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ROADMAP

I. A simple picture of the Anderson transition.
II. The Urbach problem: where do exponential band tails 

come from?

III. Non-locality of quantum mechanics in the solid state --
with disorder.

IV. The coupling to phonons.

Implement this for real materials using credible models.
V. Materials by Design: an attempt at engineering the 

optical gap.

VI. Space-projected conductivity



Crystalline Si (diamond) Amorphous Silicon

Translational periodicity                   Short-range order, no L.R.O.
Bloch states                                       k not a �good� quantum number

Q. How does disorder in atomic coordinates affect the
electron states?



DISORDER + WAVES = 
LOCALIZATION

Water waves with obstacles; left periodic obstacles, commensurate 
frequency to yield “Bragg reflection”, note that pattern is extended
in space. Right: disordered obstacles, standing waves – localization!

If its true for water, why not electrons too?!
Lindelof et al. 1996



Models of disorder

Anderson Model (1958)
H = ∑I |I><I| EI + ∑IJ |I><J| SIJ

EI are random, �diagonal�
disorder. Fact -- enough 
variation in EI -- all states
localized! 

Topological (bond length/angle) disorder
H = ∑I |I><I| EI + ∑IJ |I><J| SIJ

SIJ: Computed from
realistic model. 

Anderson model: disorder uncorrelated site-to-site; our case –
spatial correlations induce correlations in matrix elements. 



ANDERSON MODEL

Left: A localized eigenstate in 1D (Kramer/MacKinnon)
Right: 3D critical eigenstate (15.6M sites; Roemer)



APPROACH FOR A REAL 
MATERIAL

• Compute electronic states around the gap 
for big and realistic models of a-Si1, and 
study the nature of the localized (midgap) 
to extended (in the band) transition. [4096 
atoms model, periodic BC]

• Employ amalgam of tight-binding, maximum 
entropy, shift and invert Lanczos techniques.

1B. Djordjevic, M. F. Thorpe and F. Wooten, PRB 52 5685 (1995)



Evolution of electron states
in a-Si.  J-J Dong, DAD PRL 80 1928 1998

|Ψ|2



INTERPRETATION 

• Structural irregularities or defects beyond the mean exist.

• If bad enough these induce localized wave functions.

• If two such defects are spatially near and have similar 
energies, system eigenstates will be mixtures (states b and 
c). [clue: Symmetric and anti-symmetric linear 
combinations of b and c yield single islands]
• If many such resonant defects overlap, one has electronic 

connectivity.  This is Mott’s mobility edge.

Resonant Cluster Proliferation Model



UNIVERSALITY OF ISLAND 
PROLIFERATION 

Anderson model,
W/V=16.5 (all states
localized). 

Vitreous silica vibrations
note white centers

FCC lattice with force
constants selected
from uniform dist of width
(W/V=2)

Vibrational evecs
for 10K atom model
of a-Si.

JPCM 17 L321 (2005)



�UNIVERSALITY� AND 
STRUCTURE OF EIGENSTATES

• Disorder comes in many shapes and sizes. 
• electrons, Anderson models (diagonal and off-

diagonal);  �real� disorder from topologically 
disordered network.

• vibrations�Substitutional�;  Force constant 
disorder on a FCC lattice;  Topological disorder (a-
silica) with long-range (Coulomb) interactions; (a-
Si)10,000 atom

The qualitative nature of the localized-extended transition is similar for 
all these systems.

Ludlam, Taraskin, Elliott, DAD – JPCM 17 L321 (2005).



DO THE CORRELATIONS IN 
MATRIX ELEMENTS MATTER?

• The Anderson model gets all the qualitative 
features right: islands, resonant mixing etc.
around spectral gaps.

• But not the fine but important details 
around the band edges.

Yes – the correlations matter.



