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Diffraction techniques are making progress in tackling the difficult problem of solving the structures of nanopar-
ticles and nanoscale materials.
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The great gift of x-ray crystallography has made us
almost complacent in our ability to locate the
three-dimensional coordinates of atoms in a crystal
with a precision of around 10−4 nm. However, the
powerful methods of crystallography break down for
structures in which order only extends over a few
nanometers. In fact, as we near the one hundred year
mark since the birth of crystallography, we face a
resilient frontier in condensed matter physics: our
inability to routinely and robustly determine the
structure of complex nanostructured and amorphous
materials [1].
Knowing the structure and arrangement of atoms in a
solid is so fundamental to understanding its properties
that the topic routinely occupies the early chapters of
every solid-state physics textbook. Yet what has
become clear with the emergence of nanotechnology is
that diffraction data alone may not be enough to
uniquely solve the structure of nanomaterials. As part
of a growing effort to incorporate the results of other
techniques to constrain x-ray refinements—a method
called “complex modeling” (Fig. 1)—Mathew Cliffe,
Martin Dove, and Andrew Goodwin at Cambridge
University in the UK and David Drabold at Ohio
University in the US describe in Physical Review Letters a
simple but elegant approach for combining information
from spectroscopy with diffraction data to solve the
structure of several amorphous and nanostructured
materials [2].
Crystallography just works, so we rarely question how
and why this is so, yet understanding the physics of
diffraction can be very helpful as we consider the
nanostructure problem. The relationship between the
electron density distribution in three dimensions (i.e.,
the crystal structure) and an x-ray diffraction pattern is

FIG. 1: A schematic representation of the modeling paradigm
needed to solve complex nanostructures when no single data
set contains sufficient information by itself to constrain a
unique solution. (Illustration: Carin Cain, TEM image cour-
tesy of Mercouri Kanatzidis)

well established: the measured intensity distribution in
reciprocal space is the square of the Fourier transform
of the autocorrelation function �ρ(r)ρ(r + r�)� of the
electron density distribution ρ(r) [3]. The fact that we
get the autocorrelation function (rather than just the
density distribution) by Fourier transforming the
measured intensity leaves us with a very tricky inverse
problem: we have to extract the density from its
autocorrelation function. The direct problem of
predicting the diffraction intensity given a particular
density distribution is trivial, but the inverse,
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unraveling from the intensity distribution the density
that gives rise to it, is a highly nontrivial problem in
global optimization. In crystallography, this
challenging, nontrivial task is sometimes referred to as
the “phase problem.” The diffraction pattern is a
wave-interference pattern, but we measure only the
intensities (the squares of the waves) not the wave
amplitudes. To get the amplitude, you take the square
root of the intensity I, but in so doing you lose any
knowledge of the phase of the wave φ, and half the
information needed to reconstruct the density is lost,
since I = Ψ∗Ψ = A∗e−iφ Aeiφ = |A2|.
When solving such inverse problems, you hope you
can start with a uniqueness theorem that reassures you
that, under ideal conditions, there is only one solution:
one density distribution that corresponds to the
measured intensity. Then you have to establish that
your data set contains sufficient information to
constrain that unique solution. This is a problem from
information theory that originated with Reverend
Thomas Bayes’ work in the 18th century, and the work
of Nyquist and Shannon in the 20th century [4, 5], and
describes the fact that the degrees of freedom in the
model must not exceed the number of pieces of
independent information in the data. Finally, you need
an efficient algorithm for doing the reconstruction.
This is exactly how crystallography works. The
information is in the form of Bragg peak intensities and
the degrees of freedom are the atomic coordinates.
Crystal symmetry lets us confine the model to the
contents of a unit cell, rather than all of the atoms in the
crystal, keeping the degrees of freedom admirably
small in number. A measurement yields a multitude of
Bragg peak intensities, providing ample redundant
intensity information to make up for the lost phases.
Finally, there are highly efficient algorithms, such as
“direct methods,” that make excellent use of the
available information and constraints to find the
solution quickly from a horrendously large search
space. The problem is often so overconstrained that we
can cavalierly throw away lots of directional
information. In particular, even though Bragg peaks are
orientationally averaged to a 1D function in a powder
diffraction measurement, we still can get a 3D
structural solution [6].
Now it becomes easy to understand the enormous
challenge of solving nanostructures: the information
content in the data is degraded while the complexity of
the model is much greater. First, finite size effects
broaden the sharp Bragg peaks and the nanometer
scale is precisely the point where the broadening is
sufficient that the peaks start to overlap. (In fact, at this
point, we can’t even call them Bragg peaks). Second,
the complexity of the structural solutions goes up.
Now, we need more than the coordinates of a few
atoms in a unit cell—we need the arrangement of
hundreds or thousands of atoms in a nanoparticle.
Moreover, there can be complicated effects, like

