. The band structure of InP looks very similar. In this case
we obtain a Kohn–Sham eigenvalue gap of 0.76 eV at the theoretical lattice
constant 5.81 Å and a quasiparticle band gap of 1.52 eV that is again close to
the experimental value 1.42 eV [34]. Incidentally, the band gap depends sensi-
tively on the lattice constant. For GaAs it decreases at a rate of −4.07 eV/Å
in the LDA and −4.59 eV/Å in the G0W0 approximation when the lattice
constant increases. For InP the values are −3.13 eV/Å and −3.68 eV/Å.

3 Electronic Structure of Defect-Free Surfaces

Before focusing on defect states we first briefly discuss the electronic struc-
ture of the defect-free GaAs(110) and InP(110) surfaces. The nonpolar (110)
surface, illustrated in Fig. 2, is the natural cleavage plane of the zincblende
lattice, because it cuts the smallest number of bonds per unit area. Both
the cations and anions in the terminating layer are threefold coordinated,
and each possess one dangling bond extending into the vacuum. Due to the
different electron affinities of the two species, charge is transfered from the
dangling bonds of the cations to those of the anions. This charge transfer
is the driving force for a structural relaxation, which consists of an outward
movement of the anion atoms and a corresponding inward movement of the
cation atoms [33]. As a result, the orbitals of the latter rehybridize from an
sp3 towards an energetically more favorable sp2 bonding situation in a nearly
planar environment; the empty pz-like orbitals perpendicular to this plane are
pushed to higher energies and form an unoccupied surface band. At the same
time, the three bonds between the anions and their neighboring group-III
atoms are rearranged at almost right angles and become more p-like in char-
acter; the nonbonding electron pairs in the fourth orbital pointing away from
the surface are in turn lowered in energy and give rise to an occupied surface
band. The relaxation preserves the C1h point-group symmetry with a single
mirror plane perpendicular to the [1̄10] direction.
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Fig. 2. Geometry of the anion vacancy at the GaAs(110) surface. The As atoms
are shown in light and the Ga atoms in dark gray. The three Ga atoms nearest to
the vacancy are indicated by arrows

In Fig. 3 we show the calculated band structure of the clean and defect-
free GaAs(110) surface at the theoretical lattice constant 5.55 Å, modeled as
a slab element placed in a supercell with periodic boundary conditions in all
directions. The slab consists of six atomic layers, of which the top three layers
are allowed to relax, while the three base layers are kept fixed at their ideal
bulk positions. The dangling bonds at the bottom of the slab are passivated
by pseudoatoms with noninteger nuclear charges of 0.75 and 1.25 for anion
and cation termination, respectively. The slabs are separated by a vacuum
region equivalent to four atomic layers. The gray-shaded regions in the fig-
ure mark the projection of the G0W0 bulk bands onto the two-dimensional
surface Brillouin zone, shown in the inset. The dashed lines indicate the oc-
cupied and unoccupied surface bands obtained from the LDA, the straight
lines are the corresponding G0W0 results. For the calculation of the ground-
state density and the Kohn–Sham eigenvalues we used four Monkhorst–Pack
k-points [60] in the irreducible part of the Brillouin zone, while the self-
energy was evaluated at the four high-symmetry points Γ, X

′
, M, and X. In

our implementation the k-point set enters merely as the reciprocal grid of
the real-space mesh used to describe the nonlocality of G0(r, r′; t − t′) and
Σxc(r, r′; t − t′) [58]; the four selected k-points correspond to a real-space
mesh that extends over four surface unit cells. This is sufficient, because the
correlation length is of the order of the interatomic distance [61]. The position
of the Kohn–Sham surface bands relative to the corresponding bulk bands
was determined by aligning the electrostatic potential in the central part of
the slab with that of the bulk. We then applied the self-energy correction
independently to surface and bulk bands and again chose the valence-band
maximum as the energy zero. From the figure it is evident that the G0W0

approximation has only a small effect on the dispersion of the surface bands.
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Fig. 3. Surface band structure of GaAs(110) in the LDA (dashed lines) and the
G0W0 approximation (straight lines) at the theoretical lattice constant 5.55 Å. The
gray-shaded regions mark the projected G0W0 bulk bands. The inset indicates the
two-dimensional surface Brillouin zone

While the position of the occupied surface band relative to the valence-band
edge at Γ remains almost unchanged, the upward shift of the unoccupied
surface band (0.86 eV) slightly exceeds that of the bulk conduction bands
(0.77 eV). The larger impact of the self-energy correction on the surface gap
was noticed before [55, 56]; our result for the gap correction lies between the
two previously published values. Small deviations of about 0.1 eV are due to
differences in the implementations, for example the reliance on plasmon-pole
models in [55, 56] compared to the random-phase approximation for the dy-
namically screened Coulomb interaction in this work. Both the occupied and
the unoccupied surface bands are in close proximity to the projected bulk
bands and, in fact, overlap with them in large parts of the Brillouin zone.
As neither extends into the fundamental gap between the bulk valence and
conduction band edges at Γ, they do not pin the surface Fermi level.

Although prevalent in electronic-structure calculations for surfaces, the
supercell approach is a drastic alteration of the system’s geometry whose in-
fluence must be carefully monitored, because the occurrence of electric mul-
tipole moments may lead to artificial long-range interactions between the pe-
riodic slabs. Static dipoles, if present, can be eliminated in density-functional
theory [62]. With this correction the limit of isolated slabs is quickly reached.
Dynamic dipoles are always created in dielectric media, however, and con-
tribute to the polarizability in the G0W0 approximation. Actually, there are
two contributions that must be distinguished. The first is the dynamic po-
larization between the slabs, which gives rise to an additional slowly varying
potential that reduces the band gap. This effect can be understood and even
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quantitatively modeled in terms of classical image charges [63]; for the geom-
etry used in this work it amounts to about 0.1 eV. The model thus allows an
a-posteriori extrapolation to the limit of an isolated slab. The second contri-
bution is the finite width of the slab, which increases the gap due to quan-
tization effects. At present there is no obvious cure for this problem within
the G0W0 approximation, and as the two effects counteract each other, we
have not applied any partial correction to eliminate the dynamic polariza-
tion between the slabs either. In principle, both problems could be avoided
by studying systems comprised of semi-infinite matter and vacuum regions.
Within density-functional theory several methods have indeed been proposed
for this purpose [64–67]. Their efficiency relies on the fact that a perturbation
breaking the translational symmetry, such as a surface or defect, modifies the
effective potential only in its immediate vicinity. In the G0W0 formalism this
cannot be exploited to the same degree, because all propagators are explicitly
nonlocal, and a much larger simulation cell must hence be taken into account.
So far, only one G0W0 calculation for an effectively one-dimensional system,
a semi-infinite jellium surface, has been reported [68].

In preparation for later applications to larger supercells, we repeated the
G0W0 calculation with lower cutoff energies and found that the self-energy
correction to the surface gap remained stable up to 10 Ry. The reason for
the rapid convergence, which is well known and can be exploited to reduce
the computational expense considerably, is that the kinetic energy and the
electrostatic Hartree potential, the two largest contributions to the quasipar-
ticle energies, are already included in the Kohn–Sham eigenvalues in (10); the
matrix elements of the self-energy are less sensitive to the number of plane
waves. Besides, we obtained essentially the same surface gap when reducing
the width of the slab to four layers. For this geometry and a cutoff energy of
10 Ry, we performed test calculations in which we included up to 1049 unoc-
cupied bands in the Green’s function. With 379 bands the results are already
converged within 0.02 eV, sufficient for our purpose.

4 Defect States

The geometry of the anion vacancy is illustrated in Fig. 2 for the GaAs(110)
surface. The removal of the As atom leaves each of the three Ga atoms sur-
rounding the vacancy with a dangling bond. As a consequence, the two GaI

atoms in the first layer move downwards while the GaII atom in the second
layer moves upwards and forms two new bonds with the GaI atoms across
the void. Its coordination number thus increases from four to five, while the
threefold coordination of the GaI atoms remains unchanged. The relaxation
preserves the C1h point-group symmetry, except in the positive charge state
where an asymmetric distortion that pushes the unoccupied defect level in
the band gap to higher energies is more favorable [6, 8]. We find that the
distortion lowers the total energy by 0.17 eV for GaAs and 0.11 eV for InP.
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The anion vacancy gives rise to three electronic states, all localized at the
GaI–GaII bond pair. They are labeled as 1a′, 1a′′ and 2a′, where a′ denotes
states that are even with respect to the mirror plane and a′′ denotes states
that are odd. Although the asymmetric relaxation in the positive charge state
destroys this symmetry and deforms the orbitals slightly, it leaves the order
of the states intact, and we continue to use the same notation for simplicity.
The 1a′ state is located several eV below the valence-band maximum and
thus always filled with two electrons, while the 2a′ state is too high in energy
to become populated. Only the 1a′′ state falls inside the fundamental band
gap. Depending on the doping, it can be occupied either by zero, one or
two electrons, which corresponds to the positive, neutral or negative charge
state, respectively. It is important to note that the charge state influences
the defect geometry, as the GaI–GaII bonds contract with increasing electron
occupancy, reflecting the bonding character of the 1a′′ state. In the following
we examine the position of this defect level for a given charge state; the
question of which charge state is preferred under specific conditions, such as
doping, is answered in the next section.

For the density-functional calculations we choose a supercell consisting of
2× 4 surface unit cells and six atomic layers. For charged systems we include
a uniform charge density with opposite sign in order to compensate the extra
electron or hole and restore overall neutrality in the supercell. Instead of a
well-defined defect state, the supercell periodicity gives rise to an artificial
dispersion as illustrated in Fig. 4. At the surface of each slab the defects form
a rectangular grid whose lattice parameters ax and ay equal the dimensions of
the supercell. Since the 1a′′ state is odd with respect to the mirror plane, one
can regard it as a p orbital that exhibits π-type bonding along the [001] and
σ-type bonding along the [1̄10] direction. We hence consider a tight-binding
model

εKS
k = εKS

1a′′ + 2V KS
1π cos(kxax) + 2V KS

1σ cos(kyay)

+ V KS
2 cos(kxax) cos(kxax) + 2V KS

3π cos(2kxax) + 2V KS
3σ cos(2kyay)

(11)

with parameters fitted to the calculated Kohn–Sham band, where εKS
1a′′ equals

the eigenvalue of a single defect and the other parameters have the meaning
of hopping integrals. The above expression includes interactions up to third-
nearest neighbors and reproduces the dispersion with a correlation coefficient
close to 0.999 9 for all systems under consideration.

As the G0W0 formalism involves nonlocal propagators, the amount of data
that must be processed grows rapidly with the system size. In order to limit
the computational expense we use a smaller (2×2) supercell and four atomic
layers instead of the (2 × 4) cell to determine the self-energy correction of
the 1a′′ state. The stronger defect–defect interaction along the [1̄10] direction
increases the dispersion but does not change it qualitatively. As the presence
of the defect does not modify the range of the nonlocal propagators appre-
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Fig. 4. Calculated 1a′′ defect level of the As vacancy at GaAs(110) in the (a) pos-
itive and (b) negative charge state (dashed line: LDA; solid line: G0W0). The arti-
ficial dispersion in the LDA is due to the supercell periodicity; the horizontal lines
mark the actual defect level εKS

1a′′ and the corresponding G0W0 result. As the cal-
culations in (a) refer to the constrained symmetric relaxation, the additional shift
due to the asymmetric distortion is shown separately. The inset in (b) indicates
the downfolded Brillouin zone for the (2 × 4) supercell

ciably, we use one k-point and 1500 unoccupied bands for the construction
of the Green’s function G0, which corresponds to the same Brillouin-zone
sampling as the four k-points and 379 bands that we found satisfactory for
the (1 × 1) unit cell of the defect-free surface. For the positively charged As
vacancy at GaAs(110) we evaluated the self-energy correction in the entire
Brillouin zone [15]. By relating the calculated quasiparticle dispersion to a
tight-binding model equivalent to (11), we found very similar values for the
parameters V3π and V3σ as in the LDA, which implies that the influence of
the third-nearest neighbors on the self-energy correction is negligible. This
observation can be exploited as follows. At k′ = (2π/4)(1/ax, 1/ay, 0) the
contributions from the first- and second-nearest neighbors vanish, so that
the Kohn–Sham eigenvalue is given by

εKS
k′ = εKS

1a′′ − 2V KS
3π − 2V KS

3σ , (12)

and the corresponding quasiparticle energy by

εk′ = ε1a′′ − 2V3π − 2V3σ . (13)
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If the surviving hopping integrals on the right-hand sides coincide, then
the identity ε1a′′ − εKS

1a′′ = εk′ − εKS
k′ holds. On the other hand, the self-energy

correction is defined through the relation

εk′ − εKS
k′ = 〈ϕKS

k′ |Σ(εKS
k′ ) − Vxc|ϕKS

k′ 〉 . (14)

Instead of a scan over the whole Brillouin zone, we can hence determine the
self-energy correction for an isolated defect from a single calculation at k′.
The quasiparticle results are obtained by adding this correction to the Kohn–
Sham value εKS

1a′′ of the larger (2×4) supercell, where the position of the latter
relative to the valence-band maximum can be established more accurately.
We estimate that the uncertainty of the final quasiparticle energies, which
results from the discrete k-point sampling, the approximate treatment of the
core–valence interaction in the pseudopotential approach, the finite size of
the supercell, and other convergence factors amounts to 0.1 eV to 0.2 eV.

We performed explicit G0W0 calculations for the positive and negative
charge states, in the first case using a constrained symmetric relaxation. The
results for GaAs(110) are displayed in Fig. 4. For the neutral anion vacancy
the supercell contains an odd number of electrons; in combination with the
requirement of spin degeneracy this leads to fractional occupation numbers in
each spin channel. At present we cannot treat such systems. For the positive
charge state with the proper asymmetric distortion the defect level in the
G0W0 approximation is not calculated directly but deduced as follows. As
the lowest unoccupied state, the 1a′′ defect level equals the electron affinity,
i.e., ε1a′′ = Evac(0, Qasym

+ ) − Evac(+, Qasym
+ ), where Evac(q, Q) denotes the

total energy of a surface featuring an anion vacancy with the actual electron
population q ∈ {+, 0,−} and a geometric structure optimized for the charge
state Q ∈ {Qasym

+ , Qsym
+ , Q0, Q−}. This expression can be rewritten as

ε1a′′ =
[
Evac(0, Qasym

+ ) − Evac(0, Qsym
+ )

]
+

[
Evac(0, Qsym

+ ) − Evac(+, Qsym
+ )

]
+

[
Evac(+, Qsym

+ ) − Evac(+, Qasym
+ )

]
(15)

by adding and subtracting intermediate configurations. The term in the sec-
ond line on the right-hand side equals the quasiparticle energy for the corre-
sponding symmetric relaxation, which can be calculated with less computa-
tional cost by exploiting the C1h point-group symmetry. The other two terms
are simple total-energy differences between the symmetric and the asymmet-
ric geometry for a constant number of electrons; both are positive and can
be obtained from density-functional theory.

The calculated defect levels are summarized in Table 1 for GaAs(110)
and Table 2 for InP(110). Our LDA results are consistent with most of the
previously published calculations [3, 5, 7]. A notable exception are the values
by Zhang and Zunger [3] for the negative charge state of the As vacancy at
GaAs(110) and for the constrained symmetric geometry of the positive charge
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Table 1. Calculated defect levels for the As vacancy at GaAs(110) in eV relative
to the valence-band maximum. For the positive charge state the first column refers
to the asymmetric and the second to the constrained symmetric relaxation. The
quasiparticle band gap of 1.55 eV in this work, calculated at the theoretical lattice
constant 5.55 Å, is close to the experimental value of 1.52 eV

Charge state (+1) (0) (−1)

LDA (this work) 0.70 (0.06) 0.13 0.24

LDA [3] 0.73 (0.41) 0.5

LDA [5] (0.06) 0.23 0.24

G0W0 (this work) 1.08 (0.59) 0.48

Table 2. Calculated defect levels for the P vacancy at InP(110) in eV relative to
the valence-band maximum. For the positive charge state the first column refers
to the asymmetric and the second to the constrained symmetric relaxation. The
quasiparticle band gap of 1.52 eV in this work, calculated at the theoretical lattice
constant 5.81 Å, slightly exceeds the experimental value of 1.42 eV

Charge state (+1) (0) (−1)

LDA (this work) 0.89 (0.39) 0.49 0.60

LDA [7] (0.326) 0.479 0.580

G0W0 (this work) 1.36 (0.91) 1.01

state in Table 1. After a full relaxation of the asymmetric distortion in the
latter case, the discrepancy vanishes, however. The agreement with the results
of Kim and Chelikowsky [5] for the same system is very good, except for a
difference of 0.1 eV for the neutral charge state. The origin of these deviations
cannot be traced, because both groups of authors give very little information
about their computational details, and the size of the corresponding Kohn–
Sham eigenvalue gap is not stated. For all configurations with symmetric
geometries the defect level moves steadily upwards with increasing electron
population. The asymmetric distortion has a large effect on the unoccupied
defect level and pushes it to significantly higher energies. Concomitant with
the opening of the fundamental band gap, the G0W0 approximation adds a
positive quasiparticle correction to all defect levels and predicts larger values
than the LDA for all charge states. The size of the self-energy shift depends
both on the charge state and the geometry, although the differences are of the
same order as the error bar of the calculation. We note that our numerical
values differ slightly from those reported earlier in [15]. The discrepancy is due
to an improved description of the anisotropic screening in the slab geometry
in this work but lies within the estimated overall error bar of the calculation.
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For the P vacancy at InP(110) we obtain a similar picture, although the defect
levels are at higher energies both in the LDA and the G0W0 approximation.

Unfortunately, due to experimental difficulties, no direct measurements of
the defect states by photoemission are available. In this situation one can only
try to extract values from indirect methods like surface photovoltage imaging
with STM. One study using this technique claimed a value of 0.62 ± 0.04 eV
for the As vacancy in the positive charge state, based on the known position
of the sample’s Fermi energy 0.09 eV above the valence-band maximum and
a local band bending of 0.53 eV [69]. An STM measurement on a different
sample found a band bending of only 0.1 eV, however [12]. The origin of this
discrepancy is unclear but points to a strong influence of experimental con-
ditions and/or sample quality. Because of this uncertainty, no experimental
values are included in the tables.

5 Charge-Transition Levels

The occurrence of different charge states is a direct consequence of the posi-
tion of the defect level inside the fundamental band gap: in p-doped materials
the defect state lies above the Fermi energy and is hence depopulated, whereas
it is fully occupied in n-doped materials with a higher Fermi energy close to
the conduction-band edge. Indeed, a charge state of (+1) has been confirmed
experimentally for anion vacancies at p-GaAs(110) [70] and p-InP(110) [71]
and a charge state of (−1) at n-GaAs(110) [72] and n-InP(110) [73]. In a
theoretical treatment the stable charge state can be identified by comparing
the different formation energies

Eform(q, µA, εF) = Evac(q, Qq) + µA + qεF − Esurf , (16)

where we use the same notation for the total energy of the vacancy as in the
previous section. The chemical potential µA of the anion atoms is controlled
by the partial pressure and temperature, εF denotes the Fermi level and Esurf

is the total energy of the defect-free surface. The qualitative behavior of the
formation energies is illustrated in Fig. 5: due to their different slopes the
stable charge state with the lowest formation energy changes from positive
to negative as the Fermi energy varies between the valence-band maximum
and the conduction-band minimum. In between there may be a region where
the neutral vacancy is stable. The charge-transition levels are defined as the
values of the Fermi energy where the curves intersect and the stable charge
state changes. They are given explicitly by ε+/0 = Evac(0, Q0)−Evac(+, Q+)
for the transition from q = +1 to q = 0 and ε0/− = Evac(−, Q−)−Evac(0, Q0)
for the transition from q = 0 to q = −1.

All quantities in (16) are ground-state energies and can, in principle, be
calculated within density-functional theory. As explained above, however,
the parametrizations most commonly used in practical implementations lack
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Fig. 5. Qualitative behavior of the formation energies for anion vacancies in the
positive (V+

A), neutral (V0
A), and negative (V−

A) charge state. The Fermi energy
is limited by the valence-band maximum and the conduction-band minimum. The
charge-transition levels ε+/0 and ε0/− mark the values of the Fermi energy where
the stable charge state with the lowest formation energy changes

essential properties of the exact exchange-correlation functional, so that the
charge-transition levels obtained in this way suffer from systematic errors.
For a more accurate quantitative description we use the same trick as in (15)
and rewrite ε+/0 as

ε+/0 = [Evac(0, Q0) − Evac(0, Q+)] + [Evac(0, Q+) − Evac(+, Q+)] (17)

by adding and subtracting the total energy Evac(0, Q+) of a configuration
with the atomic geometry of the positively charged vacancy but with one
extra electron. In this way the charge-transition level is naturally decom-
posed into two distinct contributions. The first term on the right-hand side
is purely structural and describes the relaxation energy of the neutral sys-
tem from the atomic structure optimized for the positive charge state to its
own equilibrium geometry. It is always negative and can be calculated within
density-functional theory. We obtain −0.59 eV for GaAs(110) and −0.54 eV
for InP(110) when taking the asymmetric distortion into account. The sec-
ond term on the right-hand side is purely electronic and equals the electron
affinity of the positively charged vacancy, which in a many-body framework
corresponds to the lowest unoccupied state, i.e., the empty 1a′′ defect level in
the band gap. This was already calculated within the G0W0 approximation
in the preceding section and can be taken from Tables 1 and 2. In the same
spirit we rewrite ε0/− as

ε0/− = [Evac(−, Q−) − Evac(0, Q−)] + [Evac(0, Q−) − Evac(0, Q0)] . (18)

The first term now equals the ionization potential of the negatively charged
vacancy, corresponding to the highest occupied quasiparticle state. Again
this is the 1a′′ defect level, which in this case is filled with two electrons,
and the G0W0 results can be taken from the tables in the previous section.
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The second term is the energy difference between the electrically neutral
system in the atomic structure optimized for the positive charge state and
its own relaxed geometry. This contribution is always positive and can be
obtained from density-functional theory. We obtain 0.12 eV for GaAs(110)
and 0.08 eV for InP(110). The structural component is much smaller than
for ε+/0 because there is no symmetry-breaking distortion in this case, only
a minor reduction of the Ga–Ga bond length across the vacancy.

Incidentally, the charge-transition levels within the LDA, which are usu-
ally obtained according to the definitions ε+/0 = Evac(0, Q0) − Evac(+, Q+)
and ε0/− = Evac(−, Q−) − Evac(0, Q0) by evaluating the total-energy differ-
ences directly, can also be decomposed into structural and electronic energy
contributions. The latter are not given by the Kohn–Sham eigenvalues in
Tables 1 and 2, however. Instead, they must be calculated with the help of
the transition-state theorem [18] from intermediate configurations with half-
integer occupation numbers of 1/2 and 3/2 electrons, respectively.