I I . THE URBACH TAIL PROBLEM

• Urbach1 noted exponential (not Gaussian) tails in optical 
absorption for impure crystals in 1953:

ω: photon frequency, ω0 and E0 fitting parameters

• It is ubiquitous (particularly in systems with disorder). 
• Venerable problem – various ideas: Halperin-Lax, Morrell 

Cohen et al, Dow-Redfield... Very different models.
• This has been carefully studied in amorphous Si. Exponential 

tails measured separately for each band edge2.

1F. Urbach, PR 92 1324 (1953)
2S.Aljishi et al., PRL 64 2811 (1990)  



PRELIMINARY: DEFECTIVE XTAL AND
ION-BOMBARDED DIAMOND SI

• Experiment1: ion-damaged 
diamond exhibits an 
exponential tail.

• Simulation2: SIESTA relaxed 
di-vacancy in 512-atom cell 
forms exponential tail.

• Relaxing di-vacancy yields 
strain field involving many 
atoms. The beginning of the 
Urbach tail?

1S. Sundari, Nuc. Inst. Meth. B 215 157 (2004)
2Y. Pan, F. Inam, M. Zhang, DAD, PRL 100 206403 (2008)



DENSITY OF STATES: LARGE 
AMORPHOUS SI MODEL

• Model: Barkema and Mousseau WWW-type: 
100,000 atoms. Excellent RDF, fourfold, 
tetrahedral with little strain.

• Hamiltonian: Kwon et al. orthogonal tight-
binding model, maximum entropy tricks to 
compute the DOS (ask me…)

G. Barkema and N Mousseau, PRB 62 4985 (2000)
DAD and O. F. Sankey, PRL 70 3631 (1993); DAD EPJB 68 1 (2009); K. Bandypoadhyay et al, PRE 71 057701 (2005)
I. Kwon et al, PRB 49 7242 (1994)



DENSITY OF STATES: 
RECONSTRUCTION FROM MOMENTS

Maxent form:
find Λi to match moments

E. T. Jaynes, Probability Theory: The Logic of Science, CUP (2003); DAD and O. F. Sankey, PRL  70 3631 (1993).



RESULT: EXPONENTIAL TAILS IN 
A-SI

EU=200 meV (valence) 
EU=96 meV (conduction)

εf



DISCUSSION

• The models include whatever structures 
“cause” the exponential tails. 

o conduction tail:  due to 1-D filaments of 
long bonds.

o valence tail: due to 3-D clusters of short 
bonds �nucleated� by a particularly 
short bond.

Y. Pan, F. Inam, M. Zhang and DAD, PRL 100 206403 (2008).



Tail states 
Bondlength decomposition as function of energy

Messages: 1) valence tail from short;  2) conduction from long; 
3) Defects add �noise� – but the pattern is evident nevertheless;  4)
Note the symmetry in B(E) about Ef, especially for M1.

M1, M2 – WWW (DTW)
M3-MD (Feldman)
M4-ART (Mousseau)
M5-WWW+xtal
M6,M7 – RMC (allowing
defects)
Phys. Rev. B 58 15624 (1998)
J. Non. Cryst. Sol. 354 3480 (2008)

Ef



BLOBS AND FILAMENTS: 
VALENCE STATES

Other blobs and filaments: Lyman
a emisson from a giant galaxy 
�string�. Paul Francis, ANU, 2004

Valence tail: connected blobs and filaments

Blobs and filaments in solids, not space:
J. Dong & DAD PRL 80 1928 (1998)
J. Ludlam, S. R. Elliott, S. N. Taraskin &
DAD  JPCM 17 L321 (2005)



AMORPHOUS SILICA 

• Silica tails: small θO-Si-O (valence), large θSi-O-Si
(conduction). 

F. Inam, J. Lewis, DAD PSS(a) 207 599 (2010)



CONCLUSION: URBACH TAILS

• Shorter bond �nuclei� create clusters of connected 
short bonds; local densification. Long bonds, wispy 
filaments. 

• Short bonds: valence tail, long bonds: conduction tail.
• Our models are too small to accurately compute fractal 

dimension D but we surely have:
Filaments:   D near 1 on the conduction side
Clusters:  D significantly higher than for the valence 

side
We link such electronic information to the connectivity/structure 
of the network. D is unknown for a real material – and varies 
asymmetrically about Ef.. [D~1.3 for Anderson model.]

