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Abstract

We evaluate the hypothesis of convergence to an optimal long-run body weight world-

wide. We formulate a simple rational non-addiction eating model to derive a testable

equation that allows us to verify the existence of a long-run body weight as well as its esti-

mation. We use a database of body mass index (BMI) estimates across countries over four

decades published by the NCD Risk Factor Collaboration. We find that BMIs converge

among European countries but not in the rest of the world. Consistent with the theoretical

model, our long-run estimates suggest that European nations will show an average BMI

above healthy levels. In particular, females and males will show average BMIs classified as

overweight levels (BMI=28.3). Confidence intervals and sensitivity analysis suggest that

males might reach long-term BMI levels associated with obesity (BMI>30). We discuss

the implications of our findings from the perspectives of health economics and economic

development.
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Highlights

• We evaluate the hypothesis of convergence to an optimal long-run body weight worldwide.

• A rational non-addiction eating model is formulated to derive a testable equation to verify the existence

of a long-run body weight and its estimation.

• BMIs converge among European countries but not in the rest of the world.

• Long-run BMI estimates suggest that female and male Europeans will show high overweight (BMI=28.3).

• Sensitivity analysis suggests that males might reach long-term BMI levels associated with obesity (BMI>30).
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1 Introduction

After years of persistent growth, obesity has become a serious concern owing to its well-known

negative effects. Obese individuals have worse labor outcomes, more health problems (diabetes,

strokes, and cancer, among others), and spend more on medical treatments for obesity-related

diseases.1 In this context, it would be desirable to characterize the evolution of this disease in

the future. In particular, we are interested in assessing whether the upward trend in obesity

will continue or become stable at a certain level.

In this study, we approach this question by applying the economic concept of convergence

to the average body mass index (BMI, kg/m2). Convergence rates are relevant to the extent

that they give information on how fast certain nations are likely to catch up to those with

relatively high BMIs. If countries converge in average BMIs, then all else being equal, the initial

conditions do not matter in the long term. Similar to convergence in incomes, convergence in

BMIs is not a desirable outcome per se. It also depends on the steady-state level the country

approaches and how far that level is from a healthy one.

In practice, convergence in BMIs might arise from convergence in diets and physical activities

across nations in an increasingly globalized world (Popkin and Gordon-Larsen, 2004). The

increasing similarity in diets worldwide leads to what has been called the dietary convergence

phenomenon (e.g., Popkin, 1993; FAO, 2004; Hawkes, 2006; Pingali, 2006; FAO, WFP and

IFAD, 2012). Such a global diet is characterized by a greater reliance on staple grains, increased

consumption of meat, dairy products, edible oil, salt and sugar, and a lower intake of dietary

fiber (FAO, 2004).

Theoretically, we show that, under certain conditions, the concept of convergence in BMIs can

be easily derived from a simple rational non-addiction eating model. As other studies show,

this model also predicts that the optimal long-run body weight could be above its healthy

1For a review of the economic consequences of obesity, see Cawley (2015).
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level (Levy, 2002; Dragone, 2009). Thus, the model allows us to derive a testable equation to

evaluate convergence and, potentially, to estimate a stable long-run BMI.

Our econometric models are estimated using data from a recently publicly available database

(NCD Risk Factor Collaboration, 2016) with estimates of average BMI per gender across 172

countries between 1975 and 2014. We estimate cross-sectional and dynamic panel models for

the world and different subsamples including 45 European countries. Given the data features

and the empirical model, we employ a consistent and efficient estimator for the dynamic panel

following Kiviet (1995) and Bruno (2005a,b), and check the robustness of our results in different

dimensions.

We find that BMIs do not converge worldwide. However, European countries converge in

BMIs. We argue that this fact might be associated with common food patterns, agricultural

policies, and health policies implemented by European countries. Our long-run estimates

suggest that European nations will show an average BMI above the upper limit of the range

of healthy levels (BMI = 25; see WHO, 2000, 2004), and both females and males will show

average BMIs classified as overweight levels (BMI = 28.3). Confidence intervals and sensitivity

analysis suggest that males might reach BMI levels associated with obesity in the long term

(average BMIs above 30). According to our point estimates, men converge relatively faster

to their steady states than do women.2 That said, this difference is statistically insignificant

across alternative model specifications.