Table 3. Calculated charge-transition levels for the As vacancy at GaAs(110) in
eV relative to the valence-band maximum. For ε+/0 the first column refers to the
asymmetric and the second to the constrained symmetric relaxation

Transition level ε+/0 ε0/−

LDA (this work) 0.24 (0.07) 0.15

LDA [3] 0.32 0.4

LDA [5] (0.10) 0.24

G0W0 (this work) 0.49 (0.32) 0.60

In Table 3 we summarize the results for the As vacancy at GaAs(110). In
contrast to earlier studies [3, 5] that found a small energy window in which
the neutral charge state is stable, our own calculation at the level of the LDA
predicts ε+/0 > ε0/− if the correct asymmetric distortion is taken into ac-
count and hence a direct transition from the positive to the negative charge
state, but the small energy difference is within the uncertainty of the calcu-
lation. The G0W0 approximation, on the other hand, reverses this ordering
and simultaneously moves all charge-transition levels to higher energies. The
values for the constrained symmetric relaxation are merely shown for the
purpose of comparison with earlier work. The deviations from earlier LDA
studies, especially by Zhang and Zunger [3], are related to differences of
similar magnitude in the defect states, which were already mentioned above.

The results for the P vacancy at InP(110) are given in Table 4. For this
material an indirect experimental measurement of ε+/0, obtained with a com-
bination of scanning tunneling microscopy and photoelectron spectroscopy,
is available [6]. Consistent with previous studies [6, 7], we find that the LDA
significantly underestimates the experimentally deduced value. The larger
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Table 4. Calculated charge-transition levels for the P vacancy at InP(110)

Transition level ε+/0 ε0/−

LDA (this work) 0.47 (0.39) 0.54

LDA [6] 0.52 (0.45)

LDA [7] 0.388 0.576

G0W0 (this work) 0.82 (0.79) 1.09

Expt. [6] 0.75 ± 0.1

G0W0 result, however, lies within the error bar of the experimental measure-
ment. We take this as a confirmation of our approach and an indicator that
the other defect states and charge-transition levels calculated within the same
framework are also meaningful. Nevertheless, further calculations for different
systems are necessary to establish the general validity of this scheme.

6 Summary

We have presented a parameter-free method for calculating defect states and
charge-transition levels of point defects in semiconductors. Compared to pre-
vious studies that extracted these quantities directly from the self-consistent
iteration of the Kohn–Sham equations, it apparently corrects important er-
rors that are inherent in all jellium-based exchange-correlation functionals
and employs a separation of structural and electronic energy contributions.
While the former are accurately obtainable in density-functional theory, we
use many-body perturbation theory and the G0W0 approximation for the
self-energy to calculate the latter with proper quasiparticle corrections. The
scheme is general and can be applied to arbitrary bulk or surface defects. As
an example we examined the electronic structure of anion vacancies at the
(110) surfaces of III–V semiconductors. For the As vacancy at GaAs(110) our
calculation indicates that all three charge states including the neutral con-
figuration are stable, in contrast to the LDA that predicts a direct transition
from the positive to the negative charge state. Due to a general lack of ex-
perimental data, a direct comparison between theoretical and experimental
values is only possible for the charge-transition level ε+/0 of the P vacancy at
InP(110). In this case our calculation is in good agreement with the exper-
imentally deduced result and constitutes a clear improvement over previous
LDA treatments. Nevertheless, besides an improvement of experimental tech-
niques, further developments in theoretical and computational procedures are
highly desirable. Our method only opens the door to novel approaches; with
present implementations the results are derived at a cost that may be in-
feasible for more complex systems, and the numerical uncertainty of 0.1 eV
to 0.2 eV is often of the same order as the relevant energy differences. The
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study of excitons, which, e.g., play an important role at GaAs(110) [74],
further requires an extension of the mathematical framework beyond single
quasiparticles.
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[50] C. Friedrich, A. Schindlmayr, S. Blügel, T. Kotani: Phys. Rev. B 74, 045104

(2006) 174
[51] E. L. Shirley, X. Zhu, S. G. Louie: Phys. Rev. B 56, 6648 (1997) 174
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Abstract. Now that the modeling of simple semiconductor systems has become
reliable, accurate and routine, attention is focusing on larger scale, more complex
simulations. Many of these necessarily involve multiscale aspects and can only be
tackled by addressing the different length scales simultaneously. We discuss some
of the types of problems that require multiscale approaches. Finally we describe
the LOTF (learn-on-the-fly) hybrid scheme with a series of examples to show its
versatility and power.

1 Introduction

Over the last twenty years, the improvement in computational modeling of
materials problems has been remarkable. This is due to the significant in-
crease in the capacity and speed of computers matched (and arguably sur-
passed) by the ingenuity of those who write the computational codes. It would
be invidious to do other than refer the reader to other Chapters in this vol-
ume to support these assertions. However, these advances are also challenged
by the complexities of systems that need to be modeled.

There has been a great deal written about different scales of modeling,
usually where the results of calculations on one scale are used to determine the
parameters that are used to model the material at a larger scale. Many of the
embedding approaches are designed in this way. Additionally, where dynamic
processes are being modeled, it may be useful to treat different timescales by
different means. A combination of molecular-dynamics and quantum-mechan-
ical modeling using a first-principles technique for example, can model only
a few hundred atoms for a period of a few picoseconds. Using more approxi-
mate methods, one may be able to extend the number of atoms to hundreds
or thousands, or the time period by a few orders of magnitude. In order to
extend the time period to the several seconds for some biological processes,
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or years or aeons for geological ones, the activation energies and reaction
pathways from the static or picosecond MD calculations have to be inserted
into Monte Carlo models or analytical rate equations and their variants.

In this Chapter, we suggest a selection of problems where the complexity
of such an approach makes it difficult or impossible to treat every length
scale with a separate calculation, largely because the physical processes on
the various length scales are strongly coupled to each other. We then go on to
describe a method that allows some of these complex problems to be tackled.

2 A Hybrid View

Radiation or Implantation Damage

An important technique for doping semiconductors is to implant the dopant
with an energy (or range of energies) that determines the location of the
doped area or layer. However, in this process damage in the form of vacan-
cies and interstitials and their complexes are formed, some of which can be
electrically active. Annealing may heal most of the damage (e.g., [1]), but in-
variably some defects remain and can be detected by photoluminescence and
positron-annihilation spectroscopy [2]. Intrinsic defects have very low activa-
tion energies for diffusion, so they may migrate long distances before they
are trapped by dopants, or other radiation-induced defects. The same prob-
lems arise when the radiation damage of silicon particle detectors is modeled.
A very comprehensive empirical analysis of the processes involved in the an-
nealing of damage was undertaken by Huhtinen [3], but he did not attempt
to understand the microscopic processes. However, his analysis showed that
some long-range migration of radiation damage products and displaced im-
purities was occurring. It is well within the current state-of-the-art to model
the dynamics of the initial impact of a particle or ion with a silicon atom in a
small finite cluster (or periodic supercell), and the subsequent displacement
of that atom. If the damage trail formed by the particle, the knock-on atom
and any further damage products can all be contained in the finite cluster or
supercell, then a reasonable model of the full process can be built up. More
commonly, though, one or more of the damage products may exit the cluster
in a direction not easily predicted from the initial conditions, or the intrin-
sic defects may migrate longer distances than the dimensions of the largest
clusters. The problem is then to construct a method to follow the important
species such that their interactions are treated with the required level of ac-
curacy, while keeping the whole problem to within acceptable computational
limits.

Point-Defect Diffusion

A very similar problem is the annealing of point defects in semiconductors,
where an additional complication is the chemical interaction between the im-
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purity and the defects in the host lattice. As an example, atomic hydrogen
in silicon has a stable site in a bond-centered position, which is only stable
when the bond is greatly elongated – a self-trapped site [4]. It also has a
metastable site at the tetrahedral site, where the migration barrier is very
low. To model the migration, a full molecular-dynamics model must be used,
but it must also be capable of following the long-range migration of the hydro-
gen through the tetrahedral-site routes. For hydrogen, a proper model using
quantum mechanics for the proton as well as for the electrons is necessary,
and has been developed in a limited way [5], but the principles illustrated
by this example apply to the diffusion of many other impurities and defects.
Classical interatomic potentials are available for some of the simpler chemi-
cal systems, but they tend to be constructed for bonding situations that are
close to equilibrium, and have rather more questionable validity where the
local environment of the host–defect complex is greatly distorted.

Both the relative stability and the rate of migration of point defects can
be altered by the presence of strain fields and strain gradients that are ubiq-
uitous in semiconductor systems. While the point defects typically alter the
local atomic structure only on a scale of a nanometer, the strain fields of
epitaxial layers extend much further due to lattice mismatch. Dislocations
also give rise to a slow-decaying strain field. This means that while the quan-
tum-mechanical treatment of new bonding arrangements near each individual
defect can be accomplished using a few hundred atoms, the environment in
which the diffusion and possible interaction of the defects takes place needs
to be represented by tens of thousands of atoms or more.

Dislocation Motion

The strength of real materials is dominated by the behavior of its dislocations.
Around the core of a dislocation, there is a 1-D region in which the bonding of
the host is distorted. Once there is a kink in the dislocation, by which means
it moves, the distortions become much more pronounced, and this part of
the crystal must be modeled by particularly accurate techniques, see Fig. 1
for a schematic view. Moreover, the movement of the kink means that this
highly distorted region also moves, which typically involves bond breaking
and forming. More complexity arises when dislocations interact with each
other or with grain boundaries, and they may also be sources (or sinks) for
point defects.

Grain Boundaries

Nanocrystalline silicon and other semiconductors are becoming more and
more technologically important. Similarly, the crystal quality of many of the
newer wide-bandgap semiconductors used in electronics (the nitrides, silicon
carbide, diamond) is not nearly as perfect as silicon – it is no longer acceptable
to ignore dislocations and grain boundaries when trying to understand the
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Fig. 1. Schematic view of a screw dislocation with a double kink. In covalent materi-
als, dislocations move by the formation of double kinks. Gray circles approximately
indicate the region in which active rebonding takes place

degradation or limitations of their electronic properties. The exact role that
grain boundaries play in plasticity is far from being completely understood.
In particular, the grain boundaries need to be investigated as sources and
sinks for dislocations. Significant departure from the equilibrium crystalline
structure is present. This takes the form of a mixture of locally disordered
bonding and longer-range elastic distortion – a situation that needs a mul-
tiscale description. Furthermore, the grain boundaries can act as traps for
dopants, electrons and holes, adding to the local chemical complexity. Once
again, although the longer-range interactions are well described by empirical
potentials, the description of the local chemistry requires quantum-mechani-
cal accuracy.

Fracture

Fracture is perhaps the textbook example of a multiscale problem. The im-
portance of understanding both the catastrophic failure of brittle materials
and the conditions under which normally ductile materials become brittle
cannot be overemphasized. Classical continuum models of the stress field do
an excellent job in predicting the enhancement of stress near the crack tip.
However, the divergence of components of the stress tensor at the tip imply
that elasticity theory must break down in this region since it is not applicable
when distortions go beyond the harmonic range. Indeed, during failure the in-
teratomic bonds are stretched well into the anharmonic region and ultimately
are broken. In covalent systems this leaves dangling bonds, whose energetics
can only be described by a fully quantum-mechanical treatment. Moreover,
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Fig. 2. Displacement field of a propagating crack under uniaxial tension in the
opening mode (analytical continuum solution)

the influence of impurities and corrosive agents on failure processes has never
been explored theoretically at this level of detail, yet there is evidence for
the critical role they play, e.g., in fracture of silicon notches in a wet envi-
ronment [6, 7] and in the controlled fabrication of thin Si films by hydrogen
implantation [8–10].

The key aspect of brittle fracture that makes it amenable to hybrid mod-
eling is that the propagating crack is atomically sharp [11]. Thus, although
the crack surface that is opening up is two-dimensional, the active region,
where bonds are being broken, is a one-dimensional line, perpendicular to
the direction of propagation. The strongly coupled multiscale aspect of crack
propagation comes about because the opening crack gives rise to a stress
field that has a singularity (in the continuum approximation), diverging as
1/

√
r where r is the distance ahead of the crack tip, and in turn, it is this

large stress that breaks the bonds and thus advances the crack forward. The
extension of the stress field is nevertheless very large. If we wish to represent
all the atoms that contribute significantly to elastic relaxation as the stress
field advances, we need to include several tens of thousands of atoms. Only
then can we hope to be able to quantitatively predict critical loading levels.

3 Hybrid Simulation

The general pretext in a hybrid simulation is that we are going to use two
different physical models to describe the system. It is understood that one of
these is accurate enough to describe the physics of the activated regions prop-
erly, which, in practice, means we will use some sort of quantum-mechanical
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description, e.g., a tight-binding (TB) formalism, or indeed density-functional
theory (DFT); henceforth this first model will be referred to as the QM model.
Using such sophisticated modeling comes at a price, in the very real terms of
computing costs. With the currently available hardware, it is typically pos-
sible to simulate thousands of atoms using TB, and hundreds of atoms using
DFT for tens of picoseconds. These are evidently modest capabilities if we
are faced with any of the above problems, and hence we need to employ a
second model, to be used in parts of the system that are not activated at a
given instant in time. This second model should capture correctly the basic
topology of bonding and the response to small deformations, while at the
same time be relatively inexpensive to compute. Empirical atomistic models
fit the bill perfectly. It should be noted that the recent progress in the field
of empirical “ball and spring”-type modeling has been in the direction of
refining the analytical forms in an attempt to extend their range of applica-
bility [12–15]. However, once we have decided to employ a hybrid technology
there is little benefit in complicating this second, classical model . It is more
important that it is as robust as possible and uses only a small number of
free parameters since in any particular situation where the classical model
would fail we will use the QM model.

In theory, one could consider not just two models, but a whole hierarchy
of ever more coarse-grained descriptions of physical systems. The next one up
from classical atomistic models would be a continuum finite element model. In
our experience, the cost ratio between the QM and the classical models is so
extreme, that for all intents and purposes the classical atoms can be regarded
as “free” in most applications. If we are at liberty to consider millions of
classical atoms, the necessity of a continuum description is less pressing.
The standard technical tools of classical molecular-dynamics can thus be
used on this large, atomistically modeled region to impose the correct elastic
or thermal boundary conditions of the problem under study. The boundary
regions between the QM and classical zones need, on the contrary, a special
treatment and a separate discussion.

Boundary Problems

It is not hard to recognize that the biggest challenge in designing a hybrid
simulation scheme is to overcome the problems associated with the artificial
boundary that separates regions of the system that are described by the
two different models. In fact there are two distinct issues that have to be
addressed. The first one generally goes under the name of termination, and
it concerns the accurate computation of forces on atoms near the boundary. If
we attempt the most naive partitioning and simply omit the classical atoms
from the quantum-mechanical calculation and vice versa, the atoms close to
the boundary will behave like those near an open surface. This is clearly
wrong. To get accurate forces on these atoms, we should “trick” the system
into believing that these surface atoms are really bulk atoms, while avoiding
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implicit inclusion of all the atoms from the other region (which is the point
of the hybrid simulation in the first place).

The next simplest solution is to use so-called “termination atoms”, which
is standard practice in the hybrid simulation schemes of biological systems
(called “QM/MM” models [16]). Here, atoms from the region we are presently
not considering are also taken away, but wherever covalent bonds are bro-
ken by this removal, a monovalent atom (typically a hydrogen) is placed to
saturate the dangling bond. For the classical model, this procedure can be
seen to be sufficient. The classical description of covalent bonding is very
near-sighted, i.e., the energy of the “last” classical atom can be essentially
perfectly recovered using the terminator-atom technique. Moreover, since the
classical total energy is usually expressed as a simple sum of atomic energies,
the terminator atom can simply be excluded from this sum. It has to be
noted that if we are dealing with a strongly ionic material, even our clas-
sical model will not be so near-sighted, and the problems that are usually
associated with the termination of the quantum region in standard QM/MM
treatments apply to the classical part as well.

Terminating the quantum-mechanical subsystem is more tricky. Quantum
mechanics is not a nearest-neighbor model, so even if our free surface is
terminated by monovalent terminator atoms, the atoms close to the boundary
will feel an artificial environment. Secondly, it is more or less impossible
in any QM scheme to exclude the terminator atoms from the total energy
in a consistent fashion, so we have just traded artificial surface atoms for
artificial terminator atoms – not an altogether satisfactory situation. These
two problems are solved by the same trick: we stop worrying about the total
energy and concentrate on obtaining accurate forces on the atoms in the QM
region, which is achieved by allowing a thicker termination region, rather
than just terminator atoms. In other words, we include a shell of nominally
classical atoms (a thickness of about a nanometer is sufficient in silicon)
in the QM calculation, which ensures that the forces that we compute for
the QM atoms are accurate. Now in contrast to the total energy, the forces
are local quantities, so it is trivial to exclude the forces on atoms in the
“contaminated” termination region from the subsequent calculations: from
the QM calculation, we only keep the forces on atoms in the original QM
region, not the termination region.

Mechanical Matching

And thus we squarely arrive at the second major issue associated with the
boundary. Suppose we have computed forces with the desired method in each
region, we now have to propagate the system forward in time along its tra-
jectory. On the two sides of the boundary, we originally resolved to compute
with different models, but these yield different, and incompatible trajectories
for the atoms on the two sides. The set of forces we just computed (from
two different models) are not the derivatives of some total energy and do
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not necessarily add up to zero for an isolated system. If we simply plugged
them into an integrator formula (e.g., velocity, Verlet [17]), the trajectory
may be unstable. The solution to this problem forms the basis of our re-
cently developed method [18–20] called “learn on the fly” (LOTF): instead
of using the set of forces directly, we consider a simplistic universal “ball and
spring” model, but allow every spring to be different, and also to change with
time. At every time step, the set of forces we computed using the classical
and quantum models are used as targets in an optimization of the spring
constants, which are tuned until the forces derived from the universal model
match their targets. The trajectory integrator is then used on the universal
model, whose forces are now consistent across the whole system. The univer-
sal model in effect “interpolates” across the boundary, closely matching the
target on both sides, while maintaining global consistency.

In practice, a number of simplifications immediately arise. The target
forces do not have to be computed at every time step, as the universal model
can be considered an instantaneous interpolator not just in space, but also
in time and so it can be used with unchanged spring constants for a few
time steps without incurring a significant deviation from the true hybrid
trajectory. More importantly however, the scheme is greatly simplified if the
universal model is chosen to be the classical model itself! Thus an alternative
and complementary point of view is that we take the classical model and
remove the constraints from its parameters, allowing them to be different
for each atom. We then tune them in the QM region to incorporate the
quantum-mechanically accurate force information.

Another important consequence of this scheme is that we are at liberty to
move the QM region in space without upsetting the stability of the simulation.
The universal model will adapt to the target forces at each optimization,
regardless of where and how we obtained the set of target forces. The use of
a thick transition region to pad the quantum-mechanical calculation means
that as we shift the quantum region in space together with its padding the
Hamiltonian in the nominal quantum region changes smoothly.

4 The LOTF Scheme

The Universal Potential

We now describe in detail the LOTF scheme that is based on the above ideas.
The choice of the universal force model that we will use to interpolate the
quantum and classical models is crucial. There are two obvious choices. One,
already alluded to above, is to use the classical model itself. This means that
there would only be two force models in our scheme, a classical model with
variable parameters and a quantum model. Most of the applications in the
following sections have been carried out using this approach. An alternative
and more flexible choice is to pick a universal force model that offers a good
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Fig. 3. Examples of cubic spline potentials for the two-body (top) and three-body
terms (bottom). The large dots represent spline knots, the red dotted lines are the
corresponding functions of the Stillinger–Weber potential [22]

compromise between expressive power and robustness. In particular, we will
be changing the model parameters on the fly, so we would like the potential
form to change smoothly as we change these parameters. In our search for the
parameter set optimized at any given point in the simulation, we will make use
of gradient search techniques, so the derivative of the potential with respect
to its parameters should be straightforward and easy to evaluate. Keeping
the bond lengths and bond angles as fundamental coordinates, a cubic spline
functional form fits the above criteria [21].

For the two-body term, we can take a spline with four knots (e.g., at
r = {1.5, 2.0, 2.5, 3.5} Å for Si, for other elements scaled appropriately by the
atomic radius). The spline function is completely determined by its values
at the knot points and its derivatives at the two endpoints. We fix both
the value and the derivative at the outer endpoint to be zero, and at the
inner endpoint to match the corresponding values of the quantum model for
a dimer. This leaves two free parameters, the value of the spline at the two
inner knots. Keeping these two values negative guarantees the existence of a
single minimum in the spline function between the endpoints.

For the three-body term, we could keep the traditional quadratic form in
the cosine of the bond angle θ, but with a variable curvature and position
of the minimum. To allow more flexibility, and in particular, an asymmetric
angular dependence, we can again take a cubic spline of cos θ, with two knots
at −1 and 1, the free parameters are then the values and derivatives at the
endpoints. As long as we restrict the derivatives to have the appropriate sign,
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we can guarantee that the spline will have a single minimum in (−1, 1) for
any set of values of the parameters.

Figure 3 shows a pictorial illustration of the splines. Since the spline func-
tions are linear functions of the values at the knot points, our free parameters,
evaluating the splines and their derivatives at fixed atomic positions for dif-
ferent parameter values is trivial and fast.

Parameters

Since we want to optimize potential parameters associated with atoms close
to the quantum region, the choice of initial values is important. Unless the
elastic constants of our classical and quantum models match closely, acoustic
waves will partially reflect from the artificial quantum/classical boundary.
Therefore, the starting values of classical parameters have to be set to match
the elastic constants of our quantum model. During the dynamics, as the
quantum region moves, we have two choices for atoms that are no longer in the
quantum region: either we reset the classical parameters to their initial values,
or we leave them with the last-fitted parameters. Which is best depends
on the application. In the case of defect diffusion, once the defect leaves a
particular area, it makes sense to reset the parameters. In other cases, if
the physical effects in the quantum region have resulted in some permanent
topological change, e.g., the opening of a new surface, possibly followed by
surface reconstruction, we might want to keep the last-fitted parameters,
as they could give a better description of the new topology than the original
parameters. It seems difficult to formulate an optimal strategy for the general
case.

Algorithm

The following sequence of steps constitutes the hybrid scheme, a graphical
illustration is shown in Fig. 4.