• Some indication of greater generality: silica



I I I . LOCALITY OF QM IN 
DISORDERED SOLID STATE

Even for disordered system: almost all eigenstates fill space. Looks like 
the force on atom at R requires information from everywhere!

[Here, yn is a Kohn-Sham orbital.]

Can perturbing the solid 1m away from R really change the force on at 
R???  (No! Boys, Kohn, Vanderbilt, Daw...)

DAD Europ. Phys. J. B 68 1 (2009)



DENSITY MATRIX: GAUGE OF 
ELECTRONIC NONLOCALITY

W. Kohn: Density matrix ρ is localized by destructive wave-mechanical 
interference.                  Principle of Nearsightedness

One might suppose that destructive wave-mechanical interference 
should be influenced by structural disorder. Is it?

The decay of the density matrix is fundamental attribute of the material 
(and structure).

eigenstates



EXAMPLE: ALUMINUM

Metal: power law decay. Free electron gas gives similar DM 
to DFT! Gibbs’ ringing* from cutoff at Fermi surface.

ζ=kf|x-x�| 
n: density of electron gas

*Published by Henry Wilbraham (1848), On a certain periodic function, The Cambridge and Dublin Mathematical Journal 3: 198–201, 
Trinity College, when 22 years old, 50 years before Gibbs!

Kohn-Sham

S. N. Taraskin et al., PRB 66 233101 (2002)



DECAY OF DENSITY MATRIX IN 
INSULATORS: ANALYTIC APPROACH

Start with centrosymmetric n.n. tight-binding Hamiltonian

Two orbitals per
site, bonding and
antibonding, SC
lattice.

Density matrix is integral over Brillouin zone:

S(k) is structure factor, A(k) depends on S and tight
binding parameters. 



D.M. ASYMPTOTICS (CONT’D)

S is a (known) sum, depending on dimensionality D=1,2,3

Sum the series, use Stirling approximation, in 3D get (for
example):

2d, 3d: S. Taraskin, DAD, Elliott PRL 88 196405 (2002); also 1d: L. He and D. Vanderbilt, PRL 86, 5341 (2001).



REALISTIC CALCULATIONS (C-SI 
AND A-SI): DFT

The same exponential decay, crystal or amorphous!

X. Zhang and DAD, PRB 63 233109 (2001).



WANNIER FUNCTIONS

• Wannier functions: unitary transformations of 
eigenstates localized in real space.

• Not unique, butVanderbilt showed how to 
compute maximally-localized Wannier
functions1.

• Long range decay of these is similar for c-Si and 
a-Si, and similar to decay of density matrix.

• We compute with an O(N) projection method, 
results much like MLWFs.

1D. Vanderbilt and coworkers �Maximally-localized WF�, N. Marzari et al, RMP 84 1419 (2012)



WANNIER FUNCTIONS FOR 
DISORDERED SYSTEMS

Diamond a-SiDAD Eur. Phys. J B 68 1 (2009)



CONCLUSION: LOCALITY

We quantify Kohn’s Principle:

(1) Analytically for two-band insulator

(2) By direct calculation of r with Kohn-Sham 
orbitals for metals, crystalline and amorphous 
semiconductors. Also Wannier functions from 
projection.

(3) Topological disorder makes little qualitative 
difference, at least for a-Si (and SiO2).



IV. BUT WHAT OF LOCALIZED
ELECTRONS + PHONONS

• The electron-phonon coupling gauges how 
the electron energies/states change with 
atomic deformation.
• Phonon effects near the Fermi level: key 

to transport, device applications, theory 
of localization.
• We begin with a simple simulation….



THERMAL FLUCTUATIONS OF 
THE KOHN-SHAM EIGENVALUES

States near gap fluctuate by tenths of eV >> kT !