We aim to contribute to three strands of the literature. By testing its predictions about

long-run overweight levels and convergence in BMIs, our study relates to the literature on the

rational eating model developed over the last two decades (see Philipson and Posner, 1999;

Levy, 2002; Lakdawalla and Philipson, 2009; Dragone, 2009; Dragone and Savorelli, 2012;

2In particular, the time that it takes to eliminate half the initial gap between the BMI in 1975 and its
long-run level is more than a century for women and about half of that for men.
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Buttet and Dolar, 2015). To the best of our knowledge, this is the first time the model’s

predictions have been tested empirically across countries.3

Second, we extend the convergence literature in development economics, which usually focused

on incomes across individuals or countries, but also extended to other indicators related to

health outcomes and living standards such as life expectancy and calorie intake (Ingram,

1992; Hobijn and Franses, 2001; Sab and Smith, 2002; Becker et al., 2005; Mazumdar, 2003;

Neumayer, 2003; Kenny, 2005; Ram, 2005; Soares, 2007; Clark, 2011; Weil, 2014; Apergis and

Georgellis, 2015). In our view, there is disagreement in the existing literature. On the one

hand, a number of studies find either convergence in levels or a fall in cross-country dispersion

in life expectancy and other health indicators such as calorie intake and infant survival (Ingram,

1992; Sab and Smith, 2002; Neumayer, 2003; Kenny, 2005). Along this line, Weil (2014) argues

that in the last fifty years, the convergence in health has been much faster than the convergence

in income. On the other hand, other works suggest a different conclusion. Hobijn and Franses

(2001) finds convergence in life expectancy, daily calorie supply, daily protein supply, and infant

mortality rate, but only in certain groups of countries. Mazumdar (2003) shows evidence that

supports divergence in life expectancy at birth, infant survival rate, calorie intake, and other

indicators in a sample of 92 countries. Our contribution lies in this segment of the literature.

Though we find convergence in body weights among Europeans, they converge to unhealthy

levels and only European nations converge among the countries in our world sample.

Third, our work complements another branch concerned with forecasting of obesity indicators

(see Kelly et al., 2008; Wang et al., 2008; Mills, 2009; Stamatakis et al., 2010; Haby et al.,

2011; Wang et al., 2011; Finkelstein et al., 2012; Majer et al., 2013). Our evidence suggests

that body weights among European nations, on average, may be reaching a stable long-run

level, all else equal. In this sense, our findings back the forecasting models that predict a

leveling off of European BMIs in the future over those that include linear trend components

and predict unbounded growth in obesity indices.

3The literature on convergence in obesity is scarce. For the only studies of convergence in obesity prevalence
rates across US states, see Li and Wang (2016a,b).
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Finally, our findings suggest different policy challenges and research agendas across world

regions. In the rest of the world, where we do not observe converge in BMIs, we need to be

cautious because of the heterogeneity in BMIs across economies and over time. It is necessary

to identify the countries that might be approaching levels of BMI classified as overweight and

those that show a sharp upward, perhaps alarming, trend in their BMI series. In that sense,

it is desirable to investigate what type of policies could drive countries to converge to healthy

levels of BMI. The convergence observed among heterogeneous countries as the European

nations, as well as the variety of their policies, lead to the natural task of assessing what kind

of public policy (health, food, agricultural, trade, etc.), if any, has been effective to prevent

higher obesity and overweight levels. In any case, given the low convergence rates we find in

the European sample, policies that seek to reduce obesity in the world have to be as persistent

as the BMIs series. For the same reason, any serious evaluation of the effectiveness of such

policies would require more than a few years.

The paper proceeds as follows. The next section briefly formulates the model’s predictions and

explains the economic intuition. Section 3 focuses on the main features of the data. Section 4

presents the empirical models, results, and robustness checks. Section 5 discusses our findings

and conjectures some explanations. Section 6 concludes with some final remarks.