1. Initialize universal force-model parameters.
2. Extrapolate the atomic trajectory for n steps using fixed model para-

meters.
3. Identify atoms that need quantum treatment. This is done using geomet-

ric and topological criteria, e.g., atoms are selected if they are under- or
overcoordinated. For each new application, a suitable selection criterion
has to be designed that captures the relevant processes. The user-defined
goal of the calculation may determine the exact recipe used here. Indeed
in calculations involving surface-chemical reactions in a slab geometry,
we may choose to treat quantum-mechanically only one surface of the
slab, thus effectively halving the accurately rendered area but doubling
the simulation time for a given computer budget.
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Fig. 4. Predictor–corrector-style parameter fitting. The black and red lines repre-
sent the predictor and corrector part of the trajectory, respectively. The gray circles
denote the assumed domain of validity of the newly fitted parameters at each fit
point (black dots)

4. Quantum-mechanical calculations are carried out to obtain accurate
forces on the selected quantum atoms.

5. Optimize the force-model parameters to match the target forces both
in the quantum and classical regions.

6. Interpolate the trajectory over the previous n steps between the old
and new parameters. This achieves a smooth evolution of parameters in
time.

7. Back to 2.

5 Applications

Point Defects

We now present a series of applications of the LOTF scheme in silicon. In all
cases, the classical model is that of Stillinger–Weber [22] and, unless stated
otherwise, the quantum model is empirical tight-binding with various para-
metrizations [23,24]. The first application is more of a quantitative test of the
algorithm, rather than a real application that necessitates a hybrid method-
ology. We consider the diffusion of point defects in crystalline Si, and show
that the LOTF scheme, using a spherical QM region around the moving de-
fect, recovers the same diffusion coefficient as that calculated from a fully
quantum-mechanical trajectory, while both are significantly different from
the case of a purely classical trajectory. Figure 5 shows the diffusivity as a
function of temperature for a vacancy in silicon calculated in three different
ways. The LOTF simulations have been performed with two different QM
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Fig. 5. Vacancy diffusion rate in Si as a function of inverse temperature, as com-
puted using fully quantum (black), classical (blue) and hybrid (red) models. The
unit cell had 63 atoms

packages (different orthogonal tight-binding parametrizations), which – not
surprisingly – give different values. Critically however, the LOTF simulation
reproduces the correct curve, corresponding to whichever QM package was
used to get the target forces. Further details can be found in [19] and [20].

Figure 6 shows the mean square displacement of a hydrogen atom, diffus-
ing in crystalline silicon at 1000 K. This test shows up an interesting aspect
of the LOTF simulation. Because the algorithm retunes the classical model
continuously, it effectively uses a time-dependent Hamiltonian, and thus we
can no longer define a total energy that is a constant of motion. A slow (local)
heating or cooling of the systems may occur during microcanonic simulations,
or in constant-temperature simulations using an inappropriately tuned ther-
mostat, in spite of the forces being all the time accurate within a few per
cent. The problem is, however, lifted in the canonic ensemble if a suitable
thermostat is used to stabilize the dynamics. In the present case, with two
different atomic species and a large mass ratio (∼ 28), a simple velocity-
rescaling thermostat is unable to maintain the correct kinetic temperature
for both the hydrogen and the silicon atoms. This problem can be corrected
with the use of a more sophisticated thermostat. Figure 7 shows the tem-
perature evolution of the same system, where instead of a real QM engine,
LOTF was used to track the classical forces, but the force on the H atoms
was scaled by 0.9. The same behavior is observed as shown in Fig. 6: without
a thermostat, the system is unstable. With a simple velocity-rescaling ther-
mostat, the kinetic temperature of the hydrogen is different from the system
(in this case, much larger), while using a Langevin thermostat [25] eliminates
this discrepancy. The Langevin thermostat adds a dissipative and a fluctuat-
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Fig. 6. Mean square displacement of a H atom diffusing in Si. Quantum and
classical runs are represented by black, blue lines, respectively. The green curve
corresponds to the hybrid simulation with a Nosé–Hoover thermostat, which is
unable to maintain, by itself, the correct kinetic temperature of the H atom. Once
this is corrected for results match the diffusion rate of the fully quantum-mechanical
simulation (red line)

ing term to the forces and these are precisely balanced to achieve the desired
temperature. In contrast to other schemes, the Langevin thermostat does
not rely on efficient coupling of phonons of the hydrogen and the bulk, but
couples to each particle directly and separately.

Dislocation Glide

To demonstrate a simple application of the hybrid scheme in a system that
definitely needs quantum-mechanical accuracy yet is already too large for
an ordinary simulation, we consider the glide of partial dislocations. Silicon
partial dislocations move by forming kinks that zip along the dislocation line.
The most prevalent partial dislocation in silicon is the 30◦ partial, and the
kink that most easily forms and migrates on it is the left kink [26].

Figure 8 shows a pair of such partials, oppositely directed, so that the
whole unit cell is periodic, and the partials enclose a stacking fault. The unit
cell is also skewed slightly, thus forcing the existence of a left kink on each
partial. In a molecular-dynamics simulation at high temperature (900 K to
1100 K), the partials move toward each other, and eventually annihilate, leav-
ing behind a number of scattered point defects (mostly fourfold-coordinated
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Fig. 7. Temperature evolution of a hydrogen atom in a 64-atom silicon cell using
different thermostats with the hybrid scheme. The top panel shows that in such a
small system, there is a significant energy drift due to the time-dependent Hamil-
tonian. The middle panel shows that a simple velocity-rescaling thermostat that,
like the Nosé–Hoover, couples to the entire system via one extra degree of freedom
to the entire system, is unable to maintain the correct kinetic temperature for the
light H atom. The bottom panel shows that a more sophisticated Langevin thermo-
stat, which couples to each atom individually, maintains the correct temperature
for all species of atoms

defects [27]). There are a number of salient features of the LOTF simulation
that are worth pointing out and that are not observed in a purely classi-
cal simulation. First, the glide is an order of magnitude faster in the hybrid
simulation. This does not just indicate a lower energy barrier for kink migra-
tion, but the configurations that are most prevalent in the hybrid simulation
are very different from those in the classical case. The most striking exam-
ple is the equilibrium state of the left kink itself, shown in Fig. 9. Although
the equilibrium configurations in the quantum and classical models agree at
zero temperature, at high temperature, the quantum-mechanical free-energy
minimum corresponds to a kink configuration with a square and an ejected
antiphase defect. During the classical simulation, the kink spent a large pro-
portion of the time trapped in a metastable state that had the effect of
pinning the partial.

A unique advantage of a modular hybrid scheme with a black-box quan-
tum engine is that it is easy to investigate the effect of chemical defects.
Swapping the empirical tight-binding quantum engine for density-functional
tight-binding (DFTB)[28] enables us to simulate the interaction of the partial
with dopants without having to worry about constructing a classical model
for a new type of atom. If we start the simulation after placing a boron atom
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Fig. 8. A pair of oppositely directed 30◦ partial dislocations enclosing a stacking
fault. The complete unit cell consists of 4536 atoms, but only the (111) plane
containing the stacking fault is shown. The red (Si) and green (B impurity) atoms
are undercoordinated, so they and the surrounding blue (Si) atoms are treated
quantum-mechanically

Fig. 9. Detail of the dislocation kink, showing the configuration that corresponds
to equilibrium at zero temperature (dotted lines), and to what is prevalent at 900 K
in the hybrid simulation

at the position shown in green in Fig. 8, the right-hand partial is pinned and
remains completely stationary, while the left-hand partial advances as before.



208 Gábor Csányi et al.

Fig. 10. Von-Mises strain field around a stationary crack tip in the opening mode
in silicon

Brittle Fracture

In recent years, the problem of brittle fracture of covalent materials has been a
prototypical problem addressed using hybrid methodology [29–31]. Figure 10
depicts the von-Mises strain around a stationary crack tip, as calculated us-
ing the Stillinger–Weber potential by optimizing the positions of the interior
atoms, while holding the top and bottom rows of atoms fixed, corresponding
to a given load in the opening mode. The stress concentrates near the tip
and when the load reaches a critical level, the most strained bond gives way
and the crack propagates forward. While analytical values for the required
loading for crack propagation are easy to compute in the continuum approx-
imation, it is well known that the discreteness of the atomic lattice gives rise
to a barrier to this process, called lattice trapping [32–34]. The height of this
barrier depends sensitively on the atomistic model employed and classical
models typically overestimate this barrier, resulting in a much higher critical
loading. The barrier associated with the Stillinger–Weber potential in partic-
ular is so high that, when the crack finally does propagate, so much elastic
energy is released that the opening surfaces roughen, the crack tip blunts,
emits dislocations, resulting in a reduction of the local stress field and an
arrest to crack propagation: in other words, the ductile behavior is incor-
rectly predicted. An example of such “ductile” crack propagation is shown in
Fig. 11. In contrast, real cracks in silicon at low temperature are atomically
flat and propagate continuously above the critical load. This is reproduced
by the hybrid simulation, a snapshot of which is shown in Fig. 12. This simu-
lation at 300 K shows the 5–7–5 Pandey reconstruction of the opening (111)
surfaces. The motion of the crack tip is tracked with the quantum region by
noting which atoms have changed their number of nearest neighbors since the
start of the simulation, and treating all atoms quantum-mechanically within
5 Å of these.
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Fig. 11. Snapshot of “ductile” crack propagation using the Stillinger–Weber model.
Defects are produced in the crack-opening region and dissipate energy; the onset
of cracking is not sharp

Fig. 12. Snapshot from brittle crack propagation, using the hybrid method at
300 K. Red atoms have been flagged as “active” because they have changed their
neighbor count since the start of the simulation, and together with the blue atoms,
are treated quantum-mechanically. In contrast to the ductile case, the crack prop-
agates continuously above critical loading
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6 Summary

To conclude this overview, we reiterate that a large class of problems in
the area of semiconductor mechanical properties are inherently multiscale,
and that significant advances in computer simulation will only be made by
addressing the different length scales directly and simultaneously. We have
introduced a promising new scheme that scales well to large system sizes and
that deals with the intricacies of a hybrid simulation with fully controllable
approximations. The scheme is very general, and can be extended to deal
with arbitrary classical force-field potentials, one foreseen extension being,
in particular, in the direction of modeling long-range (classical electrostatic)
interactions.
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Abstract. Classical molecular dynamics enables atomistic structure simulations
of nanoscopic systems to be made. The method is extremely powerful in solving
the Newtonian equations of motion to predict static and dynamic properties of ex-
tended particle systems. However, to yield macroscopically relevant and predictive
results, suitable interatomic potentials are necessary, developed on ab-initio-based
approximations. The fundamental requirements for performing classical molecular
dynamics are presented as well as the relation to statistical methods and parti-
cle mechanics, suitable integration and embedding techniques, and the analysis of
the trajectories. The applicability of the technique is demonstrated by calculating
quantum-dot relaxations and interaction processes at wafer-bonded interfaces.

1 Introduction: Why Empirical Molecular Dynamics?

Classical molecular dynamics (MD) enable atomistic structure simulations of
nanoscopic systems and are, in principle, a simple tool to approach the many-
particle problem. For given interatomic or intermolecular forces one has to
integrate the Newtonian equations of motion assuming suitable boundary
conditions for the box containing the model structure. There are at least
two advantages of this technique. The molecular dynamics is deterministic
and provides the complete microscopic trajectories, i.e., the full static and
dynamic information of all particles is available, from which a large number
of thermodynamic and mechanically relevant properties of the models can
be calculated. Further, one can perform simulations that are macroscopically
relevant with the present computational power of even desktop computers.
With reasonable computational effort models of nanoscale dimension can be
treated for several million particles and up to microseconds of real time. Thus,
empirical MD has two main fields of application: The search for the global
energetic minima by relaxing nanoscopic structures and the calculation of
dynamical parameters by analyzing the lattice dynamics.

Computer simulations are performed on models simulating the reality by
using approximations, reduction, localization, linearization, etc., the valid-
ity of which has to be critically evaluated for each problem considered. As
sketched in Fig. 1, increasing the time and length scales of the models (which
is necessary to increase the macroscopic validity and robustness of the cal-
culations) requires an increasing number of approximations and thus leads
D. A. Drabold, S. K. Estreicher (Eds.): Theory of Defects in Semiconductors,
Topics Appl. Physics 104, 213–244 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Length and timescales in various modeling methods: DFT = density-
functional theory, TB = tight-binding approximations, BOP = bond-order poten-
tials, MD = empirical molecular dynamics, MC, CGM = Monte-Carlo/conjugate-
gradient techniques, FEM = finite element methods, CM = continuum mechanics

to a reduction in the ability to predict some physical properties. Density-
functional theory (DFT) and its approximations (e.g., local-density LDA,
generalized gradient GGA), and the different kinds of tight-binding treat-
ments (TB) up to the bond-order potential (BOP) approximations start with
the Born–Oppenheimer (BO) approximation, thus decoupling the ionic and
electronic degrees of freedom. Additional approximations such as pseudopo-
tentials, gradient corrections to the exchange-correlation potential, and in-
complete basis sets for the single-particle states are required for DFT calcula-
tions. The specifics of the various methods are discussed in various Chapters
in the present book and in a number of review articles on DFT, TB, lin-
ear scaling techniques and programs such as SIESTA and CASTEP [1–9]. In
first-principle MD [10], e.g., using DFT or DFT-TB, the electronic system
is treated as parameter free and the resulting Hellmann–Feynman forces are
the glue of the ionic interactions. Such simulations are computationally too
expensive for large systems.

Figure 1 shows that the empirical MD closes the gap between first-princi-
ples, macroscopic, and continuum techniques (FEM = finite element methods,
CM = continuum mechanics). The latter neglect the underlying interatomic
interactions but allow the description of defects, defect interactions, diffu-
sion, growth processes, etc. Stochastic Monte Carlo techniques (MC) enable
the further increase of the timescales, also at the first-principles level, but
without access to the dynamics. On the other hand, static energy minimiza-
tion (e.g., conjugate gradient methods, CGM) enable a drastic increase in
the model size. However, this does not necessarily provide the global mini-
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Fig. 2. Interface structures at 90◦ twist boundaries ((a): Pmm(m)-layer, (b):
42m-dreidl, cf. text in Sect. 4.2), predicted by empirical MD and revealed by ab-
nitio DFT simulations yielding semimetallic/isolating behavior as a function of the
interface bonding state as demonstrated by the corresponding DFT band structures
(c) and (d), respectively

mum of the potential energy surface. The largest model dimensions (number
of atoms) accessible to empirical MD (or MC, CGM) has approximately the
same extension as the smallest devices in microelectronics and micromechan-
ics. Thus, today’s atomistic modeling approaches the size of actual nanoscale
systems.

The assumption of the existence, validity, and accuracy of known empir-
ical interatomic potentials or force fields in analytic form always ignores the
underlying electronic origin of the forces, i.e., the quantum structure of the
interactions (cf. Sect. 2.4). Therefore, it is important to have better approx-
imations, such as the bond-order potential (BOP), which is developed from
tight-binding approximations and discussed briefly in Sect. 3.2. Other possi-
bilities to include electronic properties of the interaction consist in continu-
ously refitting an empirical potential during the calculation, called learning
on the fly (see Chap. 9 and [11]). Separated subsystems can be treated at an
ab-initio level. Suitable handshaking methods can be designed to bridge the
embedded subsystem with its surrounding, which is treated semiclassically
(cf. [12–15]). However, well-constructed potentials describing sufficiently ac-
curate physical properties also give physical insights and enable a thorough
understanding of the underlying processes [2].

Figure 2 shows a simple example demonstrating the difference in the ap-
proximation levels. Using empirical MD the correct structural relaxation of
special interfaces created by wafer bonding can be treated, as described later
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in Sect. 4.2. Two configurations exist, a metastable one (Fig. 2a) and the
global minimum structure shown in Fig. 2b, called dreidl [16]. The electronic
properties demand ab-initio level simulations, done here using a smaller pe-
riodic subunit of the interface and applying DFT techniques. It is shown
that the higher-level approximation reproduces the structure predicted by
the semiempirical techniques, whereas the correct energies and electronic
properties (the band structure and the semimetallic or isolating behavior
of the interfaces as shown in Figs. 2c,d) can only be described using the DFT
formalism.

A second kind of embedding problem occurs because even millions of par-
ticles only describe a small part of reality that, even for smaller pieces of
matter, is characterized by Avogadro’s number (6 × 1023 mol−1). Since iso-
lated systems introduce strong surface effects, each model has to be embed-
ded in suitable surroundings. For a discussion of various types of boundary
conditions, see Sect. 3.1, Chap. 9 and [13–15].

The fundamental requirements of classical MD simulations, the relation to
statistical methods and particle mechanics, suitable integration and embed-
ding techniques and the analysis of the trajectories are presented in Sect. 2.
The enhancements of potentials (bond-order potentials) and boundary con-
ditions (elastic embedding) are discussed in Sect. 3. Selected application of
semiempirical MD (relaxation of quantum dots and wafer-bonded interfaces)
are given in Sect. 4 together with some examples from the literature. They
strongly depend on the approximations assumed in the simulations.

2 Empirical Molecular Dynamics: Basic Concepts

The main steps for applying empirical molecular dynamics consist of the in-
tegration of the basic equations (cf. Sect. 2.1) using a suitable interaction po-
tential and embedding the model in a suitable surrounding (cf. Sect. 2.4 and
Sect. 2.3, respectively). Textbooks of classical molecular dynamics, e.g., [17–
23], describe the technical and numerical details, and provide a good insight
into possible applications and the physical properties, which may be pre-
dictable. Here, only the main ideas of empirical MD simulations, viz. the
basic equations, methods of numerical treatment and the analysis of the tra-
jectories are discussed.

2.1 Newtonian Equations and Numerical Integration

The basic equations of motion solved in empirical MD are the Newtonian
equations for N particles (i = 1, . . . , N) characterized by their masses mi,
their coordinates ri, and the forces acting on each particle f i. These may
include external forces F i and interatomic interactions f i =

∑
j �=i f ij :

mir̈i = f i = −∂V(r1, r2, . . . , rN )
∂ri

. (1)
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The assumption that a potential V exists presupposes conservative (nondissi-
pative) interactions and needs some more general considerations, cf. Sect. 2.2.
If one assumes pairwise central potentials, V(r1, r2, ..., rN ) =

∑′
i,j V(rij)

with rij = |rj − ri| (the dash means that the sum is restricted to i < j), it
follows that the virial of the external and internal forces is M =

∑′
i,j rijf ij =∑

i riF i. If the system is isolated (microcanonical ensemble), the conservation
of total energy E = K+V (with kinetic energy K =

∑
i miṙi

2) is guaranteed:

Ė = K̇ + V̇ =
∑

i

miṙi · r̈i −
∑

i

ṙif i = 0 . (2)

Given an initial configuration of particles and suitable boundary condi-
tions (cf. Sect. 2.3), the differential equations can be integrated using one
of the standard methods, e.g., Runge–Kutta techniques, predictor–corrector
methods, Verlet or Gear algorithm. The numerical integration is equivalent
to a Taylor expansion of the particle positions ri(t + δt) at a later time in
terms of atomic positions ri and velocities vi. The forces f i are the time
derivatives of ri with an increasing order at previous time steps:

ri(t + δt) = ri(t) + a1δtvi(t) + a2(δt)2f i(t) + . . . + O(δtn) . (3)

In addition to good potentials and system restrictions (cf. Sect. 2.3 and
Sect. 2.4, respectively) an efficient and stable integration procedure is re-
quired to accurately propagate the system. The conservation of energy dur-
ing the simulation is an important criterion. An increase in order allows
larger time increments δt to be used, if the evaluation of the higher deriv-
atives is not too time consuming, which happens with more accurate po-
tentials, like the BOP (Sect. 3.2). The efficiency and the accuracy of the
integration can be controlled by choosing suitable series-expansion coeffi-
cients aj , j = 1, 2, ..., n − 1 and the order n of the method or by mixing the
derivatives of ri at different times in (3) to enhance the procedure. However,
the increment δt, of the order of fs, must be at least so small that the fastest
particle oscillations are sufficiently sampled.

Better or faster MD calculations may be performed using special acceler-
ation techniques, the three most important methods being:

1) Localization: By using the linked-cell algorithm and/or neighbor lists,
it is assumed that for sufficiently rapidly decaying potentials (faster than
Coulomb 1/r for r → ∞) only a small number of particles have a direct and
significant interaction. A cutoff rc is defined and the interaction potential is
assumed to be zero for r > rc. A transition region is fitted using splines or
other suitable functions. Then the system is divided into cells. Their mini-
mum dimension is given by 2rc to avoid self-interaction of the particles (min-
imum image convention). Only the interactions of the atoms within a cell
and its 26 neighboring cells are considered, which reduces the simulation
time drastically from the ∝ N2 behavior for all particle interactions to linear
behavior ∝ 729cNN , where cN is the average number of particles per cell.
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The problem is to find a suitable rc for a smooth transition and screening
behavior that includes a sufficient number of next-neighbor atoms and cells.
One also needs a suitable criterion to update the neighbor lists and reorder
the cells whenever particles leave a cell during the propagation of the system.

The Coulomb potential may also be screened. However, summations over
the long-range 1/r potential, representing infinite point-charge distributions,
are only conditionally convergent. Thus, it is better to apply the Ewald
method (originally developed to calculate cohesive energies and Madelung
constants [24]) and its extensions [25, 26] based on successive charge neutral-
ization by including next-neighbor shells around the origin.

2) Parallelization: Using replicas, or dividing the structure into several
parts, which are then distributed to different processors, thus allowing par-
allelization [27, 28]. The replica technique needs suitable criteria for dividing
the system into small parts with minimum interaction. More importantly,
one must bear in mind that the replicas are not independent over long times.
A careful control of the time interval after which the communication be-
tween the different parts is required in order to achieve the same results as
nonparallelized simulations. This issue is the bottleneck of the technique.

3) Time stretching: Such techniques as hyperdynamics, temperature ac-
celeration, basin-constrained dynamics, on-the-fly Monte-Carlo, and others
are subsumed briefly here, because their common idea consists in replacing
the true time evolution by a shorter one increasing the potential minima,
transition frequencies, system temperature, etc. (see [28]).