Τ=300Κ, 216
atoms, G point



SENSITIVITY OF ELECTRON ENERGY 
TO PARTICULAR PHONON

• Hellmann-Feynman theorem and harmonic approximation 
with classical lattice dynamics leads easily to fluctuations in 
electron energy eigenvalue <δλ2>:

We call Ξ the electron-phonon coupling



E-P COUPLING: A-SI, A-SE

Si

Se

Ξn(ω) = ∑α<ψn|∂H/∂Rα|ψn> χα(ω)
Couple electron n (energy E) and phonon ω

R. Atta-Fynn, P. Biswas, DAD Electron-phonon 
coupling is large for localized states, PRB 69 245204 
(2004); K. Prasai et al., Sem. Sci. Tech. 31 073002 (2016)



CORRELATION BETWEEN 
LOCALIZATION AND THERMAL 

FLUCTUATION FROM MD

Localization (T=0 property)

<δλ2>

Fits analytic result for low T

150K

300K

500K

700K

(T>0 property)



INTERPRETATION

1. Large e-p coupling for localized states near 
the gap. Localization amplifies e-p coupling.

2. For localized states, simple algebra1 leads 
to the conclusion that:
a) Ξn(ω)2 [for eigenvalue n] ~ IPR [n]
b) <δλ2> ∼ IPR

IPR = inverse participation ration; measure of localization

1 K. Prasai, P. Biswas & DAD Sem. Sci. Tech. 31 073002 (2016)



MATERIALS BY DESIGN
ENGINEERING THE GAP

Idea:  We want a spectral region to include no electron states –
we seek a model with a specified optical gap, or we want to 
impose a priori electronic information that an ideal model 
should have a particular gap…

Examples: band gap engineering for PV applications
: seeking conducting phases of semiconductors
: means to impose a priori optical info. in modeling 

K. Prasai, P. Biswas and DAD, Sci. Rept.  5 15522 (2015)
ibid., Phys Stat Sol A 213 1653 (2016)









PRACTICAL IMPLEMENTATION

Consider a Lagrangian L=T-F in which T is the usual
kinetic energy, and 

g(ln) is picked to move valence (conduction)
defect states into valence (conduction) tail.

Designed to push defect levels below Ef into the
valence band, levels above Ef into conduction band.

usual forces

“gap clearing” force



GAP ENGINEERING: 
CONTINUED

Biased dynamics (with forces added to open gap) at 
diffusive temperatures leads to relaxed structures with 
engineered gap.

In practice we carry out the melt-quench segment of the 
simulation with biased forces. After dynamical arrest, we
anneal and relax with physical forces and produce 
models with the desired optical gap. 

Implemented with ab initio code (VASP) and tight-binding.



EXAMPLE I: CLEAN UP THE GAP 
IN A-SI

TBMD    “gap force”    WWW                Density of states     

Red – coordination defects 97% fourfold (~87% tbmd)



RESULTS: A-SI

Note: STRUCTURAL features of “gap force” model is much
better than TBMD, close to WWW. Electronic a priori information
improves the structure.

Defects: structural
and electronic!



Example II: close the gap in
a-(GeSe3)1-xAgx Materials

- Solid Electrolyte (incredibly mobile Ag in glassy host)

- Conducting bridge (FLASH) memory materials: insulating phase 
and conducting phase (real devices you can buy!)

- Unclear identity of electronically conducting phase (little Ag 
wires or something else possible?)

- Possible application for multilevel memory and neuromorphic 
computing applications.

- This Work: Determination of electronically conducting phase at 
x=0.15 and 0.25, about 0.04 eV/atom above best semiconducting 
glass models.
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Optical Conductivity

DC Conductivity:

Insulating   ~10-6 S/cm
Metallic      ~102 S/cm

Kubo-Greenwood Formula
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Mechanism: impurity band hopping at Fermi-level, conduction
Through Se p-orbitals not silver!