2 The Model

Our basic setup considers the most important features that rational eating models in the

literature have in common (see, e.g., Philipson and Posner, 1999; Levy, 2002; Dragone and

Savorelli, 2012).4 Consider a representative agent that chooses sequences of consumption and

weight in order to maximize

U = E0

∞∑
t=0

βt
[
ct

(
c− ct

2

)
− b

2

(
wt −wI

)2]
(1)

4See also Dragone (2009); Lakdawalla and Philipson (2009), Buttet and Dolar (2015), and Barbieri (2016).
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subject to a law of motion of weight

wt+1 − wt = φct − δwt + εt+1, (2)

an initial weight (w0 > 0), non-negativity constraints, and the corresponding transversality

condition. In this setup, 0 < β < 1 is the subjective discount factor, c denotes food consump-

tion, w is the individual’s body weight, 0 < δ < 1 is the rate at which the individual burns

calories and, therefore, loses weight (e.g., metabolism), φ is the marginal effect on weight from

one unit of food consumption, c can represent the satiation consumption level (more on this

below), b is a positive preference parameter, and wI > 0 is the ideal body weight.5 We include

a zero-mean i.i.d. term εt+1 to capture measurement errors and non-systematic unpredictable

changes in weight observed every period, but that are nil on average (e.g., diet-binge cycles,

change in weight owing to illness or accidents, pregnancy, etc.). We assume that the adult in-

dividual’s weight is rescaled by height and normalized, for simplicity, to 1. Thus, body weight

and BMI are equal in the model.

We follow Dragone and Savorelli (2012) in interpreting c, alternatively as the solution of a

standard static problem in which the individual maximizes utility by choosing amounts of food

and a non-food goods subject to a budget constraint. In such a case, if food is a normal good,

c increases with income and decreases with the price of food (see Appendix A in Dragone and

Savorelli, 2012).

The next two model predictions support the convergence hypotheses that we test in Section

4.6

5The ideal weight can be understood as a convex combination of a physiologically optimal weight (wH)
and a subjective or socially desirable body weight (wS). That is, wI = µwS + (1 − µ)wH , with 0 < µ < 1.
The introduction of wI as a weighted average helps to accommodate different setups with only wH (as in the
baseline model by Levy, 2002, Dragone, 2009, and Buttet and Dolar, 2015), or with both wH and wS (as in
Levy, 2002, Dragone and Savorelli, 2012). Given the exogeneity of wI , the assumption is virtually innocuous
for our analysis.

6Appendix A provides the proofs.
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Prediction 1. Steady-state overweight. Let w be the weight associated with satiation

level c. If w > wI in the steady-state equilibrium, then the optimal body weight is above the

ideal weight:

wss > wI (3)

Intuitively, if w > wI , then the rational individual faces the trade-off in choosing a weight level

between w and wI in the steady state. An individual choosing the satiation level (associated

with w = w) reaches the highest utility from food consumption, but at the cost of high disutility

from being far from the ideal level wI . An individual choosing a level of consumption associated

with w = wI minimizes the disutility from having a weight different from the ideal level, but

at the cost of lower utility from consuming food below the satiation point. The optimal weight

is a point between these two extremes. An analogous reasoning would disregard weights above

w or below wI as optimal. Therefore, the steady-state weight is above the ideal weight.

While the prediction is not novel,7 to the best of our knowledge, it has not been tested

empirically before and it is useful for the analysis that follows. The next proposition will help

us formulate the empirical model.

Prediction 2. Convergence in weights. The solution to the linear-quadratic problem

above yields an optimal weight that evolves as

Δwt+1 = α0 + α1wt + εt+1 (4)

with α0 > 0 and −1 < α1 < 0. In the equation above, a negative sign on α1 implies convergence

in body weights. An analogous equation, with GDP growth instead of the change in body

weight, is derived from a neoclassical growth model in the literature of growth economics (see,

e.g., Barro and Sala-i-Martin, 1992; Durlauf et al., 2009).

7For a similar proposition, see Levy (2002 and 2009) or Dragone (2009).
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As shown in Appendix A.2, α1 in equation (4) depends on preference parameters (b and β)

and coefficients that could be associated with obesity genes (δ and φ). The latter is in line

with the concept of intergenerational transmission of weight studied by Classen and Thompson

(2016) and Dolton and Xiao (2017).8

The intuition behind the prediction is as follows. Consider two representative adult individuals

from two different countries (say, L and H) that share the same steady-state weight and

whose initial body weights are below this steady-state level (w0,L < w0,H < wss
L = wss

H ). In

the transitional dynamics, the representative individual with low weight tends to gain weight

faster than the individual with higher weight because the former is further from her steady-

state equilibrium and, therefore, the utility from increasing consumption is larger than the

disutility from gaining weight (compared to the latter individual). It is optimal for her to gain

weight faster than the individual who is closer to her steady state. The high-weight individual

still enjoys utility from increasing consumption over the disutility from gaining weight, but

in a smaller magnitude than the low-weight individual. The equation above allows us to test

convergence and, in turn, to verify if the deterministic steady-state (height-adjusted) body

weight is above the ideal level. The latter will hold if wss = −α0/α1 > wI .