2.2 Particle Mechanics and Nonequilibrium Systems

In classical mechanics a system is characterized either by its Lagrangian
L(q, q̇) = K(q, q̇) − V(q) or its Hamiltonian related to the Lagrangian by
a Legendre transform H(q, p) =

∑
q̇ipi − L = K + V(q), where qi, pi are

generalized coordinates and momenta (conjugate coordinates), respectively,
which have to be independent or unrestricted. One derives the generalized
momenta from the derivatives of the Lagrangian pi = ∂L

∂q̇i
, whereas the deriv-

atives of the Hamiltonian

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

(4)

reproduce Newton’s law of motion (1).
Hamilton’s principle of least action enables a simple generalization of

the mechanics of many-particle systems. The integral over the Lagrangian
function has to be an extremum. Variational methods yields, applying the
extremal principle:

d
dt

∂L
∂q̇i

− ∂L
∂qi

= 0 . (5)
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The advantage of the general formulation (5) is that it allows a simple exten-
sion to nonconservative systems by including an explicit time dependence or
to systems with constraints, such as fixed bond lengths in subsystems, friction
of particles, outer forces, etc. If there are holonomic constraints describing
relations between the coordinates fl(qk) = 0, one gets the generalized ad-
ditional coordinates alk = ∂fl/∂qk and al = ∂fl/∂t creating an additional
term on the right-hand side of (5) in the form

∑
l λlalk with the set of La-

grange multipliers λl. This formalism is the basis for the enhancement of the
boundary conditions in Sect. 3.1 and the handshaking methods mentioned
above.

In addition, the Lagrangian and Hamiltonian formalisms correlate clas-
sical dynamics to statistical thermodynamics and to quantum theory, and
allow the evaluation of properties from the trajectories (cf. Sect. 2.5). The
set of time-dependent coordinates q (the configuration space) and time-
dependent momenta p (momentum space) together is called the phase space
Γ = (q, p) = (q1, q2, ..., qn, p1, p2, ..., pn). Presenting Γ in a 6-dimensional
hyperspace yields N trajectories, one for each molecule, and allows the study
of the behavior of the system using statistical methods. It is called the µ-space
(following Ehrenfest) or the Boltzmann molecule phase space. The whole Γ -
set as one trajectory in a 6N -dimensional hyperspace presents the Gibbs
phase space, with the advantage to include better interactions and restric-
tions. However, the system must now be described as a virtual assembly for
statistical relations. The phase space Γ contains the complete information on
the microscopic state of the many-particle system. Several basic quantities
may be derived such as the phase-space flow or the “velocity field” Γ̇ = (q̇, ṗ).
Applying the relations (4) yields the Liouville equation

∇Γ Γ =
∑(

∂q̇i

∂qi
+

∂ṗi

∂pi

)
= 0 , (6)

showing that the flow Γ̇ behaves like an incompressible liquid, i.e., although
the µ-trajectories are independent, their related phase-space volume is con-
stant.

An equivalent formulation of the Liouville statement (6) is the equa-
tion of continuity for Γ̇ , ρ̇, and the local change of the density ρ(q, p, t),
similar to the Heisenberg equation for observables in quantum theory. The
density ρ(q, p, t) describes the probability of finding the system within the
region p, q and p + dp, q + dq of the phase-space volume dpdq. Because
the systems must be somewhere in the phase space, the density can be
normalized in the entire phase space. The integral over the whole phase
space of the non-normalized density yields the partition function. Inte-
gration over (N − k) particles yields the k-particle phase-space density
ρ(k)(q, p, t) =

∫
ρ(N)(q, p, t)dp(N−k)dq(N−k), and the integration over the

whole momentum space the corresponding k-particle distribution function
n(k)(q) =

∫
ρ(N)(q, p, t)dq(N−k)dp. Very important for the trajectory analy-
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sis (Sect. 2.5) are the cases k = 1, 2 defining the (radial) pair-distribution
functions g(qi, qj):

n(1)(qi)n(1)(qj)g(qi, qj) = n(2)(qi, qj). (7)

The phase-space trajectories allow the classification of the dynamics of
many-particle systems. They may be Poincare-recurrent (the same phase-
space configuration occurs repeatedly), Hamiltonian (nondissipative), con-
servative (no explicit time dependence for the Hamiltonian), or integrable
(number of constants of motion equals the number of degrees of freedom,
resulting in stable periodic or quasiperiodic systems). Nonintegrable systems
may be ergodic or mixing, etc., i.e., the trajectory densely covers different
hypersurfaces in the phase space, and allow the characterization of different
kinds of instabilities of the system.

2.3 Boundary Conditions and System Control

As mentioned above, even for systems considered large in MD simulations, the
number of atoms is small compared to real systems and therefore dominated
by surface effects. They are caused by interactions at free surfaces or with
the box boundaries. In order to reduce nonrealistic surface effects, periodic
boundary conditions are applied, or the box containing the model (supercell)
has to be enlarged so that the influence of the boundaries may be neglected.
For further discussion and enhancements including elastic embedding, see
Sect. 3.1. Periodic boundary conditions means that the supercell is repeated
periodically in all space directions with identical image frames or mirror
cells. In contrast to the case of fixed boundaries, under periodic boundary
conditions the particles can move across the boundaries. If this happens, the
positions r have to be replaced by r−α where α is a translation vector to the
image frame to which the particle is moved. Particle number, total mass, total
energy, and momenta are conserved in periodic boundary conditions, but the
angular momenta are changed and only an average of them is conserved. It
should be mentioned here that periodic boundary conditions repeat defects,
which in small supercells create high defect concentrations. Antiperiodic and
other special boundary conditions may be chosen, where additional shifts
of the positions and momenta along the box borders allow correction of a
disturbed periodic continuation and a description of reflective walls at free
surfaces to be obtained.

According to the boundary conditions and system restrictions, the virtual
Gibbs entities are either isolated microcanonical ensembles with constant
volume, total energy, and particle numbers (NV E ensembles) or systems
that exchange and interact with the environment. Closed ensembles (e.g.,
canonical NV T or isothermic-isobar NPT systems) have only an energy
exchange with a thermostat, whereas open systems have in addition particle
exchange with the environment (e.g., grand-canonical TµV , where µ is the
chemical potential).
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Simple tools exist to equilibrate systems at a well-defined temperature.
For example, velocity rescaling is numerically equivalent to a simple exten-
sion of the original microcanonical system with nonholonomic constraints in
the Lagrangian formalism and is called the Berendsen thermostat. A similar
simple extension may be used for pressure rescaling. It is called the Berendsen
barostat [29]. The simple velocity rescaling works by conserving the Maxwell
distribution and yielding maximum entropy. However, such nonisolated en-
sembles are better described using constraints in the Lagrangian similar to
those discussed in Sect. 2.2. The extension of L in (5) by adding terms Lconstr

introduces additional generalized variables having extra equations of motion
and also additional force terms in the Newtonian equations (1). Some of the
most important methods for Lconstr are given below without further com-
ments:

– Nosé–bath and generalized Nosé–Hoover thermostat [30–32]: Lconstr =
Mṡ2/2 − nfT ln(s) with the fictive or the whole mass M =

∑
mi, the

degrees of freedom nf = 3N + 1, and the new generalized variable s
playing the role of an entropy.

– Andersen isothermic-isobaric system control (NPH ensemble) Lconstr =
V̇ 2/2+ PV introduces volume and pressure as generalized variables [33].

– Generalized stresses according to Parrinello and Rahman [34] NTLσ-
ensembles: the Lagrangian is extended by Lconstr = −1/2TrΣG with a
generalized symmetric tensor Σ and the metric tensor G of the crys-
tal structure. A further specialization, e.g., for constant strain rates
NTLxσyyσzz-ensemble [35], is in principle a mixture of the isothermic-
isobaric system with the generalized stress constraint.

– Brownian fluctuations, transport and flow processes, density and other
gradients, Langevin damping ∝ v(t), etc. demand nonequilibrium MD
[36, 37], which is mostly done by including the perturbation as a suit-
able virtual field F(p, q, t) into the equations of motion via the Lagrange
formalism.

2.4 Many-Body Empirical Potentials and Force Fields

Empirical potentials and force fields exist with a wide variety of forms, and
also different classification schemes are used according to their structure, ap-
plicability, or physical meaning. It makes no sense to describe a large number
of potentials or many details in the present review, therefore only some of the
existing and most used potentials are briefly listed below (a good overview
can be found in [38–48]. A classification by Finnis [2] (and many references
therein) describes recent developments and discusses in an excellent way the
justification of the potentials by first-principle approximations, which is im-
portant for the physical reliability and the insight into the electronic structure
of potentials. Interatomic forces are accurate only if the influence of the lo-
cal environment according to the electronic structure is included. The most
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important property of a potential is transferability, that is the applicability
of the potential to varied bonding environments. An important additional
criterion is its ability to predict a wide range of properties without refitting
the parameters. The number of fit parameters decreases as the sophistication
of the force fields increases. According to [2] one has:

Pair potentials – Valid for s-p bonded metals and mostly approximated
by a sum of pairwise potentials. They may be derived as the response
to a perturbation in jellium, which can be visualized in the pseudoatom
picture as an ionic core and a screening cloud of electrons.
Ionic potentials – To use Coulomb interactions directly for ionic struc-
tures, the problem of screening (Ewald summation, Madelung constant)
has to be considered as mentioned above. The interactions were originally
described by Born and others as the rigid-ion approximation. Starting
from the Hohenberg–Kohn–Sham formulation of the DFT-LDA, shell or
deformable ion models may be developed beyond the rigid-ion approx-
imation, where the additional shell terms [49] look like electron-density
differences in noble gases.
Tight-binding models – Different derivations and approximations for TB-
related potentials exist and are nowadays applicable to semiconductors,
transition metals, alloys and ionic systems. The analytic bond-order po-
tential is such an approximation and will be discussed in more detail in
Sect. 3.2.
Hybrid schemes – Combinations of pair potentials with TB approxima-
tions are known as generalized pseudopotentials, effective media theories
(EMT [50]), environmental-dependent ionic potentials (EDIP [51]), or em-
bedded atom models (EAM [52]); for details see [2].

From the empirical point of view the simplest form of potentials may
be considered to be a Taylor-series expansion of the potential energy with
respect to 2-, 3-,. . ., n-body atomic interactions. Pair potentials have a short-
range repulsive part, and a long-range attractive part, e.g., of the Morse or
Lennard–Jones (LJ) type, mostly “12–6”, i.e., ar−12 − br−6. LJ potentials
are successfully applied to noble gases, biological calculations, or to model
long-range van der Waals interactions (e.g. [53]). For quasicrystals [54] an
LJ potential was constructed with two minima in a golden number distance
relation. However, simple pair potentials are restricted in their validity to
very simple structures or to small deviations from the equilibrium. Therefore
many-body interactions are added and fitted for special purposes, e.g., the
MD of molecules and molecule interactions [55,56]. Separable 3-body interac-
tions are widely used: Stillinger–Weber [57] (SW), Biswas–Hamann [58], and
Takai–Halicioglu–Tiller [59] potentials. The SW is perhaps the best-known
3-body-type potential. It includes anharmonic effects necessary to reproduce
the thermal lattice expansion of Si and Ge [60]. Hybrid force fields are some-
times used to include the interaction of different types of atoms, such as Born–
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Mayer–Huggins, Rahmann–Stillinger–Lemberg terms and others applicable
to silicate glasses and interdiffusing metal ions or water molecules [61–65].

As mentioned above, other force fields are developed from first-principle
approximations that combine sufficient simplicity with high rigor. They are
not based upon an expansion involving N -body interactions (cluster poten-
tials). The more or less empirical forms of TB potentials and effective medium
force fields are the modified embedded atom model (MEAM, [66] for cubic
structures and references therein for other structures), the Finnis–Sinclair
(FS) [67] and the Tersoff-type (TS) potentials [68–70]. The TS potential is
an empirical bond-order potential with the functional form:

V (rij) = ae−λrij − bije
−µrij . (8)

The bonds are weighted by the bond order bij = F (rik, rjk, γijk) including
all next neighbors k �= i, j, which gives the attractive interaction the form
of an embedded many-body term. The different parameterizations (TI, TII,
TIII) of the Tersoff potential have been intensively tested. Other parameteri-
zations exist [71]. They involve other environmental functions and first-prin-
ciple derivations [72,73], as well as extensions to include further interactions,
H in Si [74], C, Ge [75], C–Si–H [76, 77], AlAs, GaAs, InAs, etc. [78]. Finally,
a refitted MEAM potential with SW terms is available for Si [79]. Multi-
pole expansions replaced by spherical harmonics [80] are an alternative to
TS potentials.

A comparative study of empirical potentials shows advantages and disad-
vantages in the range of validity, physical transparency, fitting and accuracy
as well as applicability [81]. Restrictions exist for all empirical potential types,
even if special environmental dependencies are constructed to enhance the
elastic properties near defects. In addition, not all potentials are applicable
to long-range interactions, and the electronic structure and the nature of the
covalent bonds can only be described indirectly. Thus, it is of importance to
find physically motivated semiempirical potentials, as mentioned above and
discussed in Sect. 3.2 for TB-based analytic BOPs. The parameters of the
empirical force field have to be fitted to experimental data or first-princi-
ple calculations. First, the cohesive energy, lattice parameter and stability of
the crystal structures have to be tested or fitted. The bulk modulus, elastic
constants, and phonon spectra are very important properties for the fit. The
following section describes some of the quantities that may be used for the
fit or to be evaluated from the MD simulations if not fitted. Very important
details concerning point defects and defect clusters – necessary to get the
higher-order interaction terms – are given by the energy and structure of
such defects. The data may be given by DFT or TB dynamics or geometry
optimizations, as, e.g., [82–85].
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2.5 Determination of Properties

Static properties of systems simulated by empirical MD can be directly cal-
culated from the radial- or pair-distribution function (7). Dynamic properties
follow from the trajectories using averages or correlations:

〈A〉t = lim
t→∞

1
t − t0

∫ t

t0

dtA[r(t)], C(t) = 〈A(τ)B(t + τ)〉τ , (9)

which in principle correspond to time averages. However, they are sampled at
discrete points, so that it is necessary to choose suitable sampling procedures
to reduce the effects of the finite size of the system, stochastic deviations,
and large MD runs.

Two basic relations are central for the analysis of the properties. The
ergodic hypothesis states that the ensemble average 〈A〉e is equal to the
time average 〈A〉t, which relates the averages to the measurement of a sin-
gle equilibrium system. The Green–Kubo formula limt→∞

〈[A(t)−A(t0)]
2〉t

t−t0
=∫ ∞

t0
dτ(〈Ȧ(τ)Ȧ(t0)〉e) relates mean square deviations with time correlations.

The diffusion coefficient D = limt→∞
1

6Nt 〈
∑

[rj(t) − rj(0)]2〉 (Einstein rela-
tion) is equivalent to the velocity autocorrelation function, which is a special
form of the Green–Kubo formula D = 1

3N

∫ ∞
0

〈
∑

vj(t) · vj(0)〉. Similarly, one
uses the crosscorrelation of different stress components to obtain shear vis-
cosities. Other transport coefficients may be derived analogously.

In thermodynamic equilibrium the kinetic energy K per degree of freedom
is determined by the equipartition theorem K = 〈

∑
i miv̇

2
i /2〉 = 3NkBT/2

(kB = Boltzmann constant) which yields a measure of the system temper-
ature T . The strain tensor σ and the pressure P are obtained from the
generalized virial theorem σkl = 1/V [

∑
j vjk · vjl +

∑
ij rijk · f ijl]. Thus,

the pressure is the canonical expectation value P = 1/3V [2K − M] of
the total virial M. Alternatively, one can use the pair distribution in the
form P = ρkBT − ρ2

∫ ∞
0 g(r)∂U

∂r 4πr3dr, which may be useful for correcting
sampling errors.

Using the densities ρ(r, p) as defined above and Z =
∫

ρ(r, p)dr as nor-
malization, statistical mechanics deals with ensemble averages, which in gen-
eral are written as

〈Q〉e = 1/Z
∫

Q(r, p)ρ(r, p)dr . (10)

All thermodynamic functions may be derived from the partition func-
tion Z, for example the free energy F (T, V, N) = −kBT ln[Q(T, V, N)]. In
addition, one can obtain all the thermodynamic response coefficients. With
the internal energy U , one computes the isochoric heat capacity CV =
(∂U/∂T )N,V and thus a measure for the quality of the temperature equi-
libration (〈T 〉2 − 〈T 2〉)/〈T 2〉 = 3/2N(1 − 3kN)/2cV . From the volume V
follows the isothermal compression χT = −1/V (∂V/∂P )N,T , etc. One has to
choose according to the different ensembles:
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– Microcanonical: ρNV E = δ[H(r, p) − E ] conserving entropy S(E, N, V ).
– Canonical: ρNV T = e(H/kBT ) ∝ eV (r)/kBT conserving free energy F (T,

V, N)
– Isothermic-isobaric: ρNPT = e(H−TS)/kBT conserving Gibbs free energy

G(T, P, N)
– Grand canonical: ρTµV = e(H−µN)/kBT conserving Massieu function

J(T, µ, V ) (Legendre transformation in entropy representation).

Finally, it should be mentioned that the Fourier transform of pair dis-
tributions is connected to the scattering functions in X-ray, neutron and
electron diffraction. MD-relaxed structure models allow the simulation of the
transmission electron microscope (TEM) or high-resolution electron micro-
scope (HREM) image contrast and therefore make the contrast analysis more
quantitative. For this purpose, snapshots of the atomic configurations are cut
into thin slices, which are folded with atomic scattering amplitudes and each
other to describe the electron scattering (multislice formulation of the dynam-
ical scattering theory), cf. the applications in Sect. 4 using this technique to
interpret HREM investigations of quantum dots and bonded interfaces.

3 Extensions of the Empirical Molecular Dynamics

Coupling of length and timescales in empirical MD means bridging the first-
principles particle interactions and the box environment (1). It can be done
either using embedding and handshaking or by a separate treatment and
a transfer parameter between the subsystems. MD simulations of the crack
propagation [86] and the analysis of submicrometer MEMS [87] are success-
fully applications of the FEM coupling between MD and an environmental
continuum. In Sect. 3.1 enhanced boundary conditions for MD are discussed:
where the coupling between MD and an elastic continuum is a handshaking
method based on an extended Lagrangian [88, 89]. The main steps in the
development of an analytic TB-based BOP [90] are sketched in Sect. 3.2 as
an example of using enhanced potentials.

3.1 Modified Boundary Conditions: Elastic Embedding

Elastic continua may be coupled to MD when the potential energy of an
infinite crystal with a defect as shown in Fig. 3a is approximated in the outer
region II by generalized coordinates ak [89]:

E({ri}, {rj}) = E({ri}, {ak}) . (11)

In the defect region I, characterized by large strains, the positions of atoms
ri (i = 1, . . . , N) are treated by empirical MD. The atomic positions rj (j >
N) in the outer regions II and III result from the linear theory of elasticity

rj = Rj + u(0)(Rj) + u(Rj , {ak}) , (12)
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Fig. 3. Dislocation geometry ((a), I = MD region, II = elastic, III = overlap,
cf. text) to apply elastic boundary conditions for a dipole of 60◦ dislocations, and
snapshots during MD annealing: 500 K (b), 600 K (c), 0K (d)

where the fields u0(R) and u(R) describe the displacements of atoms from
their positions Rj in the perfect crystal, and satisfy the equilibrium equations
of a continuous elastic medium with defects; u0(R) is the static displacement
field of the defect and independent of the atomic behavior in I; u(R) is
related to the atomic shifts in region I and can be represented as a multipole
expansion:

u(R, {ak}) =
∞∑

k=1

akU (k)(R) (13)

over homogeneous eigensolutions U (k)(R) [88]. The U (k) are rapidly decreas-
ing with R, thus the sum in (13) is truncated to a finite number K of terms.

The equilibrium positions of atoms in the entire crystal are obtained from
the minimization of the potential energy given in (11) with respect to ri

and ak. This is equivalent to a dynamic formulation based on the extended La-
grangian as discussed above (Sect. 2.2 and Sect. 2.3) with the extension (11):

L =
N∑

i=1

miṙ
2
i

2
+

K∑
k=1

µȧk
2

2
− E({ri}, {ak}) . (14)

Here, mi are the atomic masses and µ is a parameter playing the role of
mass for the generalized coordinates ak. If µ is properly chosen, the phonons
are smooth from I to II and the outer regions oscillate slower than the MD
subsystem as demonstrated in the snapshots Figs. 3b–d. The corresponding
system defining the forces reads

F i = −∂E({ri}, {ak})
∂ri

, (15)

Fk = −∂E({ri}, {ak})
∂ak

= −
∑
j>N

∂E({ri}, {rj})
∂rj

∂rj

∂ak
=

∑
j∈II

F jU
(k)(Rj) .

(16)
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These must vanish in the equilibrium F i = Fk = 0. The sum in (16) expands
only over the atoms in region II surrounding region I, since in region III the
linear elasticity alone is sufficient and the forces on these atoms are nearly
vanishing. However, region II must be completely embedded in region III. The
forces on atoms in region II must be derived from the interatomic potential,
therefore the size of region II must be extended beyond the potential cutoff rc.
The Lagrangian (14) results in the equations of motion

mr̈i = F i , (i = 1, . . . , N) , µäk = Fk , (k = 1, . . . , K) , (17)

thus extending Newton’s equations by equivalent ones for the generalized
coordinates.

3.2 Tight-Binding-Based Analytic Bond-Order Potentials

As discussed before, the use of TB methods allows much larger models than
accessible to DFT. TB formulations exist in many forms (e.g., [2, 6–8, 91–
93]). The application of an analytical BOP, developed mainly by Pettifor
and coworkers [90, 94–98], may further enhance empirical MD by providing
better justified force fields while allowing faster simulations than numerical
TB-MD. The approximations to develop analytic TB potentials from DFT
may be summarized by the following steps (cf. also [2, 99]): 1. Construct the
TB matrix elements by Slater–Koster two-center integrals including s- and
p-orbitals, 2. transform the matrix to the bond representation, 3. replace the
diagonalization by Lanczos recursion, 4. get the momenta of the density of
states from the continued fraction representation of the Green’s function up
to order n for an analytic BOP-n potential. The basic ideas sketched with
a few more details are as follows.