K. Prasai and DAD
Phys. Rev. Mater. 1 015603 2017



2 4 6 8
r [Å]

0

1

2

3

4

g(
r)

2 3 4 5 6
r [Å]

0

5

10

g G
e-

Se
(r)

P1

P2

P3

Pair Correlations

Black: Insulating, Red: Metallic

(GeSe3)1-xAgx :   Ag2Se and GetSe1-t 



GAP ENGINEERING: 
CONCLUSION

• We give a practical recipe to impose a desired gap. 
(potentially useful for applications). 

• Constraining the electronic structure has 
structural consequences. We offer means
to include complex but important information in 
making a model that agrees with our full knowledge base

Can determine new phases of useful materials with desired
electronic properties



ADDITIONAL TOPICS (AS TIME 
ALLOWS): REAL-SPACE 

PROJECTION OF THE ELECTRICAL 
CONDUCTIVITY AND NOVEL 

MODELING SCHEMES



ELECTRICAL CONDUCTIVITY

• Electronic conduction is key in applications.

• Emerging computer memory technology is all 
about conducting and insulating “paths” in 
materials.

• High Temperature Coefficient of Resistance (TCR) 
makes a-Si:H an ideal material for IR imaging (night 
vision) applications. 

• We compute the conductivity using linear response 
theory: Kubo-Greenwood formula1.

R. Kubo, J. Phys. Soc. Jpn. 12 570 (1957); D. A. Greenwood, Proc. Phys. Soc. 71 585 (1958)



ESTIMATING THE CONDUCTIVITY

DC 
conductivity:

We compute all this for credible
structural models. Main T-dependence is
in the thermal (trajectory) average!

Thus, DC conductivity may be computed as the zero
frequency limit. To include the motion of the lattice (thus
temperature dependence), we average over the motion  
of the atoms from a simulation.



CONDUCTING PATHS: 
DECONSTRUCTING THE KUBO 

GREENWOOD FORMULA K. PRASAI , K . 
SUBED I , 

• Kubo-Greenwood formula: standard tool to compute 
electronic conductivity. From the atomistics (wave functions, 
energy eigenvalues) provides AC conductivity. Most physical 
derivation: Mott and Davis, first linear response theory 
(Kubo, Greenwood, Chester).

• The diagonal elements of conductivity tensor may be written 
in several equivalent ways, one. Is:

K. Prasai, P. Biswas, K. Subedi, K, Ferris and D. A. Drabold, Spatial projection of electronic conductivity, the example
of conducting bridge computer memory,  PSS Rapid Research Letters, https://doi.org/10.1002/pssr.201800238



EXTRACTING REAL-SPACE 
INFORMATION ABOUT 

CONDUCTIVITY

• Usually we make a model, want to know (say) DC 
conductivity. So compute Kohn-Sham eigenvalues and 
vectors, momentum matrix element and hey presto, 
R=7.2 kW. Can we extract more information?

• Here, I show how to get a Space Projected 
Conductivity (SPC) – what parts of the cell are active 
in conduction, which are not?

• Strategy is simple: write out Kubo-Greenwood 
formula as a sum involving Kohn-Sham orbitals in real 
space, leaving an expression of the form: conductivity 
= Sx [SPC(x)] = Sx z(x) – find the SPC function that 
achieves this

• For w > 0, tells us which parts of the network absorb 
energy for external radiation field (light!) at that 
frequency.



So by direct substitution:

OK, so now imagine a real-space grid, call the points {x} – we can discretize the integrals as a double
sum (on x,x’), compute the operation of p from finite differences. Then define complex-valued functions
on the grid points:



Then we have expressed the conductivity as a discrete spatial double sum (suppose uniform
grid spacing in 3D, call it h), so….

Define the Hermitian, positive semidefinite matrix

Then:



Take:  SPC = z(x)=|Sa G(x,a)|. In practice,
the positive, diagonal approximation z(x)=G(x,x) is
qualitatively similar.

In this case we then have: s(w)=Sx G(x,x)=Tr(G).

SPATIALLY PROJECTED 
CONDUCTIVITY (SPC)



SPECTRAL DECOMPOSITION : G
IS HERMITIAN, SO DIAGONALIZE IT.