3 Data

The NCDRisk Factor Collaboration (2016; NCD-RisC, henceforth) developed the BMI database.

The data collection considers 1,698 population-based data sources, with more than 19.2 mil-

lion adult participants (9.9 million men and 9.3 million women) in 200 countries and territories

between 1975 and 2014. NCD-RisC aggregates the population-based survey to construct data

at a country level. Thus, our unit of observation is a country. When we mention the average

BMI of a female or a male individual in our empirical analysis, we refer to the representative

(female or male) individual of each nation. This is an important point to bear in mind when

8See Silventoine et al. (2010) for a review of the evidence of genetic influence in obesity.
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interpreting our results. That said, we also report estimates using population weights as a

robustness check (more on this in the next section).

From this database, we first focus only on economies with GDP data available. Thus, our

world sample consists of 172 economies. We split the full sample in different world regions but,

for the sake of simplicity, we group countries into European and non-European regions only.

Other subdivisions of the non-Europe sample (e.g., Asia-Oceania, Africa, or the Americas) in

the empirical analysis that follows provide similar conclusions.9 The criterion adopted defines

Europe in a wide sense to maximize the number of observations. Hence, our European sample

contains 45 countries and the non-European sample includes 127 countries (for the list of

countries, see Appendix B). Table 1 shows the descriptive statistics of the BMI indicators and

other variables used in the analysis.

This database is suitable for a study of convergence due to its long-run BMI series and the

coverage of a broad collection of countries and years. Moreover, the BMI series are age-

standardized and do not use self-reported height and weight.10 Likewise, we deal with some

potential issues worth mentioning. First, we opt to use unadjusted BMI series, that is, those

that were not calculated using covariates (income, urban population rate, and schooling years)

to minimize any artificial influence of such covariates in our results. Table 1 shows descriptive

statistics of both datasets. As we can see, there are not important differences in the summary

statistics.11 Second, the BMI estimates tend to show – as one could expect – high standard

errors during the initial periods of the sample, especially in the 1970s. We therefore assess the

sensitivity of our main estimates to a truncated sample that starts in 1980.12

9The results from other subdivisions are available upon request.
10This is important because self-reported data “are subject to biases that vary by geography, time, age, sex,

and socioeconomic characteristics” (NCD-RisC, 2016; p.1378).
11The unadjusted dataset was kindly provided by the NCD-RisC upon our request. The NCD-RisC notes

that BMI data with and without covariates lead to almost identical results in most economies, except those that
do not have any data available. These are Brunei, Bermuda, and North Korea. The latter is not part of our
analysis due to the lack of GDP data. We use adjusted data (calculated with covariates) as a robustness check
only.

12Naturally, another potential limitation is related to BMI data quality particularly in low-income developing
economies.
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The rest of the controls variables are PPP-adjusted real GDP per capita, human capital

indices, and urbanization rates. The first two come from the Penn World Tables (see Feenstra

et al., 2015), whereas the latter comes from the World Development Indicators (World Bank).

[Table 1 about here.]

4 Estimation and Results

In this section, we use equation (4) as well as cross-sectional and panel data to test the

hypothesis of convergence in BMIs and verify whether the long-run BMI, if it exists, is above

its healthy level.

4.1 Cross-sectional Evidence

Let wit be the average height-adjusted body weight or BMI index for a country i in period t.

In Appendix A.3, we show that equation (4) implies a relationship between the initial weight

and the average change in weight between the initial and final periods ((1/T )(wiT − wi0)):

wiT − wi0

T
= γ0 + γ1wi0 + νiT (5)

where T is the final sample period and νiT is a classical error term. The change in BMI is

properly rescaled by the number of periods to have changes at a yearly frequency and results

comparable with the panel estimations below. Our interest is to estimate the parameters γ0,

γ1, and test the null hypothesis γ1 ≥ 0, with the alternative of convergence, γ1 < 0. We

can obtain the steady-state BMI value with the parameter estimates and the ratio −γ0/γ1
(Appendix A.3 shows the derivations).