The cohesive energy of a solid in the TB formulation can be written in
terms of the pairwise repulsion Urep of the atomic cores and the energy due
to the formation of electronic bonds

Ucoh = Urep + Uband − Uatoms

=
1
2

∑
i,j

′
φ(rij) + 2

∑
n(occ)

ε(n) −
∑
iα

Natom
iα εiα , (18)

where the electronic energy ε of the free atoms has to be subtracted from the
energy of the electrons on the molecular orbitals ε. Replacing ε(n) with the
eigenstates of the TB-Hamiltonian for orbital α at atom i,

ε(n) = ε(n)〈n|n〉 = 〈n|ε(n)|n〉 = 〈n|H|n〉 =
∑
iα,jβ

C
(n)
iα Hiα,jβC

(n)
jβ , (19)

the electronic contributions to the cohesive energy Uband − Uatom = Ubond +
Uprom can be rearranged and separated in the diagonal and offdiagonal parts:

Ubond = 2
∑
iα,jβ

′
ρjβ,iαHiα,jβ , Uprom =

∑
iα

[
2ρiα,iα − Natom

iα

]
εiα . (20)
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The third contribution, the promotion energy Uprom compares the occu-
pancy of the atomic orbitals of the free atoms with the occupation of the
corresponding molecular orbitals [100]. The bond energy Ubond describes the
energy connected with the exchange or hopping of electrons between arbitrary
pairs of atomic neighbors {i(j), j(i)}, the factor 2 is due to the spin degener-
acy. The transition matrix elements of the Hamiltonian are hopping energies,
and their transition probability is given by the corresponding element of the
density matrix. The contribution for one bond between the atoms i and j
is thus characterized by the part of the density called the bond order Θjβ,iα

that may be expressed as a trace:

U i,j
bond =

∑
α,β

Hiα,jβΘjβ,iα = Tr(HΘ) . (21)

Besides the bond energy, the force exerted on any atom i must be given
analytically and therefore one needs the gradient of the potential energy
in (18) at the position of the atom i:

−F i =
∂Ucoh

∂ri
=

∂Ubond

∂ri
+

1
2

j �=i∑
j

∂φ(rij)
∂ri

. (22)

This expression includes electronic bonds and ionic pairwise repulsions from
all atoms of the system. The general form is still expensive to cope with for
the simulation of mesoscopic systems. O(N) scaling behavior is provided if
the cohesive energy of the system is approximated by the Tersoff potential
in (8), where bije

−µrij is replaced by U i,j
bond and a suitable cutoff with resulting

balanced interatomic forces is added.
To find an efficient way to obtain the bond energy in a manner that scales

linearly with the system size, too, the derivative ∂Ubond
∂ri

of the bond energy
in (22) is replaced assuming a stationary electron density ρ in the electronic
ground state and applying the Hellmann–Feynman theorem. The forces can
now be obtained without calculating the derivatives of the electronic states
and leads to the Hellmann–Feynman force [101, 102]:

−F HF
i =

∑
iα,jβ

′
Θjβ,iα

∂Hiα,jβ

∂ri
. (23)

Both the elements of the density matrix and the hopping elements of the
Hamiltonian are functions of the relative orientation and separation of the
bonding orbitals and have been calculated by Slater and Koster [103] as-
suming a linear combination of atomic orbitals (LCAO). To introduce the
Slater–Koster matrix elements, usually denoted by ssσ, spσ, ppπ, etc., corre-
sponding to the contributing orbitals and its interaction type, the TB Hamil-
tonian operator is transformed to a tridiagonal form. This can be done using
the Lanzcos transformation [104]:

〈UmH〉Un = anδm,n + bnδm,n−1 + bn+1δm,n+1 , (24)
H|Un〉 = an|Un〉 + bn|Un−1〉 + bn+1|Un+1〉 , (25)
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where the orthonormal basis at the higher level n is recursively developed
from |U0〉. The coefficients an, bn are the elements of the continuous fraction
of the Green’s function below.

The offdiagonal elements of the density matrix are related to the Green’s
function [105],

ρiα,jβ = − 1
π

lim
η→0

�
∫ Ef

dE Giα,jβ(Z) , (26)

where the complex variable Z = E + iη is the real energy E with a positive,
imaginary infinitesimal to perform the integration (theorem of residues). This
intersite Green’s function can be connected to the site-diagonal Green’s func-
tion [105] via

Giα,jβ(Z) =
∂GΛ

00(Z)
∂Λiα,jβ

+ GΛ
00(Z)δi,jδα,β , (27)

and the latter can be evaluated recursively [106] using the coefficients of the
Lanczos recursion algorithm as mentioned above:

GΛ
00(Z) =

1

Z − aΛ
0 − (bΛ

1 )2

Z−aΛ
1 − (bΛ

2 )2

Z−aΛ
2

−...

. (28)

The bond order can now be expressed in terms of the derivatives of the
recursion coefficients aΛ

n and bΛ
n ,

Θiα,jβ = −2

[ ∞∑
n=0

χΛ
0n,n0

∂aΛ
n

∂Λiα,jβ
+ 2

∞∑
n=1

χΛ
0(n−1),n0

∂bΛ
n

∂Λiα,jβ

]
, (29)

with the response function χ0m,n0(Ef ) = 1
π limη→0 �

∫ Ef dEGΛ
0m(Z)GΛ

n0(Z)
and the elements G0n = Gn0 following from the system of equations
(Z − an)Gnm(Z) − bnGn−1,m(Z) − bn+1Gn+1,m(Z) = δn,m. The more re-
cursion coefficients included in (29), the more accurately the bond order will
be approximated. The recursion coefficients are related to the moments of the
local density of states (LDOS) [105] and the site-diagonal Green’s function
of (26) and (27) relates to the LDOS itself. Therefore, the recursive solution
of (28) gives an approximation to LDOS in terms of its moments [107]

µ
(n)
iα =

∫
Enniα(E)dE =

∑
alljkβk

Hiα,j1β1Hj1β1,j2β2 . . . Hjn−1βn−1,iα (30)

and may be interpreted as self-returning (closed) loops of hops of length n
for electrons over neighboring atoms. The local atomic environment defines
the LDOS via the moments (30), which in turn is used to calculate the bond
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order in (21) and the (local) atomic force (23). The remaining free parame-
ters in the analytic form (8) with U i,j

bond instead of bij may be fitted in the
usual way. This is still a hard task, because the bond and the promotion
energy involve different parameters as the repulsive part and cutoff parame-
ters and screening functions for all terms have to be included. Besides an
accurate fit, the BOP requires well-parameterized TB matrix elements or pa-
rameter optimizing, and the problem of transferability [99, 108–110] has to
be considered separately. For BOP of order n = 2 the bond-order term in the
TS-representation reads bij = (−ssσij + ppσij)Θiσ,jσ − 2ppπijΘiπ,jπ and the
numerical behavior of BOP2 and TS are approximately equivalent. The de-
tails for higher-order BOP are given in the papers of Pettifor’s group [2, 99].
The bij terms of the analytic BOP4 involve complex angular dependencies,
partially beyond those neglected in Pettifor’s formalism. For structures with
defects as well as the wafer bonding of diamond surfaces where π-bonds can-
not be neglected, BOP can be found in [111–114] and will soon be published
elsewhere with detailed derivations.

4 Applications

It is impossible to review the rapidly growing number of successful applica-
tions of empirical MD in materials research. A few representative examples
may give an impression of the wide range of problems considered. Isolated
point defects are mainly simulated to check the quality of the fit of the poten-
tial parameters. Surface reconstructions, adatom and absorption phenomena,
growth processes, and especially extended defect structures and interactions
can be investigated in detail. The analysis of dislocation core-structures [115],
the use of core-structure data for studying dislocation kink motion [116] or
the dislocation motion during nanoindentation [117] are examples. Interface
investigations have a long tradition, as illustrated in the standard book for
grain-boundary structure [118] and growth [119]. Heterophase interfaces, e.g.,
using a Khor–de-Sama potential for Al and TS for SiC [120] to simulate
Al/SiC interfaces, demand special attention to the correct description of the
misfit [121] to get good interface energies. Simulations with the Tersoff po-
tential and its modifications yield the correct diameter of the critical nuclei
for the growth of Ge nanocrystals in an amorphous matrix [122], allow the
study of growth, strains, and stability of Si- and C-nanotubes [123, 124],
and SiC surface reconstructions to propose SiC/Si interface structures [125].
A review of atomistic simulations of diffusion and growth on and in semi-
conductors [126] demonstrates the applicability of SW and TS potentials in
comparison with data from TB and DFT calculations.

In the following, two examples of our work are discussed. Empirical MD
simulations of first, high-resolution electron microscopy (HREM) image con-
trasts in quantum dots (Sect. 4.1) and second, the physical processes at in-
terfaces during wafer bonding (Sect. 4.2).
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4.1 Quantum Dots: Relaxation, Reordering, and Stability

A quantum dot (QD) is a nanometer-scaled island or region of suitable ma-
terial free-standing on or embedded in semiconductor or other matrices. The
possibility to arrange QDs into complex arrays implies many opportunities for
scientific investigations and technological applications. However, depending
on the growth techniques applied (mainly MBE and MOCVD), the islands
differ in size, shape, chemical composition and lattice strain, which strongly
influences the confinement of electrons in nanometer-scaled QDs. The shape,
size and strain field of single QDs, as well as quality, density, and homogeneity
of equisized and equishaped dot arrangements determine the optical proper-
ties, the emission and absorption of light, the lasing efficiency, and other
optoelectronic device properties [127,128]. A critical minimum QD size is re-
quired to confine at least one electron/exciton in the dot. A critical maximum
QD size is related to the separation of the energy levels for thermally induced
decoupling. Uniformity of the QD size is necessary to ensure coupling of states
between QDs. The localization of states and their stability depend further on
composition and strain of the QDs. The strain relaxation at facet edges and
between the islands is the driving force behind self-organization and lateral
arrangement, vertical stacking on top or between buried dots, or preordering
by surface structuring. In addition, an extension of the emission range to-
wards longer wavelengths needs a better understanding and handling of the
controlled growth via lattice mismatched heterostructures or self-assembling
phenomena (see, e.g., [129]).

A wide variety of imaging methods are used to investigate growth, self-
assembly, and physical properties of quantum dots. Among these the cross-
sectional HREM and the plan-view TEM imaging techniques are suitable
methods to characterize directly shape, size, and strain field [130]. But the
HREM and TEM techniques images are difficult to interpret phenomeno-
logically, especially when separating shape and strain effects. Modeling is
essential to uniquely determine the features and provide contrast rules.

In Fig. 4, the atomic structure of an InGaAs-QD in a GaAs matrix (for
other systems cf. [130, 131]) is prescribed by geometric models and relaxed
by MD simulations. Very different dot shapes have been proposed and the-
oretically investigated: lens-shaped dots, conical islands, volcano-type QDs,
and pyramids with different side facets of type {011}, {111}, {112}, {113},
{136}, and both {011}+{111} mixed, etc. Some of these and a spherical cap
are schematically presented in Fig. 4a; in simulations one or two monolay-
ers (ML) thick wetting layers are included, too. The most important differ-
ence between the various structures is the varying step structure of the facets
due to their different inclination. There are at least two reasons to inves-
tigate these configurations [130]. First, small embedded precipitates always
have facets; a transition between dome-like structure and pyramids due to
changes in spacer distance, change the number and arrangement of the facets,
and thus strain and electronic properties. Second, for highly faceted struc-
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Fig. 4. Structure modeling and image simulation of different pyramidal-shaped
quantum-dot configurations: (a) different faceting, truncation, and wetting of pyra-
midal start models (matrix removed, models related to (001)-base planes), (b) re-
laxed complete model of a {011} pyramid (base length about 6 nm, 10 × 10 × 10-
supercell length 10 nm), (c) energy relaxation of a {011} quantum dot (poten-
tial Epot and total Etot energy versus time steps), (d) cross-sectional HREM
and bright-field diffraction contrast simulated for model (b) before and after
relaxation assuming a standard 400 kV microscope at the Scherzer focus (i.e.,
∆ = −40 nm, Cs = 1mm, α = 1.2 nm−1, t = 9nm, δ = 8nm−1, cf. [130])
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tures the continuum elasticity is practically inapplicable and finite element
calculations must be done in 3-D instead of 2-D. However, the technique of
ab-initio MC provides a more accurate prediction of the QD shapes than em-
pirical MD [132]. The embedding of one perfect {011} pyramid in a matrix is
demonstrated in Fig. 4b after prerelaxation. Figure 4c shows typical anneal-
ing behavior during empirical MD calculation, characterized by the potential
Epot and the total energy Etot per atom. The energy difference Etot − Epot

is equal to the mean kinetic energy and is thus directly related to the tem-
perature of the system. After the prerelaxation of 5 ps at 0 K, an annealing
cycle follows, 60 ps stepwise heat up to 600 K and cool down to 0 K, equi-
librating the system at each heating step. The example here demonstrates
a short cycle; most of the embedded QDs are relaxed at each T -step for at
least 10 000 timesteps of 0.25 fs, followed by annealing up to about 900 K
(the temperature is not well defined with empirical potentials but is below
the melting temperature). Whereas the structure in Fig. 4b is less strained,
highly strained configurations occur due to the self-interaction of the QD in
small supercells that correspond to a stacked sequence with very small dot
distances. The extension of the supercell chosen in the simulations depends
on the extension of the QD to be investigated, as well as on the overlap of
the strain fields at the borders, to avoid self-interactions. Whereas Fig. 4b
shows a relatively small supercell, investigations are made for supercells of up
to 89×89×89 unit cells with a base length of the QD of 9 nm containing sev-
eral million atoms. For the image simulations, subregions of the supercells are
used, sliced into one atomic layer and applying the multislice image simulation
technique. By comparing imaging for structures before and after relaxation,
Fig. 4d demonstrates the enormous influence of the relaxations on the image
contrast in cross-sectional HREM and TEM [130, 131]. In summarizing some
of the results one can state that MD calculations with SW (CdZnSe) and
TII (InGaAs, Ge) allow us to obtain well-relaxed structures, in contrast to
the static relaxations performed with the Keating potential [133, 134]. With
this insight into the atomic processes of rearranging and straining QDs at
an atomic level the growth conditions for quantum dots may be enhanced as
a first step to tailoring their properties.

4.2 Bonded Interfaces: Tailoring Electronic
or Mechanical Properties?

Wafer bonding, i.e., the creation of interfaces by joining two wafer surfaces,
has become an attractive method for many practical applications in micro-
electronics, micromechanics or optoelectronics [135]. The macroscopic prop-
erties of bonded materials are mainly determined by the atomic processes
at the interfaces (clean and polished hydrophobic or hydrophilic surfaces, as
schematically shown in Fig. 5) during the transition from adhesion to chemi-
cal bonding. For this, elevated temperatures or external forces are required, as
could be revealed by MD simulations of hydrogen-passivated interfaces [136]
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Fig. 5. Wafer bonding at Si[100] surfaces: simulations of surface rearrangement
for perfect alignment and slow heating. The figure describes the evolution of the
atomic relaxation leading to bonded wafers

or of silica bonding [65]. Thus, describing atomic processes is of increasing
interest to support experimental investigations or to predict bonding behav-
ior. Already, slightly rescaled SW potentials predict the bond behavior via
bond breaking and dimer reconfiguration as shown in the snapshots explain-
ing the possibility of covalent bonding at room temperature for very clean
hydrophobic surfaces under UHV conditions [137].

Whereas the bonding of two perfectly aligned, identical wafers gives a sin-
gle, perfectly bonded wafer without defects, miscut of the wafer results in
steps on the wafer surfaces and edge dislocations at the bonded interfaces
are created. In Fig. 6 the red color describes the potential energy above the
ground state during wafer bonding over two-atomic steps. The upper ter-
races behave like perfect surfaces and the dimerized starting configuration
of Fig. 6a is rearranged and new bonds are created. The energy gained is
dissipated and for slow heat transfer the avalanche effect leads to bonding
of the lower terraces, too. Two 60◦ dislocations remain and, depending on
the rigid shift of the start configuration, an additional row of vacancies [137].
The dislocations may split as simulated and observed in experiments [138].
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Fig. 6. MD simulation of wafer bonding over surface steps. Note the dislocation
relaxation for the initial configuration (left), a snapshot during annealing up to
900 K, after 12.5 ps (middle) and the final relaxed state (right)

Bonding wafers with rotational twist leads to a network of screw disloca-
tions at the interface. A special situation is the 90◦ twist, which always occurs
between monoatomic steps. A Stillinger–Weber potential applied to a 90◦-
twist bonded wafer pair [16] yields a metastable fivefold-coordinated interface
with a mirror symmetry normal to the interface characterized by a Pmm(m)-
layer group (cf. Fig. 2a). Using the Tersoff or BOP-like potentials [113] and
metastable or well-prepared starting configurations allows further structure
relaxation and energy minimization. Figure 2b shows this relaxed configu-
ration, which is (2 × 2) reconstructed and consists of structural units with
a 42m-(D2d) point group symmetry, called the 42m-dreidl. It should be em-
phasized that the dreidl structure is found to be the minimum energy config-
uration also in DFT-LDA simulations [16]. However, the energies differ from
those given in [139, 140]. Much more important is the modification of the
band structure due to the different interface relaxation that may enable en-
gineering of the electronic properties: whereas the metastable configuration
(cf. Fig. 2c) yields semimetallic behavior, the dreidl structure (cf. Fig. 2d)
yields a larger bandgap than in perfect lattices. The dreidl interface structure
and its band-structure modification is very similar to the essential building
blocks proposed by Chadi [141] for group-IV materials. They describe geom-
etry and properties of the transformation of Si and Ge under pressure and
the special allo-phases as a new class of crystalline structures.

A small misalignment of the wafers during wafer bonding yields bonded
interfaces with twist rotation resulting in a checkerboard-like interface struc-
ture [142, 143]. Figure 7 shows some of the resulting minimum structures
gained for higher annealing temperatures and different twist rotation angles.
Before the bonding process takes place, the superposition of the two wafers
looks like a Moiré pattern in the projection normal to the interface. After
bonding and sufficient relaxation under slow heat-transfer conditions, almost
all atoms have a bulk-like environment separated by misfit screw disloca-
tions, which may have many kinks. The screw dislocation-network of the
bonded wafer has a period half that of the Moiré pattern. One finds more
imperfectly bonded regions around the screw dislocations for smaller twist
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Fig. 7. MD relaxations of bonding rotationally twisted wafers ([001] and [110]
views) with different angles: (a) 2.8◦, 22 nm box, orthogonal dimers, [001] view;
(b) 6.7◦, 9.2 nm box, orthogonal dimers, [001] and [110] views; (c) as (a) and (d) as
(b) with parallel dimers

angles, whereas bonding at higher angles results in more or less widely spread
strained interface regions. In Fig. 7 bonding with orthogonal start configu-
rations (a,b) is compared to those with parallel dimer start configurations
(c,d). Thus the bonding of Figs. 7a and b may be considered as bonding with
an additional 90◦ twist rotation. Clearly the periodicity of the defect region
is twice those of Figs. 7b and c smoothing out the interface, but creating ad-
ditional shear strains. Irrespective of the chosen twist angles and box dimen-
sions all final structures yield bond energies of approximately 4.5 eV/atom
at 0 K, however, varying slightly with the twist angle. A maximum occurs
between 4◦ and 6◦ twist related to a change of the bonding behavior itself.
The higher the annealing temperature the better the screw formation. In con-
clusion, simulation of the atomic processes at wafer-bonded interfaces offers
not only the tailoring of electronic properties, it is also an important step in
understanding how to control the creation of special interface structures for
strain accommodation or prepatterned templates (compliant substrates) [135]
by rotational alignment.

5 Conclusions and Outlook

Molecular dynamics simulations based on empirical potentials provide a suit-
able tool to study atomic processes that influence macroscopic materials
properties. The applicability of the technique is demonstrated by calculat-
ing quantum-dot relaxations and interaction processes with defect creation
at wafer-bonded interfaces. A brief overview describes the method itself and
its advantages and limitations, i.e., the macroscopic relevance of the simula-
tions versus the limited transferability of the potentials. The quality of the
simulations and the reliability of the results depend on the coupling of the
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atomistic simulations across length and timescales. Whereas the Lagrange
formalism is well established for the embedding into suitable environments
at the continuum level, the approximations of first-principles-based potentials
need continuous future work.
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Abstract. Defects in disordered (amorphous) semiconductors are discussed, with
an emphasis on hydrogenated amorphous silicon. The general differences between
defect phenomena in crystalline and amorphous hosts are described, and the spe-
cial importance of the electron–phonon coupling is stressed. Detailed calculations
for amorphous Si are presented using accurate first principles (density-functional)
techniques. The various approximations of ab-initio simulation affect aspects of the
network structure and dynamics, and suitably accurate approximations are sug-
gested. Defect dynamics and the motion of hydrogen in the network are reported.

1 Introduction

This book is primarily concerned with defects in crystalline materials. In this
Chapter, we depart from this and discuss defects in amorphous materials.
In the Chapter of Simdayankin and Elliott, a most interesting feature of
amorphous materials, photoresponse, is discussed in detail. As in the case
of crystals, defects determine key features of the electronic, vibrational and
transport properties of amorphous materials [1–3]. These are often precisely
the properties that are relevant to applications. In this Chapter we strongly
emphasize amorphous silicon (a-Si), while not focusing on it exclusively. This
is significantly due to the background of the authors and constraints on the
length of the Chapter, but it is also true that a-Si offers at least a somewhat
generic theoretical laboratory for the study of disorder, defects, and other
aspects of amorphous materials in general.

The outline of this Chapter is as follows: First, we briefly survey amor-
phous semiconductors. Next, we define the notion of a defect, already a some-
what subtle question in an environment that is intrinsically variable in struc-
ture. In the fourth section, we discuss the generic electronic and vibrational
attributes of defects in amorphous solids, and briefly comment on the cur-
rent methods for studying these systems. In Sect. 5, we discuss calculations
of the dynamics of defects in the a-Si:H network, of critical importance to
the stability and practical application of the material.
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2 Amorphous Semiconductors

Amorphous materials and glasses are among the most important to human
experience with applications ranging from primitive obsidian weapons to op-
toelectronics. Today, every office in the world contains storage media for
computers (for example DVD-RW compact disks) that exploit the special
reversible laser-driven amorphization/crystallization transition properties of
a particular GeSbTe glass. The same computer uses crystalline Si chips that
depend critically upon the dielectric properties of a-SiO2. With increasing
pressure on global energy markets, it is notable that some of the most promis-
ing photovoltaic devices are based upon amorphous materials such as a-Si:H
because of the low cost of the material (compared to crystalline devices) and
the ability to grow thin films of device-quality material over wide areas. The
internet depends upon fiber-optic glass light pipes that enable transmission of
information with bandwidth vastly exceeding that possible with wires. This
list is the proverbial tip of the iceberg.

Experimental measurements for structure determination, such as X-ray or
neutron diffraction, lead easily to a precise determination of the structure of
crystals. Nowadays, protein structures with thousands of atoms per unit cell
are readily solved. The reason for this impressive success is that the diffraction
data (structure factor) consists of a palisade of sharply defined spikes (the
Bragg peaks), arising from reflection from crystal planes. For amorphous ma-
terials, the same experiments are rather disappointing; smooth broad curves
replace the Bragg peaks. The wavelength-dependent structure factor may
be interpreted in real space through the radial distribution function (RDF),
which is easily obtained with a Fourier transform of the structure factor. In
crystals, the RDF consists again of spikes, and the radii at which the spikes
occur are the neighbor distances. In the amorphous case, the RDF is smooth,
and normally has broadened peaks near the locations of the first few peaks of
the crystal. This similarity in the small-r peak positions reflects a tendency
of amorphous materials to attempt to mimic the local order of the crystalline
phase in the amorphous network, but usually with modest bond-length and
bond-angle distortions. At distances beyond several nearest-neighbor spac-
ings, similarities between crystalline and amorphous pair correlations wane,
and the pair correlations decay to zero after tens of Ångstroms in the amor-
phous material (this number is system dependent).