L has units of conductivity, so diagonalize G and:

We have “eigenmodes of conductivity”



TRY IT OUT:

• We’ve tried this on FCC Aluminum, 
diamond Si, doped a-Si etc.

• We reproduce the usual KG results from 
VASP, and recent paper of Trickey et al.

• Details: typically ~45x45x45 points is 
enough: dim(G)=91000]



CBRAM 1: AL2O3+CU MODELS 
(~200 ATOMS, VASP)

Left: alumina: model and experiment1 Right: g(r) for 0, 10%, 20% Cu

1P. Lamparter, R. Kneip, Physica B 234-6 405 (1997).



CBRAM II: CU CLUSTERS IN 
AL2O3

Note 1: space-filling
Cu cluster for 20%
Broken link in 10%.

Note 2: clustering in 
Alumina, not in chalcs.



PROPERTIES OF G

ALUMINUM
Note: only a few L are
nonzero out of ~100,000.
All the “big” L vectors are 
very extended, others very
localized. Note the “tail” 
for metallic system.
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Left: G decay, right spectral
properties of G



G PROPERTIES: 
CONTINUED

• G(x,y) falls off nicely as function of |x-y|. 
Much like Kohn’s Principle of Nearsightedness.

• If one adopts the “diagonal approximation” 
SPC=z(x)=G(x,x) and compare attempts to 
include some off-diagonal information the 
details vary, the qualitative pictures do not.

• The spectral properties of G are very 
interesting, just starting to understand them. 



BADER PROJECTION ONTO ATOMIC SITES



SPECTRAL REPRESENTATION: 
ISOSURFACES FROM 20 EVECS OF G

(LEFT), ALL (RIGHT)

Very similar to z(x),
but decomposed into
“conduction modes”



GREY SCALE MAPPING 
OF SPC 

TOP: 
SEMICONDUCTING 

GESE3AG
MIDDLE: 10% CU
BOTTOM, 20% CU

K. Prasai, P. Biswas, K. Subedi, K, Ferris and D. A. Drabold,  PSS 
Rapid Research Letters, https://doi.org/10.1002/pssr.201800238



CONCLUSIONS ON 
CONDUCTIVITY

• This seems to actually work. If you look at electronic 
DOS near Ef, delocalized states banding through Cu 
are notable at 20%, more localized and with some 
spectral gap for 10% Cu, and for GeSeAg, Ag is 
completely uninvolved in gap/tail states, its all Se 3p.

• Lots of interesting things to try like phase-change 
memory materials.

• Interesting “basic physics” asymptotics of G, new 
dynamical effects (electron-phonon coupling etc)

• Could we adapt the same idea to the KGF for 
thermal transport?

• The dimensionality of the grid is a problem if we 
diagonalize, and even then the problem is ideal for 
Lanczos.



MODELING PARADIGMS AND 
IMPOSING A PRIORI INFORMATION

1) Simulation: Implement your best calculation (big cell, 
fancy interactions, long time evolution, etc). Hope that 
the results look like experimental ones.

2) Information: Try to invert the experimental data.

3) Merge the two: carry out simulation but impose the a 
priori (possibly experimental) information as part of the 
simulation.



INFORMATION PARADIGM: REVERSE 
MONTE CARLO

KAPLOW, MCGREEVY ET  AL .

• Information paradigm. What does experiment imply about 
the structure?

• �Reverse Monte Carlo�: put atoms in a supercell, move 
at random with Monte Carlo, keep moves if closer to 
experiment, accept with Metropolis probability if worse.

• Result: matches experiment by construction, but diffraction 
data alone is insufficient to produce a chemically realistic 
model. Still, it is a clever idea -- use the information you 
have!



RMC: DISCUSSION

• Promising if additional information (constraints) are 
employed. Has sort of worked for a-Si (but still only 88% 
fourfold).

• Has special flexibility to build in a priori information.

• Constraints are dangerous: we are imposing information, 
but we are potentially imposing errors – the model is only as 
good as the information employed!