We estimate the model using average BMI data for both the representative female and the

representative male individual. Table 2 displays the parameter estimates and (bootstrapped)

standard errors for the three samples (world, non-Europe, and Europe). The table also shows
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other estimates and statistics, including the steady-state BMI, its 95%-confidence interval, the

p-value related to the null hypothesis that the long-run BMI is lower than 25 (steady-state

under-weight), the p-value related to the null hypothesis that γ1 ≥ 0 (no convergence), and the

half-life (number of years it takes to eliminate half the initial gap between the 1975 BMI and

its steady-state level ).13 We assume that the ideal BMI, wI , equals the healthy BMI value

of 25. This is probably a conservative value since it is simply the upper bound of the range

between 18.5 and 25 found in the literature.14

[Table 2 about here.]

We begin by estimating the model using the world sample. According to columns (1)-(2) in

Table 2, we find convergence in BMIs among representative females, but not among repre-

sentative males of each country. The slope parameter is negative and statistically significant

at conventional levels only for females. Columns (3)-(4) reveal no convergence among non-

European women and men. In contrast, the results in columns (5)-(6) allow us to reject the

null of no convergence for the European sample. In other words, two conclusions emerge from

this first set of results. First, Europe seems to be a convergence club in BMIs. Second, the

convergence of female individuals’ weights observed in the full sample is driven mainly by

Europe’s observations because there is no evidence of convergence in the rest of the world.

Figures 1 and 2 illustrate the cross-sectional evidence of convergence. The scatter plots

display pairs of the initial (1975) BMI and the average change in BMI between 1975 and 2014

for female and male individuals from each country. The figures also show the corresponding

regression fit. The graphs suggest a catching-up effect in Europe (bottom panels in Figures 1

13When the null of no convergence is not rejected, the steady-state estimate and its variance take unreasonable
values (e.g., negative long-run BMI with large variance). Hence, we report estimates and statistics of interest
only if the null of no convergence is rejected.

14For example, Berrington de Gonzalez et al. (2010) conclude that the age-standardized rate of death from
any cause is generally lowest among individuals with a BMI of 22.5 to 24.9. The WHO (2000, 2004) considers
any BMI between 18.5 and 24.99 as normal weight. As we mentioned in Section 2, the ideal weight or BMI
is not necessarily equal to the healthy BMI. However, because we do not observe ideal BMIs by country, we
assume the most conservative value of a healthy BMI as the ideal BMI, which would be consistent with the
literature above-mentioned.
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and 2): countries with relatively low BMIs in 1975 tended to gain weight faster, on average,

than those with relatively high BMIs. The opposite is shown in the non-European sample for

males, whereas the convergence coefficient is slightly negative but statistically insignificant for

females in non-European nations.

[Figure 1 about here.]

[Figure 2 about here.]

According to the cross-sectional evidence, the average female in Europe converge at a rate

of 0.019 (kilograms per square meter) per year, whereas the average male shows a lower rate,

0.010. Seemingly, these are relatively low rates of convergence. In contrast to the rates of

convergence in per capita GDP (around 0.02 per year),15 these rates might look small. From

our viewpoint, this is not surprising. Strictly speaking, these rates are not comparable. Body

weights are stocks, whereas per capita GDP measures are flows and are therefore susceptible to

more abrupt changes over a given period time. Likewise, in the rational eating model discussed

above, the individual’s body weight is a stock and food consumption is a flow.16

Table 3 shows a number of robustness checks for the European sample. Columns (1)-(2)

display robust LS estimates, which seek to minimize the effects of potential influential obser-

vations on our estimates (see, for example, the dots at the upper left corner in the European

panel of Figure 1).17 As expected, the slope parameters are negative and statistically signif-

icant at conventional levels. Columns (3)-(4) show that the corresponding estimates are not

considerably different if we restrict the sample period and start in 1980. Next, we include other

15This is the so-called “iron-law” rate of 2% (see Barro, 2015).
16If we extend the model above by including the costs of changing consumption habits in the utility function, as

in Dragone (2009), we could obtain another theoretical reason to explain the slow convergence in body weights.
As the author contends, in that case, the optimal path implies a slower convergence, but with fluctuations above
and below the steady-state body weight. Another component of the persistence of BMI is the intergenerational
transmission of genes (Classen and Thompson, 2016).