finite-size induced relaxations in the core and the
surface. The final indignity is that the measured
scattering intensity asymptotically approaches zero as
the nanoparticle gets smaller and the weak scattering of
x rays, so useful in bulk samples, turns around and
bites us. In general, we have to measure the intensity
from a multitude of nanoparticles or nanoclusters, and
then tussle with the problem of how to deal with the
averaged data. Extensive efforts are being made, with
notable successes [7–9], but the nanostructure problem
remains a thorny one.
The use of total scattering and atomic-pair distribution
function (PDF) measurements for nanostructure studies
is one promising approach [10]. In these experiments,
powders of identical particles are studied using x-ray
powder diffraction, resulting in good signals, but
highly averaged data. Short wavelength x rays or
neutrons are used for the experiments giving data with
good real-space resolution, and the resulting data are fit
with models of the nanoparticle structures. Uniqueness
is a real issue, as is the availability of good
nanostructure solution algorithms; however, unique
structure solutions of clusters such as C60 have been
demonstrated recently [7]. These measurements have
served as proof of principle demonstrations that unique
nanostructure solutions from PDF data can exist in
favorable situations. However, there are also some less
encouraging results. Attempts to fit amorphous
structures, which have local order on the subnanometer
scale and lots of disorder, yield highly degenerate
results: many structure models, some completely
physically nonsensical, give equivalent fits to the data
within errors [11]. Degenerate solutions imply that
there is insufficient information in the data set to
constrain a unique solution. At this point we would
like to seek additional constraints coming from prior
knowledge about the system, or additional data sets,
such that these different information sources can be
combined, or “complexed,” to constrain a unique
solution, as shown in Fig. 1[1]. Complexing is done
either by adding constraints on how model parameters
can vary (for example, crystal symmetries), or by
adding terms to the target (or cost) function that is
being minimized in the global optimization process.
It is a major challenge to figure out ways to incorporate
disparate information sources into the global
optimization scheme and how to weight their
contributions to the cost function. In their paper, Cliffe
et al. demonstrate an elegant approach for introducing
the constraint that all local environments for a
particular atom are identical, information that is
available, in principle, from spectroscopy
measurements [2]. In simple terms, they introduce a
variance term into the cost function that adds a cost
when atomic environments of equivalent atoms in the
model deviate too much from one other.
What is encouraging about this result is that, in the
systems they studied, this simple term was the
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difference between successful and unsuccessful
nanostructure solutions. This tells us that complex
modeling is not just a pipe dream, but a real possibility.
We see that a relatively simple but well chosen
constraint added to the cost function can give the
structure solution real legs. In Cliffe et al.’s work it
allowed an inefficient optimization algorithm, called
simulated annealing [12], to solve the C60 structure by
vastly reducing the volume of the search space, even
though for this particular case, extra constraints beyond
the total scattering data turn out to be unnecessary to
solve the structure of C60 [7]. We have seen a similar
effect in our own work, where simply adding ionic
radii to a structure solution allowed us to solve
structures from total scattering data [13]. Again,
applying a simple constraint, which at first sight
contained a rather limited amount of information, was
all that was needed for success.
We may be relearning lessons from crystallography
again. Crystallographers have been expert in applying
simple constraints to achieve great effects. Two key
components in successful structure-seeking algorithms
are positivity and atomicity constraints. The first
requires that the correct solution will not include any
nonsensical negative density, and the second ensures
that electron density is sharply peaked in local regions
of space (the locations of the atoms) and approaches
zero in between. These constraints are just common
sense, but place enormous restrictions on the solution
space and the efficiency and uniqueness of solutions.
Nanostructure solution is much younger than
crystallography, but the field is rapidly growing up.
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