From an information theoretic point of view (for example, consideration
of the Shannon–Jaynes information entropy [4]), it is clear that there is less
information inherent in the (smooth) data for the amorphous case relative to
the crystal. So, while it is possible to invert the diffraction data from crystals
to obtain structure determination (with some assumptions to fix the phase
problem), such a process fails for the amorphous case and many studies have
emphasized the multiplicity of distinct structures possible that can reproduce
measured diffraction data. In this sense we are in a situation rather like high-
energy or nuclear physics where there are sum rules that must be obeyed,
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but the sum rules by themselves offer an extremely incomplete description
of the physical processes. The first goal of theoretical work in amorphous
materials is to obtain an experimentally realistic model consistent with all
trusted experiments and also accurate total energy and force calculations.

Early models of amorphous materials were made by hand, but this ap-
proach was soon supplanted by simulations with the advent of digital com-
puters. A variety of modeling schemes based upon simulated atomic dynamics
(so-called molecular-dynamics), Monte Carlo methods, methods based upon
attempts to obtain the structure from the diffraction measurements (most
sensibly done with constraints to enforce rules on bonding) and even hy-
brids between the last two are in current use [5–8]. Impressive progress has
been made in the last 25 years of modeling, and highly satisfactory mod-
els now exist for many amorphous materials, among these: Si, Si:H, Ge, C,
silica, elemental and binary chalcogenides [9–12]. Empirically, systems with
lower mean coordination (floppier in the language of Thorpe [13]) are easier
to model than higher-coordination systems. Multinary materials tend to be
more challenging than elemental systems as the issue of chemical ordering
becomes important and also these systems are harder to model accurately
with conventional methods. Empirical potentials, tight-binding schemes and
ab-initio methods are used for modeling the interatomic interactions [5, 14–
16]. In the area of defects in amorphous semiconductors, it is usually the case
that first-principles interactions are required.

Where electronic properties of amorphous semiconductors are concerned,
k-space methods are not useful as the crystal momentum is not a good quan-
tum number (the translation operator does not commute with the Hamil-
tonian). Rather, one focuses on the density of electron states, and on individ-
ual eigenvectors of the Hamiltonian, especially those near the Fermi level. The
electronic density of states is usually qualitatively like that of a structurally
related crystal, but broadened by disorder. In Fig. 1, we illustrate these fea-
tures with a “real” calculation on a 10000-atom model of a-Si [11, 17]. The
sharp band edges expected in crystals are broadened into smooth “band-
tails”. The tails are created by structural disorder; early Bethe lattice calcu-
lations demonstrated that strained bond angles lead to states pushed out of
the band (into the forbidden optical gap), and loosely, the more severe the
defect, the further into the gap. It is known from optical studies of amorphous
semiconductors that all such systems have band-tails decaying exponentially
into the gap. While the optical spectrum is a convolution involving both tails,
photoemission studies have separately probed the valence tail and conduc-
tion tails particularly in a-Si:H [18], and found that both decay exponentially,
albeit with different rates and a temperature dependence (quite different for
the two tails) that suggests the importance of thermal disorder beside the
structural order we have stressed so far [19].

The field of amorphous semiconductors is a vast area in which many books
and thousands of papers have been written, and it is impossible to do justice
even to the specialized topic of defects. For this reason, we emphasize a few
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Fig. 1. Electronic density of states near a band edge in a 10 000-atom model of
amorphous Si. Insets show |ψ|2, indicating parts of the cell in which the defect
wavefunctions are localized. The mobility edge separating localized and extended
states is indicated. The “band-tail” extends from about −15.5 eV to the mobility
edge [17]

questions of particular current interest, and recommend the comprehensive
treatments of Elliott and Zallen [20, 21] for general discussion of amorphous
materials including defects.

3 Defects in Amorphous Semiconductors

3.1 Definition of Defect

Static Network

A complete discussion of defects in amorphous materials may be found in
Chap. 6 of the book by Elliott [20]. Evidently, the term defect implies a
departure from the typical disorder of an amorphous network. Perhaps it
is not surprising that it is not possible to produce a definition of defect
without some arbitrary character. Thus, in defining a coordination defect,
one introduces a distance that defines whether a pair of atoms is bonded or
not. So long as the model structure contains no bonds very close to the critical
length, the definition is unambiguous. In amorphous materials there is usually
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a well-defined (deep) minimum in the pair-correlation function between the
first- and second-neighbor peaks, which gives a reasonable justification for
selecting the distance at which the minimum occurs as a cutoff length for
definition of coordination. When one accounts for thermal motion of the
atoms, the situation is murkier, as we describe below.

If the primary interest is electronic properties of the amorphous semi-
conductor, one can introduce an electronic criterion to identify defects. As
for the geometrical criterion, such a definition is necessarily formulated as
a sufficient departure from the mean. An electronic defect may be defined
as a structural irregularity that produces a sufficiently localized electronic
eigenstate. The ambiguous point here is the modifier “sufficiently”: isolated
states in the middle of the gap (such as a threefold “dangling-bond” state
in a-Si) are easily recognized as defects with a spatially confined wavefunc-
tion. Other less-localized states stemming from other network defects may
be better characterized as part of the band-tailing. In the same spirit, the
chemical bond order (essentially offdiagonal elements of the single-particle
density matrix) may be used to identify defects, but a cutoff will be required
as always to define the line between bonded and not! A simple quantitative
measure of localization is given below.

To contrast the geometrical and electronic definitions of defects, well-
localized electronic eigenstates do correspond to network irregularities (either
structural, chemical or both) and sufficiently large geometrical irregularities
manifest themselves as localized states in a spectral gap in the electronic
spectrum (note that this does not necessarily have to be the optical gap (the
gap that contains the Fermi level) – other spectral gaps or even the extremal
band edges can exhibit these states).

Dynamic Network

The schemes to deine defects outlined above are consistent for sufficient de-
parture from the mean structure. To a surprising degree, however, room-tem-
perature thermal disorder implies the existence of thermally induced geomet-
rical defect fluctuations. Thus, in an ab-initio simulation of a-Si, the num-
ber of fivefold “floating” bonds varied between 0 and 10 in a 2 ps room-
temperature run for a 216-atom unit cell with coordination defined by a
2.74 Å bond distance [19]. At face value this is astonishing, suggesting that
5 % of the atoms change their coordination in thermal equilibrium at room
temperature! If the electronic and geometrical definitions were identical, it
would imply that states should be jumping wildly into and out of the gap. Of
course this is not the case, though it is true that instantaneous Kohn–Sham
energy eigenvalues in the gap do thermally fluctuate [19]. This example il-
lustrates that geometrical defects are not necessarily electronic defects. One
can also easily see that electronic defects are not necessarily coordination
defects: while an atom may nominally possess ideal (8-N rule) coordination,
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substantial bond-angle distortions can also induce localized electronic states.
We present new simulations of defect dynamics in Sect. 5.

3.2 Long-Time Dynamics and Defect Equilibria

It is apparent from a variety of experiments in a-Si:H that there are reversible,
temperature-dependent changes that occur in defect type and concentration.
At its simplest, the idea is that particular defects have a characteristic energy
in an amorphous material. It may be that these energies are not substantially
removed from the typical conformations of the host. Because the amorphous
network does not possess long-range order, it is possible for a small number
of atoms to move to convert one kind of defect into another, without a huge
cost in energy. These ideas can predict the temperature dependence of some
electronic properties, for example quantities like the density and character of
band-tail states [22–25]. By analyzing a variety of experiments, Street and
coworkers [26] have demonstrated that the idea of defect equilibrium is es-
sential. At present the approach is phenomenological to the extent that the
microscopic details of the defects involved are not certainly known or even
needed, but in principle these ideas could be merged with formation energies
and other information from ab-initio simulations to make a first-principles
theory of defect equilibria. The potential union between the phenomenologi-
cal modeling and simulation is also potentially a good example of “bridging
timescales” though there is much work still required on the simulation side
to realize this goal.

3.3 Electronic Aspects of Amorphous Semiconductors

Localization

A remarkable feature of electron states in crystals is that the wavefunctions
have support (are nonzero) throughout the crystal, apart from surface ef-
fects. Such states are called extended. The utility of Bloch’s theorem is that
it reduces the formulation of the electronic structure problem for the infinite
periodic system to a simpler form: calculation within a single unit cell on
a grid of k crystal momentum points. Thus, for crystals, information about
the electronic structure is provided by band-structure diagrams. Such dia-
grams are not useful in amorphous systems, and furthermore, in amorphous
materials, some states may not be extended.

To model the electronic consequences of disorder, it is usual to adopt a
tight-binding (either empirical or ab initio) description of the electron states,
and a Hamiltonian schematically of the form:

H =
∑

i

εi|i〉〈i| +
∑

ij,i�=j

Jij |i〉〈j| . (1)
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To keep the number of indexes to a minimum, we suppose that there is one
orbital per site (indexed by i). In this equation, the εi specify the atomic
energy at each site (in an elemental system, this would be constant for all
sites) and Jij is a hopping integral that depends on the coordinates of the
atoms located at sites i and j. The topological disorder of a particular re-
alization of an amorphous network (e.g., a structural model) is manifested
through the offdiagonal or hopping terms Jij . An enormous effort has been
devoted to studying the properties of the eigenvectors of H , and also the
critical properties (e.g., of quantum phase transitions [17]).

In realistic studies of the electronic localized–delocalized transition [17]
(here “realistic” means large-scale electronic structure calculations in which
the disorder in the Hamiltonian matrix is obtained from experimentally plau-
sible structural models, rather than by appealing to a random number gen-
erator), it is found that the eigenstates near midgap are spatially compact
(localized) and for energies varied from midgap into either the valence or
conduction-bands, the states take “island” form: a single eigenstate may con-
sist of localized islands of charge separated by volumes of low charge density.
The islands themselves exhibit exponential decay, and the decay lengths for
the islands increase modestly from near midgap to the mobility edge. The
states become extended with approach to the mobility edge by proliferation
(increasing number) of the islands [17, 22]. The qualitative nature of this lo-
calized to extended transition is similar for electronic and vibrational disorder
of diverse kinds and also conventional Anderson models. Thus, in important
ways the localized to extended transition is universal [17].

Characterizing Localized States

As we have discussed, the concept of localized states is a central one for
amorphous materials and indeed defective systems in general. The question
immediately arises: given an electronic eigenvector expressed in some repre-
sentation, how can we quantify the degree of localization? The most widely
adopted gauge of localization is the so-called “inverse participation ratio”
(IPR), which is defined as:

I(E) =
N∑

n=1

q(n, E)2 , (2)

where N is the number of atoms and q(n, E) is a Mulliken (or other) charge
on atom n, and the analysis is undertaken for a particular energy eigenstate
with energy E. This measure ranges from N−1 (N number of sites) for an
ideally extended state to 1 for a state perfectly localized to one site. One can
use other measures, such as the information entropy, but at a practical level,
we have found that the IPR and information entropy produce qualitatively
(not quantitatively) similar results for the localization. IPR is a simple tool
for categorizing the zoo of extended, localized and partly localized states of
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amorphous semiconductors with defects [27]. As quantum chemists know, all
such definitions are basis dependent, and thus care is needed in the interpre-
tation of local charges, IPR and related quantities [28].

Locality of Interatomic Interactions

For atomistic simulation of any materials, a fundamental measure of the spa-
tial nonlocality of interatomic interactions is the decay of the single-particle
density matrix, or equivalently, the decay characteristics of the best local-
ized Wannier functions that may be constructed in the material. The density
matrix is defined as:

ρ(r, r′) =
∑

ioccupied

ψ∗
i (r′)ψi(r) , (3)

where ψi are eigenfunctions of the Hamiltonian in position representation. In
a typical condensed-matter system, the ψi are oscillating functions, almost
all of which will be delocalized through space. Consequently, one can expect
“destructive interference” effects as in other wave phenomena when many
wiggling functions are superposed as in (3), which can make ρ(r, r′) decay
rapidly for large |r − r′|. If Ĥ is the Hamiltonian, then the electronic con-
tribution to the total energy is E = Tr(ρ̂Ĥ). If the trace is carried out in
the position representation, one can then see that the decay of the density
matrix provides information about the locality of the interatomic potential.
The details of the chemistry and structure of the material determine this
decay length, and the full results even for the asymptotic decay in a greatly
simplified two-band model are too complicated to reproduce here [29]. For a
material with a finite optical gap as we assume in this Chapter, the decay is
ultimately exponential and the decay is faster for larger optical gaps.

Recently, the density matrix has been explicitly computed for a struc-
turally realistic 4096-atom model [10] of a-Si that was fourfold coordinated,
but with some large bond-angle distortions. There are two key conclusions
from this work: 1. the spatial nonlocality of interatomic interactions is very
similar in a-Si and c-Si (because the density matrix decays in a similar fashion
for both) and 2. defect centers in a-Si (in this model associated with bond-
angle distortions) have Wannier functions with asymptotic decay similar to
ordinary (tetrahedral) sites (of course the short-range behavior involving the
first few neighbors may be quite different) [22].

3.4 Electron Correlation Energy: Electron–Electron Effects

For a localized single-particle defect state, one must consider the possibility
of the state being occupied by zero, one or two (opposite spin) electrons. Con-
sideration of the energetics of these various occupations led in the 1970s and
1980s to insights into the nature of defects, particularly in chalcogenide ma-
terials. Typically the electron–electron Coulomb repulsion costs a net energy
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(usually labeled “U”) to enable two electrons to occupy the same localized
spatial state. This is called a “positive U” defect center (the name comes from
the symbol used in a Hubbard Hamiltonian to model the electron–electron
interaction). In a-Si:H, U > 0 for the dangling-bond. It is worth mentioning
that the accurate calculation of U is a challenging task for the conventional
density-functional methods, as these are essentially mean-field methods and
appear to consistently overestimate the delocalization of defect states.

When the possibility of structural relaxation is considered as the second
opposite-spin electron is added to the localized state, a negative effective U ,
implying a net energy lowering for double occupation, can emerge. This is
observed in chalcogens, and as pointed out by early workers, explains the
pinned Fermi level and the diamagnetism of the materials (that is, lack of
unpaired spins and so the absence of an ESR signal). It follows that double
occupancy implies that defects are charged, and the chemistry (p bonding)
of the chalcogens like S or Se leads to the occurrence of “valence alternation
pair” defects. Thus, careful simulations reveal that isolated dangling-bonds
in a-Se are unstable, and are likely to convert instead into VAPs [30]. Elliott
discusses these points thoroughly [20].

4 Modeling Amorphous Semiconductors

4.1 Forming Structural Models

For amorphous materials we immediately face a challenging problem: What
is the atomistic structure of the network? Usually there is a strong tendency
for particular local structure (chemical identity of neighbors, and geometrical
bonding characteristics), but this preference is only approximately enforced:
there is a characteristic distribution of bond lengths and bond angles that is
dependent upon both the material and its preparation. Thus, in “better-qual-
ity” a-Si samples, almost all of the atoms are four-coordinated, and the bond
angle between a reference Si atom and two neighbors is within about 10 de-
grees of the tetrahedral angle: a strong echo of the chemistry and structure
of diamond. In binary glasses (for example GeSe2), Ge is essentially always
fourfold coordinated, and Ge only rarely bonds to Ge. Also, as one would
expect from crystalline phases of GeSe2 or simple considerations of chemi-
cal bonding, the glass is made up predominantly of GeSe4 tetrahedral, again
with Se–Ge–Se bond angles close to the tetrahedral angle [31–37].

As reviewed by Thorpe [38], the first attempt to understand glasses was
based upon the idea that amorphous materials were microcrystalline with a
very fine grain size. Eventually, it became clear that this model could not
explain the structural experiments that were available. The idea that was ul-
timately accepted was advanced in 1932 by Zachariasen [39] for amorphous
SiO2, the “continuous random network” (CRN) model. Here, the local chemi-
cal requirements (four-coordinated Si bonded only to two-coordinated O, and
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no homopolar bonds) were enforced, but there was local disorder in bond an-
gles and to a smaller degree, bond lengths. Such networks do not possess
long-range structural order. Zachariesen’s ideas were taken seriously much
later starting in the 1960s, when comparisons to experiment showed that the
idea had real promise.

The next step was to use computers to help in making the models. An
early computation was performed using a Monte Carlo approach. The idea
was to put atoms inside a simulated box and move the atoms at random [40].
At each step the radial distribution function was computed and if a random
move pushed the model closer to the experimental data, the move was kept,
otherwise moves were retained with Metropolis probability. This is very sim-
ilar in spirit to a current method, the so-called reverse Monte Carlo (RMC)
method [8]. These approaches are information theoretic in spirit: use the
available information to produce the model. While this is an eminently rea-
sonable idea, the problem is that merely forcing agreement with diffraction
data (pair correlations) grossly underconstrains the model: there are many
configurations that agree beautifully with diffraction data but make no sense
chemically or otherwise.

In the 1980s, Wooten, Weaire and Winer (WWW) [9], introduced a
Monte Carlo scheme for tetrahedral amorphous materials with special bond-
switching moves, and energetics described by Keating springs and by requir-
ing the network to be fourfold coordinated. They applied their method to a-Si
and a-Ge with remarkable success. Here, the disorder of the real material was
somehow captured by what appeared then to be a completely ad-hoc proce-
dure. This method and improved versions of it are still the “gold standard”
for creating models of amorphous Si. Years later, Barkema and Mousseau [11]
showed that the likely reason for the success of the WWW scheme is that on
long time-scales, the WWW moves occur quite naturally!

Nowadays, the great majority of computer simulations are done using
the molecular-dynamics method. The idea is to mimic the actual process
of glass formation. To start with, one needs an interatomic potential that
describes the interactions in the material. Typically, a well-equilibrated liquid
is formed not far above the melting point, then the kinetic energy of the
system is gradually reduced (by using some form of dissipative dynamics, such
as velocity rescaling at each time step). Eventually there is structural arrest
(the computer version of the glass transition), and a structural model results
that may be useful for further study. Such calculations are often useful, but it
needs to be clearly understood that there is little real similarity to the actual
quenching process for glasses, which proceeds far more slowly in nature. As
a final oddity, the “melt-quench” approach is often used even for materials
that do not form glasses (for example, a-Si). Results are especially poor for
this case.
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4.2 Interatomic Potentials

To perform a molecular-dynamics simulation, or even a simulation of a mere
relaxation of a network near a defect, it is necessary to compute the forces
on the atoms in the material. This is never easy, and offers a particular
challenge in amorphous materials, as there are usually a variety of bonding
environments in the network, and empirical potentials tend to be most accu-
rate/reliable near conformations that were used in a fitting process used to
obtain them. The presence of defects exacerbates this further, as coordination
or chemical order may be radically different for the defect relative to the rest
of the material (and thus harder to describe with a simple interatomic in-
teraction). Also, the complexity of interatomic potentials grows rapidly with
the number of distinct atomic species, so that even for binary systems, there
are very few reliable empirical potentials available.

The reason why it is difficult to compute accurate interatomic potentials
is that the interatomic forces are obtained from the electronic structure of
the material. Thus, the details of bonding, electron hybridization, all depend
in minute detail upon the local environment (coordination, bond lengths,
bond angles, on the environment of the neighboring atoms and so on). The
way out is to adopt an approach in which the electronic structure is directly
computed in some approximate form. This has been done with some success
using empirical tight-binding Hamiltonians [41, 42].

A tremendous advance for defects in semiconductors, but a particular
benefit for study of amorphous materials was the advent of practical density-
functional codes. The union of density-functional methods and molecular-dy-
namics is now mature, and one can obtain excellent canned codes that can
be used to undertake simulations of complex systems. Of course there is im-
portant background knowledge (of amorphous materials, electronic structure
and simulation) needed.

4.3 Lore of Approximations in Density-Functional Calculations

Defect calculations typically must be carried out using robust approxima-
tions for the Kohn–Sham states. The density-functional basis set upon which
the Kohn–Sham orbitals are represented, and spin polarization are the main
quantities that need to be considered. Where the basis set is concerned, the
prime issue is completeness: the adequacy of the basis functions to approx-
imate the “true” (complete basis limit) Kohn–Sham orbitals. Spin polariza-
tion is of particular importance in simulations if there are unpaired spins in
the model (as for example a singly occupied dangling-bond state at the Fermi
level). The choice of density-functionals is most important for an accurate es-
timate of energetics: the use of gradient approximations tends to ameliorate
the tendency of LDA to overbind.

One of the most important quantities for calculations involving defects is
the positioning of defect energy levels, and also accurate estimates of the de-
fect wavefunctions. DFT is in principle the wrong choice for either of these,
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Fig. 2. GeSe2 density of electron states: comparison of experiment and theory
(Gaussian-broadened Kohn–Sham eigenvalues) [43]. The Fermi-level is at zero for
both curves

since it is formally only a ground-state theory, and also because only the
charge density (that is, sum of the squares of the occupied Kohn–Sham or-
bitals) is formally meaningful within the derivation of the Kohn–Sham equa-
tions. However, it is clear that this viewpoint is unduly restrictive, and the
density of Kohn–Sham eigenvalues is useful for comparing to the single-par-
ticle density of states as measured for example in photoemission (see Fig. 2
taken from [43]). The Kohn–Sham DOS systematically underestimates the
optical gap (often by a factor of 2). Curiously, local basis function calcula-
tions with a limited (single-zeta) basis tend to give approximately the correct
gap as the incompleteness of the basis tends to exaggerate the gap thus partly
(and fortuitously) fixing the underestimate intrinsic to the Kohn–Sham cal-
culation. A proper job of describing these states requires methods beyond
DFT. In this book, there are two relevant Chapters, that of Scheffler on
the so-called “GW” methods (these provide self-energy corrections to DFT)
and also the Chapter of Needs on quantum Monte Carlo. GW calculations of
Blase and coworkers have shown that the Kohn–Sham orbitals tend to exag-
gerate the extent of localized states in crystalline systems; one should expect
a similar effect for amorphous systems. Unfortunately, the understanding of
these points is only empirical at present.
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4.4 The Electron–Lattice Interaction

We have recently shown in some generality that localized electron states as-
sociated with defects exhibit a large coupling to the lattice [27]. Thus, for
localized electronic eigenstates, deformations of the lattice in the vicinity of
the localized state lead to significant changes in the associated electronic
eigenvalue. This effect is easily tracked with first-principles MD (in such
an approach, Kohn–Sham eigenvectors are computed for each instantaneous
ionic configuration). Beside this empirical observation, it is possible to do
a simple analysis of the vibration-induced changes in electron energies us-
ing the Hellmann–Feynman theorem [44] and exploiting the locality of the
states to show that the electron–lattice coupling is roughly proportional to
the localization (as gauged by the inverse participation ratio).