17We use an M-estimator with a Huber objective function and Gaussian efficiency of 95%. The results using
an MM-estimator provide similar conclusions and are available upon request.
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regressors to verify if these controls might influence our conclusions. To that end, we estimate

wiT − wi0

T
= γ0 + γ1wi0 + γ′2(xi0 − x∗

i0) + νiT (6)

where γ2 denotes a column vector of coefficients and (xi0 − x∗
i0) is a column vector of controls

expressed in deviations from their long-run levels. These control variables include GDP per

capita, a human capital index, and urbanization rate (see Appendix B for further details

about the definitions and sources). We include controls in percent deviations from their long-

run levels to create an empirical model consistent with the steady-state equilibrium implied by

the theoretical model (i.e, xi0 − x∗
i0 = 0 in the long run). We estimate long-run components

using a Hodrick-Prescott trend for GDP per capita, and sample means for human capital index

and urbanization rate.

As columns (5)-(6) in Table 3 show, the parameters of these controls are not statistically sig-

nificant (with p-values of 0.653 and 0.94) and the main conclusions do not change substantially.

We observe relatively high standard errors, which, in turn, enlarge the confidence intervals for

the long-run BMI estimates (see columns (5) and (6)). This might be related to a smaller

sample compared to that used in the baseline models, or the inclusion of statistically irrelevant

regressors.

[Table 3 about here.]

In the last robustness check of this cross-sectional analysis, we re-estimate the baseline models

using adjusted BMI data (columns (7)-(8)). The results again verify both model’s predictions.

The parameter values and signs are as expected. The convergence rates (0.016 and 0.012) are

slightly different from those in the baseline case (0.019 and 0.010), but the differences are not

substantial.
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4.2 Panel Data Evidence

In this section we exploit both the cross-sectional and time dimension of the data. For that

purpose, we estimate:

Δwit = α0 + α1wit−1 + εit (7)

with εit = ηi + μt + νit, Etεit = 0, where ηi and μt represent fixed country and time effects

with zero mean.18 In light of the theoretical model, fixed country effects may arise from

heterogeneities such as different ideal weights or satiation points across countries. Time effects,

in turn, allow us to capture either common shocks that affect BMIs differentially over time or

short-run trend components as part of a transitional dynamic toward a steady state.19

Our panel estimations imply a cross-sectional dimension (N) similar to the time series di-

mension (T ). It is well known that for small T and large N , the fixed-effect or least-squares

dummy variable (LSDV) estimator of an autoregressive panel data model is inconsistent (Nick-

ell, 1981). Prior studies propose a number of estimators that attempt to deal with this issue.

Monte Carlo evidence suggests that LSDV is inconsistent but has a smaller variance than the

IV and GMM estimators do (Arellano and Bond, 1991; Kiviet, 1995; Judson and Owen, 1999).

Along this line, Kiviet (1995) proposes an approximation to the small sample bias of the LSDV

estimator. This biased-corrected fixed effects estimator (LSDVC) tends to show a lower bias

and a lower root mean squared error compared to the IV and GMM estimators even when

the panel is unbalanced (Bruno, 2005). Based on Monte Carlo simulations, Judson and Owen

(1999) also recommend the LSDVC estimator. Moreover, recent Monte Carlo studies coincide

and suggest that bias-corrected fixed-effects estimators are the most accurate and robust esti-

18In the jargon of the growth convergence literature, we are not testing for absolute convergence, but for
conditional convergence; that is, conditional to each country’s characteristics.