FORCE ENHANCED ATOMIC 
REFINEMENT (FEAR): TEACH RMC 

CHEMISTRY

• Start with random model (assume density is known)

• Repeat to these two steps convergence:

-- Obtain N accepted moves from RMC [drives model 
toward experiment]

-- Take M conjugate gradients steps with energy functional 
[enforce chemistry]

Typically N~100, M~1-5.  Always N>>M. 



FORCE ENHANCE ATOMIC REFINEMENT(FEAR)

8
Pandey et. al, Phys.RevB 94, 235208(2016)

Partial Structural  
minimization

PartialEnergy  
minimization



EXAMPLE: FEAR FOR 
AMORPHOUS SIO2

• Adopt 648-atom, 1536-atom models.

• Use the van Beest (BKS) potential (PRL, 1990). Start with 
random coordinates.

• After 100 successful RMC moves, move all the atoms along 
van Beest gradient – only one step, not a full minimization.

• Repeat previous until convergence (fit and force) is achieved. 

• Need about 30,000 force calls

A. Pandey, P. Biswas, DAD Phys Rev B 92 155205 (2015)



FEAR OF SILICA

FEAR: minimization of error vs. experiment and total energy. 



RESULTS: SILICA 



AB INITIO FEAR – USE DFT (VASP 
OR SIESTA) AS ENERGY 

FUNCTIONAL

• First example: silicon and SIESTA 



RMC MELT QUENCH   FEAR

7

Blue: 4-fold

Green, Red
are 

coordinatio
n defectsRMC

FEAR

Melt-Quench

Pandey et. al, Scientific reports 6,33731(2016), JNCS J. Non-Cryst. Sol 492 27 (2018).



FEAR: A-SI  ANIMATION AND 
DETAILS



EXAMPLE: LETS TRY AMORPHOUS 
CARBON ACROSS DENSITIES

• Hard: Carbon happily sp3, sp2 or even sp bonds. Need a 
good potential. 

• Wealth of experiments to check against.

• We carry this out with largish models (up to 800 atoms), 
SIESTA as energy functional. Then relax final models with 
VASP (little change).



AMORPHOUS CARBON ACROSSDENSITIES

648atoms

Bhattarai, Pandey & DAD, Carbon,131 168 (2018); PCCP 20 19546 (2018)

Purple  
(sp3),  

Orange  
(sp2),  
Green  
(sp)
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LOW DENSITY (0.95 GM/CC) FEAR CARBON (800-, 648-
ATOM MODELS)

Purple (sp3), Orange (sp2), Green(sp)



A PREDICTION: EXAFS OF 
0.95GM/CC A-C. FAIRLY SMALL 

DIFFERENCES…
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COMMENT

• This computation  provides evidence that 
amorphous C with density near 1 gm/cc is a form 
of three-dimensional graphene: warped, wrapped 
sp2 sheets including ring disorder (pentagons, 
hexagons, heptagons) and also with sp and sp3

defects.



STRUCTURALCOMPARISON

Bhattarai et. al, PRL submitted(2018)



ELECTRONIC AND VIBRATIONAL
PROPERTIES



FEAR: AG-DOPED CHALCOGENIDES, 
[ (GESE3)1-XAGX X=0.05 ,0 .077]  DATA: 

ZEIDLER AND SALMON (BATH) VASP, A. 
PRADEL GROUP (MONTPELLIER)

A. Pandey, P. Biswas and D. A. Drabold, Inversion of diffraction data for amorphous materials, Scientific Reports, 6 33731 (2016).

http://www.nature.com/articles/srep33731


CONCLUSION (FEAR)
• Efficient:Fewer calls to force code.

• Robust convergence: Really works [a-Si, a-C (0.95-3.5 gm/cc), GeSeAg
materials]. We’re trying a metallic glass, fiddling with EXAFS too --
Pd40Ni40P20 (nothing to report yet!). Used empirical pots, tight-binding, 
SIESTA and VASP. Routinely produces (slightly) lower total energies than a 
reasonable melt quench.

•Dead Easy: if you know RMC and VASP, this is essentially a shell script.
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