Previous thermal simulations with Bohn–Oppenheimer dynamics have in-
dicated that there exists a large electron–phonon coupling for the localized
states in the band-tails and in the optical gap [45]. Earlier works on chalco-
genide glasses by Cobb and Drabold [46] have emphasized a strong correla-
tion between the thermal fluctuations as gauged by root mean square (RMS)
variation in the LDA eigenvalues and wavefunction localization of a gap or
tail state (measured by the inverse participation ratio (2). Drabold and Fed-
ders [24] have shown that localized eigenvectors may fluctuate dramatically
even at room temperature. Recently, Li and Drabold relaxed the adiabatic
(Born–Oppenheimer) approximation to track the time development of elec-
tron packets scattered by lattice vibrations [45]. We have recently shown for
localized electron states, that the electron–phonon coupling Ξn(ω) (coupling
electron n and phonon ω) approximately satisfies:

Ξ2
n(ω) ∼ In × f(ω) , (4)

where f(ω) does not depend upon n, In is the IPR of electron state n. It is
also the case that the thermally induced variance of electronic eigenvalue n,
〈δλ2

n〉 ∝ In. It is remarkable that a simple correlation exists between a static
property of the network (the IPR) and a dynamical feature of the system, the
thermally induced fluctuation in the Kohn–Sham energy eigenvalues. These
predictions are easily verified from thermal simulation as reported elsewhere.
The main assumption in obtaining this connection is that the electron states
under study are localized. Beside the thermally induced changes in electronic
energies, there are also significant variations in the structure of the Kohn–
Sham eigenstates, another consequence of the large electron–phonon coupling
for localized states.
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5 Defects in Amorphous Silicon

Geometry/Topology

Probably the most heavily studied amorphous semiconductor is Si. In its
unhydrogenated form, the material is not electronically useful, as there are
too many defect states in the optical gap. On the other hand, hydrogenated
a-Si (a-Si:H) can be grown in a variety of ways, and can be prepared with
defect concentrations of order 10−16, which is small enough to enable many
electronic applications [47]. Of critical importance for these applications, it is
possible to dope a-Si:H n(p) type with P(B) donors (acceptors). The doping
efficiency of the material is very low (meaning that large amounts – of order
1 % impurity is needed to move the Fermi level significantly).

In a-Si, diffraction measurements show that these materials are very
tetrahedral (typically more than 99.9% of atoms are four-coordinated) and
have bond angles distributed around the tetrahedral angle (typically with a
FWHM of order 10 degrees). The key defect is the threefold-coordinated Si
atom, the sp3 dangling-bond, which is known on the basis of experiment and
simulation to produce a midgap state. Such states are directly observable in
electron spin resonance (ESR) measurements [48, 49].

Several papers have speculated on the importance of fivefold floating
bonds [50], but their significance is still uncertain, and it appears that such
defects would not produce midgap states, but rather states near the conduc-
tion-band edge. Depending upon the details of the local bonding environment,
the levels associated with these states could move slightly from their ideal lo-
cations. Such configurations are popular in MD simulations of a-Si (quenches
from the liquid). It is unclear, however, whether this implies the existence of
floating bonds in a-Si:H or if there is an overemphasis on higher-coordinated
sites because the liquid is roughly 6-fold coordinated.

Defects play many roles in a-Si:H, and one of the most interesting
defect-dependent properties is associated with light-induced metastability,
the “Staebler–Wronski” effect [51], which is usually interpreted as light-
induced creation of defect centers (probably dangling-bonds). A remarkable
collection of experiments and models have been undertaken to understand
this effect that is obviously important for photovoltaic applications, but for
thin-film device applications (like thin-film transistors) as well [52–65]. This
effect is addressed in the Chapter of Simdayankin and Elliott.

Level of Approximations: A Cautionary Tale

We have undertaken a systematic study of the level of calculation needed to
faithfully represent the electron states, total energies and forces in a-Si within
the density-functional LDA approximations. This work was performed with
the powerful local basis code SIESTA [66]. This calculation was carried out
for a-Si:H, but we expect that many of the conclusions should at least be
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considered when applying density-functional techniques to other amorphous
or glassy materials. In fact studies analogous to ours for silicon should be
implemented for more complex amorphous materials. For a unique “one-stop
reference” to methodological issues for density-functional methods, see the
book of Martin [67].

In a nutshell, a proper calculation of defect states and geometry, especially
in amorphous materials, is difficult. Every approximation needs to be checked
and optimized. Depending upon the type of question being asked more or less
sophisticated approximations may be required. We divide the discussion into
several categories:

(1) Pseudopotentials: One of the most important and fortunately reliable
approximations used in electronic-structure calculations is the pseudopo-
tential. This is a means to separate the atomic core and valence regions,
and enables the use of only valence electrons in the calculation of the
Kohn–Sham orbitals. Even for a relatively light atom like Si, this allows
a calculation involving 4 electrons per atom rather than 14. When one
reflects that mere diagonalization of the Hamiltonian scales as the cube
of the number of electrons, the payoff is clear. After many years of work,
the lore of pseudopotentials is fairly mature, though one must test a new
potential carefully before using it widely.

(2) Basis Set: The most obvious approximation in any large-scale DF cal-
culation is the use of a finite basis set to represent a set of continuous
functions (the Kohn–Sham orbitals and the charge density). In a plane-
wave calculation, it is easy to check for completeness, as the only “knob”
is the plane-wave cutoff (or number of reciprocal lattice vectors). Care is
needed with plane-wave calculations as defect states can be quite spatially
compact and therefore difficult to approximate without a large collection
of reciprocal lattice vectors.
For local basis codes, ab initio or empirical, completeness is a delicate
question. Most current codes use basis orbitals much in the spirit of the
linear combination of atomic orbitals (LCAO) method of chemistry, with
s, p, d, f states. The minimal basis is defined to be a set of atom-centered
functions that is just adequate to represent the occupied atomic orbitals
on that atom. The minimal basis has very limited variational freedom.
The first improvement on the minimal basis is introducing two functions
with the symmetry of the original single-zeta (SZ) functions. Quantum
chemists call this a “double-zeta” (DZ) basis. A suitably selected double-
zeta basis can reproduce expansion and contraction in local bonding.
The zeta proliferation can continue, though it is uncommon to proceed
beyond triple-zeta in practical calculations. After adequately filling out
the basis orbitals with the symmetries of the states for the ground-state
atom, one proceeds to the next shell of states that are unoccupied in the
atomic ground-state. These are called polarization functions (so named
because the loss of symmetry caused by application of a (polarizing)
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electric field distorts the ground-state functions into the next angular
momentum shell).
In a-Si:H we find that the choice of basis affects virtually everything. The
localization of the Kohn–Sham states depends dramatically on the basis.
As one might guess, the less complete basis sets tend to overestimate the
localization of the Kohn–Sham eigenvectors (as there are fewer channels
for these states to admix into). What was surprising is that the degree of
localization, measured by IPR for a well-isolated dangling-bond defect,
varies by a factor of two between a single-zeta (four orbitals per site) and
a double-zeta polarized (DZP) (thirteen orbitals per site) basis. Similar
effects are seen for defects in crystals. Since the single-particle density
matrix, the total energy and interatomic forces depend upon the Kohn–
Sham eigenvectors, it is to be expected that defect geometry, vibrational
frequencies and dynamical properties are all influenced by the choice of
basis.

(3) Spin Polarization: Fedders and coworkers [68] have shown that, in or-
der to correlate the degree of localization from dangling-bond states with
ESR experiments, it is not enough to look at the wavefunctions, but to
the net spin polarization near the danglin-bond. The reason is that the
spin density includes contributions from electronic states other than the
localized defect wavefunction, which contribute to make the spin polar-
ization more localized than the specific localized state wavefunction. In
order to confirm this result (obtained by Fedders et al. on cells of a-
Si:H) in our structural models, we performed calculations allowing for
spin polarization in our frozen lattice models, using the DZP basis set.
We were not able to find a spin-polarized solution for any of the amor-
phous cells. The reason is the existence of two interacting dangling-bonds,
which favors the formation of a spin singlet with two electrons paired.
In order to force the appearance of a spin moment in our models, we
introduce an unpaired spin by removing a single electron from the sys-
tem. We find a contribution of almost 50% to net spin by the central
dangling-bond and its neighbors (the central atom alone contributing
38%). However, the Mulliken charge contribution to the wavefunction of
the corresponding localized state from the defect site is only 0.29e. The
hydrogen-terminated dangling-bond sites also contribute about 10% of
the net spin. The remainder is somewhat distributed uniformly at the
other sites. For well-isolated dangling-bonds in a-Si, about 54% of the
net spin-localization sits on the dangling-bond and its nearest neighbors,
in reasonable agreement with the experiment [49, 69].
The conclusion is that, for a dangling-bond defect state, there is a large
difference between spin localization and wavefunction localization. The
degree of spin localization is greater than that of the wavefunction lo-
calization at the dangling-bond site. To our knowledge, no experimental
methods exist for measuring the extent of wavefunction localization on
the dangling-bond orbital as opposed to spin.
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(4) Gradient-Corrected Density-Functional: This has been inadequate-
ly studied, although there is no reason to expect large changes in structure
with the use of gradient corrections. Typically, bond lengths may change
modestly and cohesive energies improve when compared to experiment.
Generally one expects gradient corrections to at least partly repair the
tendency of LDA to overbind.

(5) Brillouin-Zone Sampling: Many current calculations of defects are
carried out with a cell that is then periodically repeated to eliminate
surface effects. In particular, this construction clearly yields a crystal
with a unit cell with typically several hundred or more atoms (such a
number is necessary to meaningfully sample the disorder characteristic
of the material). Thus, the use of periodic (Born–Von-Karman) bound-
ary conditions really amounts to consideration of a crystal with a large
unit cell. Thus, there is a new (and completely artificial) band-structure
(k dispersion) associated with the construction, a Brillouin-zone, etc. It
is of course true that as the cell gets larger, the bands become flatter,
thus reducing the significance of the periodicity. For computational con-
venience, total energies and forces are inevitably computed at the center
(k = 0) of the Brillouin-zone, though in principle these quantities involve
quadrature over the first Brillouin-zone. However, if results for total en-
ergies and especially forces depend upon k in any significant way, then
it is doubtful that the cell was selected to be large enough in the first
place. For delicate energetics (an all too familiar state of affairs for de-
fects), it is particularly important to test that the cell is big enough. In
our experience a few hundred atoms in a cubic cell is adequate.

Defect Identification

From simulation studies, one finds the expected point defects of coordination
type (threefold dangling-bonds and fivefold atoms floating bonds), and also
strain defects (nominally four-coordinated structures with large deviations in
the bond angles). The dangling-bond defect produces electronic states near
the middle of the gap, and floating bonds near the conduction edge. Strain
defects are associated with the valence- and conduction-band tails.

Defect Dynamics and Diffusion

An important, but underappreciated aspect of defects in amorphous semi-
conductors, is their dynamics. In hydrogenated amorphous silicon, the mo-
tion of defects and the motion of hydrogen (which are evidently related)
are correlated with some of the most important physical properties of the
amorphous matrix, such as the light-induced degradation of the material
(Staebler–Wronski effect) [51, 70]. The expectation is that H motion consists
of small oscillations in a particular potential well associated with a given lo-
cal environment with rare escape events until the diffusing particle falls into
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Fig. 3. Trajectory for two different hydrogen atoms, showing diffusion and trapping
between silicon bond centers in a 223 atom model of hydrogenated amorphous
silicon. The simulation time is 10.0 ps and the temperature is 300 K. ‘Light-off’
implies that the dynamics are in the electronic ground state

another trap. The time between such rare events depends upon the height
of the barrier separating the two metastable configurations. Sophisticated
methods exist for determining diffusion pathways and events, particularly
the activation-relaxation technique (ART) of Barkema and Mousseau [71].
In a remarkable paper, these authors applied ART with a simple potential to
directly compute the atomic “moves” in a model of a-Si. For large barriers
and very rare events, there is no substitute for a study of “ART” type.

For smaller barriers, we have seen that it is possible to extract interesting
short-time diffusive dynamics directly from MD simulation. In simulations of
Ag dynamics in chalcogenide glass hosts, we found that it was not difficult
to track the motion of the Ag atoms from simulations of order 50 ps. The
existence of trapping centers, and even some information about trap geome-
try, and temperature-dependent residence times was obtained [72]. In a-Si:H,
we have found that an analogous computation produces new insight into the
motion of both Si and H atoms. Using a small cell (61 Si and 10 H atoms)
with two dangling-bonds and no other defects, we employed SIESTA with
high-level approximations (a double-zeta polarized basis) to monitor atomic
motion. On the time-scale of 1 ps we have shown the trajectory of one of the
H atoms in Fig. 3 [73]. Representative of the majority of H atoms in the cell,
this particular trajectory shows the diffusion of the hydrogen atom, including
trapping. While the H atoms are diffusing in the cell it is followed by break-
ing old bonds and forming new bonds. We have plotted the time evolution of
undercoordinated and floating bonds formed as a consequence of hydrogen
diffusion in Fig. 4 [73].
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Fig. 4. (a) Total number of undercoordinated atoms and (b) Total number of
overcoordinated atoms in our simulation at T = 300 K. The total time for the
graph is 1.0 ps

Fig. 5. Time evolution of coordination for a few selected atoms (H-69, H-65, Si-24,
and Si-51) at room temperature T = 300 K. (a) time evolution of atoms, Si-24
which is far from the diffusing H with coordination 4 and H-69. (b) time evolution
of selected atoms: Si-51, which is close to the diffusing H, and H-65

In our simulation we have observed rearrangements of the atoms while the
hydrogen atoms are diffusing in the cell. The diffusion of H causes formation
and breaking of bonds. We have also observed the formation of metastable
states that trap the mobile hydrogen atoms. The mechanisms for the for-
mation of these structures follow breaking of H atoms from the Si–H bonds
and followed by diffusion in the cell. These mobile H atoms then collide with
another Si+DB structure and form a bond. These processes continue until
two hydrogens form a bond to a single Si atom or to two nearby Si atoms
to form a metastable conformation. In Fig. 5, [73] we have shown the time
evolution of the coordination for selected atoms. Figure 5a shows the stable
coordination of a Si atom (Si-24) that is fully coordinated since there is no
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diffusing atom in its vicinity and of H-69 that has an average coordination
of 1. However, the Si atom (Si-51) and H-65, which are shown in Fig. 5b,
shows change in the coordination as a function of time. This change in the
coordination becomes more stable (1 for H and 4 for Si) after the formation
of a metastable configuration. Our results suggest that atoms that are rea-
sonably far from the diffusing hydrogen have an average coordination of 4 for
Si and 1 for H. However, the coordination of the atoms, for instance Si-51, in
the direction of the diffusing H atoms changes with time. This suggests that
while the H atoms are diffusing in the cell there is breaking and formation of
bonds.

Other researchers have emphasized the significance of defect and H mo-
tion. In particular, Street [74] has pioneered a phenomenological approach to
the long-time dynamics with the defect-pool model. Our work on extremely
short timescales should ultimately be smoothly connected to the inferred
long-time defect dynamics from the defect-equilibria models. While we are
very far from this goal at present, it is possible to imagine impacts of both
approaches on each other within a few years. Ideally, the short-time simula-
tions could provide ab-initio input into the energetics of the dynamics, and
even information about residence times for various defects.
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Abstract. In this Chapter, we discuss how exposure to light can affect the prop-
erties of disordered materials and review our recent computational studies of these
phenomena. Familiarity with the preceding contribution by Drabold and Abtew is
beneficial for understanding this Chapter.

1 Photoinduced Metastability in Amorphous Solids:
An Experimental Survey

1.1 Introduction

Electromagnetic (EM) radiation can interact with amorphous solids in a num-
ber of ways, depending on the wavelength of the radiation. EM radiation can
be either absorbed or scattered by a solid. In the resonant process of ab-
sorption, the photon energy must match a transition energy between two
quantum states in the material, e.g., for atomic vibrations corresponding to
infrared (IR) wavelengths, or electronic transitions from valence to conduc-
tion band across a bandgap in a semiconductor, corresponding to visible/near
ultraviolet (UV) wavelengths (depending on the magnitude of the bandgap
energy, Eg). Scattering of EM radiation may be elastic, or inelastic when en-
ergy is exchanged between a photon and quantum states of a solid. Examples
include X-ray scattering (diffraction) from the electrons in atoms, Raman
(inelastic light) scattering from atomic vibrations (e.g. molecular-like modes)
and Brillouin (inelastic light) scattering from acoustic phonon-like vibrational
excitations. The photon–solid interaction can be interrogated in terms of ei-
ther the ultimate state of the photon (as in the above examples), or in terms of
changes in the internal state of the solid. In the latter case, it is often changes
in the electronic degrees of freedom that are probed: for the case of most amor-
phous semiconductors with bandgaps in the range 1 eV < Eg < 3 eV, this
involves near-IR or visible-light excitation (although for more ionic oxides,
e.g., vitreous (v-)SiO2 with Eg ≈ 10 eV, UV-light excitation is required).
Electrons optically excited into the conduction band (CB), or holes excited
into the valence band (VB), can be probed, for example, by their enhanced
electrical transport (photoconductivity) or by their radiative recombination
D. A. Drabold, S. K. Estreicher (Eds.): Theory of Defects in Semiconductors,
Topics Appl. Physics 104, 269–286 (2007)
© Springer-Verlag Berlin Heidelberg 2007
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(photoluminescence or fluorescence). At sufficiently high light intensities, the
light–solid interaction can become nonlinear, this optical nonlinearity permit-
ting many new phenomena, such as second-harmonic generation, three- and
four-wave mixing, to occur. Electronic excitation of structural coordination
defects, e.g., dangling bonds, can be probed by electron spin (paramagnetic)
resonance (ES(P)R).

The optically induced phenomena outlined above can be exhibited by all
kinds of semiconducting/insulating solid, whether crystalline or amorphous.
However, certain features unique to the amorphous state in general, and to
certain types of amorphous materials in particular, mean that some pho-
toinduced phenomena are special to amorphous semiconducting materials,
particularly those that are metastable, i.e., which remain after cessation of
irradiation.

One general characteristic of amorphous semiconductors of relevance in
this connection is the occurrence of disorder-induced spatial localization of
electronic states in the band-tail states extending into the gap between the
VB and CB [1]. The presence of continuous bands of localized states in these
tail states, in the energy interval between the “mobility” edges in the VB
and CB, marking the transition point between localized and delocalized (ex-
tended) electron states [2], as well as localized states deep in the bandgap
arising from coordination defects [1], can have a profound influence on the
nature of the photon–solid interaction. These localized states have an en-
hanced electron–lattice interaction (see the preceding Chapter by Drabold
and Abtew), meaning that optical excitation of such electronic states can have
a disproportionate effect on the surrounding atomic structure. Secondly, the
radiative-recombination lifetime for an optically created electron–hole pair
trapped in localized tail states can be very considerably longer than when
the photoexcited carriers are in extended states (as is always the case for crys-
tals), thereby allowing possible nonradiative channels to become significant
(e.g., involving atomic-structural reconfiguration).

Other relevant aspects are more materials specific. Optically induced
metastability associated with structural reorganization is likely to be more
prevalent in those materials in which (some) atoms have a low degree of
nearest-neighbor connectivity (e.g., being twofold coordinated, rather than
fourfold coordinated), thereby imparting a considerable degree of local struc-
tural flexibility. In addition, structural reorganization following optically in-
duced electronic excitation is more probable if the (VB) electronic states
involved correspond to easily broken weak bonds.

One class of materials satisfying the above constraints consists of chalco-
genide glasses, namely alloys of the Gp-VI chalcogen elements (S, Se, Te)
with other (metalloid) elements, e.g., B, Ga, P, As, Sb, Si, Ge, etc. These
materials are “lone-pair” semiconductors in which (if the chalcogen content
is sufficiently high) the top of the VB comprises chalcogen p-π lone-pair
(LP) states [3]. Interatomic, “nonbonding” (Van der Waals-like) interactions
involving such LP states are appreciably weaker than for normal covalent
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bonds (those states lying deeper in the VB). Since the ground-state electronic
configuration of chalcogen atoms is s2p4, the occurrence of nonbonding LP
electron states means that each chalcogen atom is ideally twofold coordinated
by covalent bonds to its nearest neighbors. Thus, chalcogenide glasses, having
a combination of localized electronic tail states, low atomic coordination and
weak bonds associated with optically accessible states at the top of the VB,
are ideal candidates for exhibiting photoinduced effects.

1.2 Photoinduced Effects in Chalcogenide Glasses

Amorphous chalcogenide materials exhibit a plethora of photoinduced phe-
nomena. Such changes can be variously dynamic (i.e., present only whilst a
material is illuminated) or metastable (i.e., the effects remain after cessation
of illumination). Furthermore, the changes may be either scalar or vectoral
in nature (respectively, independent or dependent on either the polarization
state, or the propagation direction, of the inducing light). Finally, metastable
changes may be irreversible, or reversible with respect to thermal or optical
annealing.

Examples of dynamic effects are the afore-mentioned phenomena of pho-
toluminescence and photoconductivity [1] and optical nonlinearity [4], which
are common to all materials. (Chalcogenide glasses generally exhibit ex-
tremely large optical nonlinearities because of the highly electronically po-
larizable nature of chalcogen atoms present [4].) However, a (scalar) dynamic
effect, which is characteristic of chalcogenide glasses, is photoinduced fluidity,
wherein the viscosity of a glass (e.g. As2S3) decreases on illumination with
subbandgap light or, in other words, light can cause viscous relaxation in a
stressed glass [5, 6]. An example of a vectoral dynamic photoeffect in chalco-
genide glasses is the optomechanical effect [7, 8], wherein linearly polarized
light incident on a chalcogenide-coated clamped microcantilever causes it to
displace upwards or downwards, depending on whether the polarization axis
is, respectively, parallel or perpendicular to the cantilever axis, as a result of
anisotropic photoinduced strains introduced into the chalcogenide–cantilever
bimorph.

Metastable photoinduced changes are perhaps the most interesting (and
applicable) of the effects observed in chalcogenide glasses. One such is photo-
darkening (or bleaching), wherein the optical absorption edge of the material
shifts to lower energies (hence the material gets darker at a given wavelength),
or to higher energies (bleaching), on illumination with (sub-) bandgap light.
For reviews, see [9, 10]. Arsenic-based materials with higher sulfur contents
and germanium sulfide materials seem to favor photobleaching, for reasons
that are not clear at present. Irreversible shifts of the optical absorption edge
occur in virgin (as-evaporated) thin films of amorphous chalcogenides con-
taining structurally unstable molecular fragments from the vapor phase [11]
that are particularly vulnerable to photoinduced (or thermal) change. Re-
versible photodarkening is observed in bulk glasses and well-annealed thin
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films: optical illumination causes a redshift of the absorption edge, whilst
subsequent thermal annealing to the glass-transition temperature, Tg, erases
the effect [9, 10].

Photodarkening (bleaching) appears to be associated with photoinduced
structural changes, such microscopic changes being manifested as macro-
scopic volume changes. Photocontraction is particularly prevalent in virgin
obliquely deposited thin films of amorphous chalcogenides having a columnar-
like microstructure [12], but photoexpansion is commonly associated with
photodarkening in chalcogenide bulk glasses or thin films [9, 10]. Giant pho-
toexpansion (up to 5 % expansion) occurs for subbandgap illumination [13].
Another metastable photoinduced structural change exhibited by chalco-
genide materials is photoinduced crystallization and amorphization, as used
in rewriteable “phase-change” CDs and DVDs [14, 15]. The amorphization
process there is believed to result from a photoinduced melting and sub-
sequent very rapid quenching of the material to the glassy state. However,
illumination of certain crystalline chalcogenide materials (e.g., As50Se50) can
also cause athermal photoamorphization [16]. Light can also cause “chemi-
cal” changes in chalcogenide glasses. For example, overlayers of certain metals
(notably silver) diffuse into the undoped bulk glass on illumination [17, 18].
On the other hand, Ag-containing chalcogenide glasses, rich in Ag, exhibit the
opposite effect, namely photoinduced surface deposition, wherein the metal
exsolves from the glassy matrix on illumination [19, 20].

A particularly interesting metastable vectoral photoinduced effect exhib-
ited by chalcogenide glasses is photoinduced optical anisotropy (POA), first
observed in [21], and manifested in absorption, reflection (i.e., refractive in-
dex) and scattering (for a review, see [10, 22]). Illumination of an initially
optically isotropic glass by linearly polarized light causes the material to be-
come dichroic and birefringent. In the case of well-annealed thin films and
bulk glasses, the effect is completely reversible optically (i.e., the induced
optical axis is fully rotated when the light-polarization vector is rotated),
and the POA can be annealed out thermally (but at a lower temperature
than is the case for scalar photodarkening) or optically (using unpolarized or
circularly polarized light).

2 Theoretical Studies of Photoinduced Excitations
in Amorphous Materials

From the above very brief review, it is apparent that amorphous chalcogenide
materials exhibit a wide range of interesting photoinduced phenomena. Al-
though the experimental phenomenology is, for the most part, well developed,
a proper theoretical understanding is still lacking. Until very recently, theoret-
ical models have been confined to “hand-waving” models [9,10], involving sim-
ple notions of chemical bonding and the effects of light (e.g., bond breaking
and defect formation). However, the predictive, and even descriptive, power
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of such approaches is very limited, and for a microscopic (atomic-level) un-
derstanding of photoinduced phenomena in amorphous chalcogenides, proper
quantum-mechanical calculations need to be performed. Obviously, this is an
extremely challenging task, and two essentially opposing methods for making
progress in this regard, using different approximations, can be employed. The
first employs all-electron quantum-chemical calculations on small clusters (a
few tens) of atoms, in which the optimized electronic and atomic configura-
tions and energies are found for the ground and electronically excited states
(see, e.g. [23–26]). This favors accuracy over dynamics. The other method,
(discussed in the Chapter by Drabold and Abtew), namely ab-initio molecu-
lar-dynamics (MD) simulations, takes a converse approach: atomic dynamics
are followed at the expense of accuracy. More detail will be given in the fol-
lowing, but the advantages and disadvantages of these two approaches can
be summarized as follows. Quantum-chemical methods can only deal with
very small clusters (particularly for excited-state calculations) and only ini-
tial (ground-state) and final (excited-state) configurations can be studied,
not the intermediate dynamics, but the energetics are the most accurate.
Ab-initio MD, on the other hand, provides full information about atomic dy-
namics, but only over very short timescales (typically a few picoseconds) and
for relatively few atoms (typically less than a hundred). In order to make
the calculations involved tractable, numerous more-or-less severe approxi-
mations need to be invoked (e.g., the local-density approximation (LDA) in
density-functional theory (DFT)), which make certain results imprecise (e.g.,
underestimation of the bandgap). Moreover, the Kohn–Sham (KS) orbitals
resulting from DFT are ground-state quantities and hence formally inadmis-
sible for a consideration of excited-state behavior. Nevertheless, use of these
theoretical methods has provided very useful atomistic information of help in
understanding photoinduced phenomena in chalcogenide glasses. Some justi-
fication for using both occupied and virtual KS orbitals for qualitative, and
sometimes partially quantitative, analysis of electronic structure is provided
by comparing the shape and symmetry properties, as well as the energy or-
der, of these orbitals with those obtained by wavefunction-based (e.g., at the
Hartree–Fock level of theory [27]) and GW [28] calculations. There is a very
strong similarity between GW and LDA states, and often identical DFT and
GW quasiparticle wavefunctions are assumed in practical calculations [29].

2.1 Application of the Density-Functional-Based Tight-Binding
Method to the Case of Amorphous As2S3

One approximate ab-initio-based MD scheme that has proved very useful in
understanding the electronic behavior of chalcogenide glasses is the density-
functional-based tight-binding (DFTB) method developed by Frauenheim
and coworkers. Although this is reported in [30–32], since this approach is
not described elsewhere in this book, we give here a brief description of this
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method and review our recent results on the canonical chalcogenide glass
a-As2S3 obtained by using the DFTB method [33–35].

Although the DFTB method is semiempirical, it allows one to improve
upon the standard tight-binding description of interatomic interactions by in-
cluding a DFT-based self-consistent second order in charge fluctuation (SCC)
correction to the total energy [31]. The flexibility in choosing the desired ac-
curacy while computing the interatomic forces brings about the possibility
to perform much faster calculations when high precision is not required, and
refine the result if needed.

As described in [36], the SCC-DFTB model is derived from density-
functional theory (DFT) by a second-order expansion of the DFT total en-
ergy functional with respect to the charge-density fluctuations δn′ = δn(r′)
around a given reference density n′

0 = n0(r′):

E =
occ∑
i

〈ψi|Ĥ0|ψi〉

+
1
2

∫∫ ′
(

1
|r − r′| +

δ2Exc

δn δn′

∣∣∣∣
n0

)
δn δn′ (1)

−1
2

∫∫ ′ n′
0n0

|r − r′| + Exc[n0] −
∫

Vxc[n0]n0 + Eii ,

where
∫

dr and
∫

dr′ are expressed by
∫

and
∫ ′, respectively. Here, Ĥ0 =

Ĥ [n0] is the effective Kohn–Sham Hamiltonian evaluated at the reference
density and the ψi are Kohn–Sham orbitals. Exc and Vxc are the exchange-
correlation energy and potential, respectively, and Eii is the core–core repul-
sion energy.

To derive the total energy of the SCC-DFTB method, the energy contri-
butions in (1) are further subjected to the following approximations: 1. The
Hamiltonian matrix elements 〈ψi|Ĥ0|ψi〉 are represented in a basis of con-
fined, pseudoatomic orbitals φµ,

ψi =
∑

µ

ci
µφµ. (2)

To determine the basis functions φµ, the atomic DFT problem is solved
by adding an additional harmonic potential ( r

r0
)2 to confine the basis func-

tions [30]. The Hamiltonian matrix elements in this LCAO basis, H0
µν , are

then calculated as follows. The diagonal elements H0
µµ are taken to be the

atomic eigenvalues and the nondiagonal elements H0
µν are calculated in a

two-center approximation:

H0
µν = 〈φµ|T̂ + veff[n0

α + n0
β ]|φν〉 µεα, νεβ, (3)

which are tabulated, together with the overlap matrix elements Sµν with
respect to the interatomic distance Rαβ. veff is the effective Kohn–Sham
potential and n0

α are the densities of the neutral atoms α.
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2. The charge-density fluctuations δn are written as a superposition of atomic
contributions δnα,

δn =
∑

α

δnα, (4)

which are approximated by the charge fluctuations at the atoms α, ∆qα =
qα − q0

α. q0
α is the number of electrons of the neutral atom α and the qα

are determined from a Mulliken-charge analysis. The second derivative of
the total energy in (1) is approximated by a function γαβ , whose functional
form for α �= β is determined analytically from the Coulomb interaction of
two spherical charge distributions, located at Rα and Rβ. For α = β, it
represents the electron–electron self-interaction on atom α.
3. The remaining terms in (1), Eii and the energy contributions, which depend
on n0 only, are collected in a single energy contribution Erep. Erep is then
approximated as a sum of short-range repulsive potentials,

Erep =
∑
α�=β

U [Rαβ], (5)

which depend on the interatomic distances Rαβ .
With these definitions and approximations, the SCC-DFTB total energy

finally reads:

Etot =
∑
iµν

ci
µci

νH0
µν +

1
2

∑
αβ

γαβ∆qα∆qβ + Erep. (6)

Applying the variational principle to the energy functional (6), one obtains
the corresponding Kohn–Sham equations:∑

ν

cνi(Hµν − εiSµν) = 0, ∀ µ, i (7)

Hµν = 〈φµ|H0|φν〉 +
1
2
Sµν

∑
ζ

(γαζ + γβζ)∆qζ , (8)

which have to be solved iteratively for the wavefunction expansion coeffi-
cients ci

µ, since the Hamiltonian matrix elements depend on the ci
µ due to

the Mulliken charges. Analytic first derivatives for the calculation of inter-
atomic forces are readily obtained, and second derivatives of the energy with
respect to atomic positions are calculated numerically.

The repulsive pair potentials U [Rαβ] are constructed by subtracting the
DFT total energy from the SCC-DFTB electronic energy (first two terms on
the right-hand side of (6)) with respect to the bond distance Rαβ for a small
set of suitable reference systems.

To summarize, in order to determine the appropriate parameters for a new
element, the following steps have to be taken. First, DFT calculations have to
be performed for the neutral atom to determine the LCAO basis functions φµ
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and the reference densities n0
α. Here the confinement radius can, in principle,

be chosen to be different for the density (rn
0 ) and each type of atomic orbital

(rs,p,d
0 ). The value of r0 is usually taken to be the same for s- and p-functions.

In a minimal basis, this yields a total number of two adjustable parameters
for elements in the first and second rows, while there are three if d-functions
are included. After this, the different matrix elements can be calculated and
the pair potentials U [Rαβ ] are obtained as stated above for every combination
of the new element with the ones already parameterized.

The single-particle KS occupied, ψi, and unoccupied, ψj , orbitals and
the corresponding KS excitation energies ωij = εj − εi are sometimes used
for qualitative analysis of electronic excitations. Although the KS excita-
tion energies can be considered as an approximation to true excitation en-
ergies ωI [37] (see also end of the introduction to Sect. 2), the correction
terms to this approximation can be very significant in many cases. Modeling
electronic excitations by varying the occupation of the KS orbitals results in
mixed quantum states with undefined contributions from singlet and triplet
states. We have performed modeling of electronic excitations at the level of
KS orbitals and energies and have attempted to validate the results by using
more exact methods. One such method is based on time-dependent density-
functional response theory (TD-DFRT) [38, 39], where the true excitation
energies are found by solving the following eigenvalue problem:

∑
ijσ

[ω2
ijδikδjlδστ + 2

√
ωijKijσ,klτ

√
ωkl]F I

ijσ = ω2
IF I

klτ . (9)

Here σ and τ are spin indices. The indices i, k correspond to occupied, and j, l
to unoccupied, KS orbitals, respectively. The coupling matrix K is defined
as (see [40] for a more detailed description of the method):

Kijσ,klτ =
∫∫ ′

ψi(r)ψj(r)
(

1
|r − r′| +

δ2Exc

δnσ δn′
τ

)
ψk(r′)ψl(r′), (10)

where we use a notation consistent with that in (2).
Our structural models of a-As2S3 were obtained by a “melt-and-quench”

procedure [35] similar to the one described in the preceding Chapter by
Drabold and Abtew. The structural quality of models can be assessed by
examining the radial-distribution function (RDF) and the structure factor
(see Fig. 1). Apart from general good agreement with experimental data,
an interesting feature revealed by Fig. 1a is the shape of the first peak of
the RDF. The shoulders on both sides of this peak indicate the presence of
homopolar (As–As or S–S) bonds in the material. Such bonds (chemical de-
fects), as well as coordination (or topological) defects, are easily detectable
in computer models. An example of a configuration featuring an As–As bond
is shown in Fig. 2. Special significance can be attributed to the presence of
five-membered rings in models with an appreciable concentration of homopo-
lar bonds (models with all-heteropolar bonds contain only an even number of
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Fig. 1. (a) Pair-correlation functions for a 200-atom model of a-As2S3 and the
neutron-diffraction experiment [41]. (b) Reduced structure factors (interference
functions) for the same model and experiment

atoms in all rings). When such rings share some of the bonds, the resulting
local structure is close to that of cage-like molecules (e.g., As4S4), as found
in the vapor phase and in some chalcogenide molecular crystals. Figure 2a
shows two such bond-sharing rings. Upon breaking the two bonds connect-
ing the rings to the rest of the network, the distance between the two freed
arsenic atoms (connected by a dashed line in Fig. 2a) could be reduced, thus
producing another As–As homopolar bond and this group of atoms would
then form an As4S4 molecule (shown in Fig. 2b). Evidence of the presence of
such molecules in bulk AsxS1−x glasses from Raman-scattering experiments
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Fig. 2. (a) Fragment of a 200-atom model of a-As2S3: two bond-sharing five-
membered rings and the two AsS3 groups connected to this structure. The dangling
bonds show where the displayed configuration connects to the rest of the amorphous
network. The dashed line connects two As atoms, which, if brought nearer together,
would close up to form an As4S4 molecule shown in panel (b). The shading of the
As atoms (all with three neighbors) is darker than that of the S atoms (all with
two neighbors)

has recently been reported in [42]. Our result shows that the As4S4 fragments
may not only form discrete cage-like molecules but also may be embedded
into the amorphous network. We verified that the vibrational signatures of
the As4S4 fragment from models 1 and 2 are similar to those from an isolated
As4S4 molecule, apart from a few very symmetric modes of the latter. The
observed tendency for formation of quasimolecular structural groups suggests
that amorphous chalcogenides can be viewed as nanostructured materials.

Localization of the electronic states near the optical bandgap edges is
of great interest for studies of photoinduced phenomena. The inverse par-
ticipation ratios (IPR, defined in the Chapter by Drabold and Abtew) for a
model of a-As2S3 are shown in Fig. 3. The general picture is that, at the
top of the valence band, the eigenstates are predominantly localized at what
can be called sulfur-rich regions, where several sulfur atoms are closer than
about 3.45 Å, i.e., their interatomic distances are on the low-r side of the sec-
ond peak in g(r) shown in Fig. 1a or some of these atoms form homopolar S–S
bonds. For instance, most of the HOMO (highest occupied molecular orbital)
level in this model is localized at two sulfur atoms separated by 3.42 Å and
which are part of the molecule-like fragment depicted in Fig. 2a. By inspect-
ing the projected (local) IPRs in Fig. 3b at the optical gap edges, it is seen
that the IPRs are greatest for the S atoms. It appears that the localization at
the top of the valence band is facilitated by the proximity of the lone-pair p
orbitals in the sulfur-rich regions. This observation is consistent with a result
for a-GeS2 [44].
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Fig. 3. Local and total electronic density of states (a) and inverse participation
ratios (b) for a 200-atom model of a-As2S3. The Fermi energy is at the energy
origin. The experimental data in (a) are obtained from [43]

At the bottom of the conduction band, the states tend to localize at var-
ious anomalous local configurations, such as four-membered rings, S–S ho-
mopolar bonds (some of these bonds are in five-membered rings) and valence-
alternation pairs (coordination defects). For example, the LUMO (lowest un-
occupied molecular orbital) state for the structure depicted in Figs. 5a,b is
localized on an overcoordinated S atom (with three bonded neighbors).

We found that a basis set of s, p and d Slater-type orbitals for all atoms is
an essential prerequisite for the observation of overcoordinated defects [36,45].
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(a)

(b) (c)

Fig. 4. Planar trigonal, [S3]
+ (marked by the letter “A”), and “seesaw”, [As4]

−

(marked by letter “E”), configurations in (a) a fragment of a 60-atom model of
a-As2S3 (the dangling bonds show where the displayed configuration connects to
the rest (not shown) of the network) and, (b) and (c), charged isolated clusters (the
dangling bonds are terminated with hydrogen atoms). The shading of the atoms is
the same as in Fig. 2

It is possible to analyze individual contributions of orbitals of each type to
the total EDOS and IPR, and these contributions are shown in Fig. 3.

As mentioned above, in the context of photoinduced metastability, a great
deal of significance is attributed to the presence of topological and/or chem-
ical defects [9]. It is therefore imperative to create models both with and
without such defects in a theoretical investigation that attempts to be con-
clusive. Defect-free models can be produced by “surgical” manipulations. For
example, atoms with undesired coordination can be removed from the model,
and, in order to eliminate chemical defects, one can iteratively apply the fol-
lowing algorithm. First, a sulfur atom is inserted in the middle of each As–As
homopolar bond. Second, each S–S bond is replaced by a single sulfur atom
located at its midpoint so that each local As–S–S–As configuration is turned
into As–S–As. Third, the distance between each newly introduced S atom and
its two nearest arsenic atoms in the newly created As–S–As units is reduced
in order to increase the bonding character of the As–S bonds stretched by
the above manipulation. Fourth, the modified configuration is relaxed in an
MD run. We have found that only a few iterations can be sufficient in order
to obtain models with all-heteropolar (As–S) bonds.
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(a) (c)

(b) (d)

Fig. 5. An As4S10H8 cluster containing both defect centers [As4]
− (marked by

letter “A”) and [S3]
+ (“B”). The shading of the atoms is the same as in Fig. 2. The

black solid lines signify elongated bonds. (a) Optimized ground-state geometry.
Bond lengths are (Å): AC = 3.00, AD = 2.32, and BE = 2.4. (b) Isosurfaces
corresponding to the value of 0.025 of electron density in the HOMO (darker red
surface) and LUMO (lighter cyan surface) states for the structure shown in (a). (c)
Optimized geometry in the first singlet excited state. Bond lengths are (Å): AC =
2.43, AD = 2.44, and BE = 2.82. (d) Same as (b), but for the structure shown in
(c)

Elimination of the defects in our models removes some electronic states in
the optical bandgap. As a result, the bandgap broadens, which can be viewed
as an artificial bleaching of the material. The states at the band edges, how-
ever, are still localized due to disorder. It is possible that exposure to light
may lead to bond breaking and defect creation even in such “all-heteropolar”
models. Indeed, As–S bond elongation/breaking has been observed in all-
heteropolar clusters [23,24] and cage-like molecules (unpublished). Such bond
breaking under irradiation can lead to the creation of self-trapped excitons
(STEs), i.e., oppositely charged defect pairs, as shown in [29] for silicon diox-
ide where, following Si–O bond breaking, the hole is localized at the oxygen
defect center and the electron at the silicon defect center. In analogy with
the case of SiO2, it is possible that positively charged chalcogen defects and
negatively charged nonchalcogen defects are introduced in amorphous chalco-
genides by a similar mechanism. In the As–S system, such STEs can possibly
lead to creation of the [As4]−–[S3]+ defect pairs described below.
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These defects, as well as those that are always present in real materi-
als and “as-prepared” models, may mediate local structural rearrangements
upon photon absorption. Creation of additional states at optical bandgap
edges (photodarkening) of a-As2S3 exposed to light has long been attributed
to the generation by illumination of defects in excess of the thermal equi-
librium concentration [9], but the exact mechanism of defect creation and
the nature of the defects are still enigmatic. Possible candidate defect types,
notably valence-alternation pairs, have been proposed over the years [9]. Nor-
mally, such defect pairs contain singly coordinated chalcogen atoms having
distinct spectroscopic signatures [46]. Experimentally, the concentration of
these defects is estimated to be rather small [47], i.e., 1017 cm−3, compared
with the atomic density of about 2 × 1025 cm−3, in order quantitatively to
account for the observed magnitude of the photoinduced effects.

In our simulations, in addition to the charged coordination defects previ-
ously proposed to exist in chalcogenide glasses, a novel defect pair, [As4]−–
[S3]+ (see Fig. 4), consisting of a fourfold coordinated arsenic site in a “see-
saw” configuration and a threefold coordinated sulfur site in a near-planar
trigonal configuration, was found in several models [33]. Such defect pairs
are unusual in two ways. First, there is an excess of negative charge in the
vicinity of the normally electropositive pnictogen (As) atoms and, second,
there are no undercoordinated atoms with dangling bonds in these local con-
figurations. The latter peculiarity may be why such defect pairs have not yet
been identified experimentally. These defect pairs, however, are consistent
with the STEs described above.

Although electronic excitations, where one electron is promoted from
HOMO to LUMO Kohn–Sham states [48], are not especially realistic, we
simulate such excitations in order qualitatively to assess defect stability with
respect to (optically induced) electronic excitations. In some models, [S3]+–
S−

1 defect pairs are converted into [As4]−–[S3]+ pairs as a result of the elec-
tronic excitation. The presence of these defect pairs introduces additional
localized states at the optical bandgap edges with energies quantitatively
consistent with the phenomenon of photodarkening [34].

A possible mechanism of conversion of [S3]+–S−
1 defect pairs into [As4]−–

[S3]+ pairs is illustrated in Fig. 5, which shows an As4S10H8 cluster con-
taining an [S3]+–S−

1 pair in the ground state. Geometry optimization in
the first singlet excited state within the linear-response approximation to
time-dependent (TD) density-functional theory (which gives a much better
description of excited states compared with HOMO-to-LUMO electron exci-
tations [40]) leads to a redistribution of electron density, so that the singly
coordinated S atoms become attached to a normally coordinated As atom,
thus forming an [As4]− defect. At the same time, the [S3]+ defect breaks
up (we observed that bond breaking/elongation in all our models generally
occurs at the groups of atoms where the LUMO is localized, indicating the
expected antibonding character of LUMO states.). Perhaps in bulk materials
similar rearangements can lead to the creation of an [S3]+ center at a differ-



Light Induced Effects in Amorphous and Glassy Solids 283

ent location, which is suggested by the observation that, in our simulations
of photoexcitations in supercell models, the [S3]+ centers after excitation are
not necessarily located at the same S atom as before the excitation.
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