19We reject the null hypothesis that the panels contain unit root processes in our samples (against the
alternative of stationary panels) using the Levin, Lin and Chu (2002) test at standard levels of significance.
Likewise, we reject the null hypothesis that all panels contain unit root processes in our samples (against the
alternative that at least one panel is stationary) using the Fisher test (PP Chi-square statistic) at standard
levels of significance. We use a constant, a linear trend, and Bartlett kernel in each test. The statistics and
p-values are available upon request.
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mators compared to the IV and GMM estimators (Flannery and Hankins, 2013; Dang et al.,

2015). It is worth highlighting that the LSDVC assumes exogeneity in the regressors, except

for the lagged dependent variable. This assumption constitutes a limitation in some cases, but

it is virtually harmless for the purposes of our study because we are mainly interested in the

constant and the auto-regressive parameter. We do not include other regressors in our baseline

model, though when we do, it is for sensitivity purposes and we are not particularly interested

in the coefficients on those regressors. All things considered, we opt to estimate the model

using LSDVC.

Once again, we first report estimates and statistics for the three samples. Table 4 reports

our main panel data results using LSDVC. We confirm the conclusion from the cross-sectional

analysis that females’ BMIs converge in the world sample (see column (1)) only because there

is convergence in Europe (column (5)).

Columns (5)-(6) show our preferred (baseline) results. We find the expected signs and values

for our model parameters and the convergence rates are statistically significant. Again, we

find relatively low rates of convergence. Female and male Europeans converge at rates of 0.006

and 0.015 per year, respectively. If we assume that the mean heights of females and males are

1.70 and 1.80 meters (approximately 5.6 and 5.9 ft.), respectively, the estimated convergence

rates imply that, over a decade, the average woman and average man gain approximately 0.18

kg. (0.4 pounds) and 0.5 kg. (1.1 pounds), respectively. In turn, the estimated convergence

rates entail half-lives of 110 and 45 years, respectively (last row of Table 4). In other words, it

takes more than a century to eliminate half the gap between the female BMI in 1975 and its

long-run level.

Our baseline results also show that the steady-state weights are above healthy levels as the

theoretical model predicts (recall prediction 1). In the long run, European nations will be

overweight with a BMI level of 28.3 (columns (5)-(6) from Table 4). For male weights, we

obtain wider 95%-confidence intervals. Statistically speaking, the female confidence interval

([27.8 29.1]) neither includes nor is included in the male interval ([27.9 32.5]).
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[Table 4 about here.]

Table 5 reports a few additional exercises to verify the robustness of our baseline results. As

in the cross-sectional analysis, we control for other potential regressors and estimate

Δwit = α0 + α1wit−1 + α′
2(xit − x∗

it) + εit (8)

where α2 is a column vector of parameters, and (xit − x∗
it) is a column vector of controls

in deviations from long-run levels similar to that defined above. In this case, we verify our

previous results again (see columns (1)-(2)). Convergence is present among European nations

and the long-run BMIs are above healthy levels.

Columns (3)-(4) show the results when we drop the first periods, those that show more

uncertainty in the BMI estimates, and start to estimate in 1980. Our results are not sensitive

to this modification and the main conclusions are unchanged. Finally, columns (5)-(6) display

the estimates when we use the adjusted BMI data reported by NCD-RisC (2016). In all of

these robustness checks, we obtain statistically significant convergence rates in the BMIs levels

of both European females and males. The steady-state overweight (average) BMI levels among

European countries (in female and male samples) are a robust finding. Moreover, note that

confidence intervals for male Europeans include BMI levels above 30 (column (6) in Table 4,

columns (2), (4), and (6) in Table 5) and the estimates using adjusted data deliver a point

estimate of 30.8 (column (6) in Table 5). That is, based on these data, the results support the

possibility of a long-run obesity among European males.

[Table 5 about here.]

Further modifications of the baseline model that consider population weights and different

divisions of the European sample such as (i) Mediterranean nations, (ii) the European Union,

and (iii) Eastern Europe (including the Russian Federation), with their corresponding com-

plements, can be found in the Appendix (Tables A1 and A2). The lists of countries in each
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subgroup are included in Appendix B2 and the note of Table A2. We find that BMIs converge

when we use population weights and even within those subsamples of European countries.

Notably, we find convergence in BMI among EU members. Likewise, steady-state BMIs are

above healthy levels in these alternative specifications using a 5% significance level.

It is worth highlighting that, despite we comment some gender heterogeneities in point esti-

mates of convergence rates and long-run BMIs, such differences are statistically insignificant

across the various specifications we report in the robustness checks. That is, we cannot affirm

that we find robust gender differences across our alternative specifications (see columns (5)

and (6) in Table 4, as well as Tables 5, A1, and A2).

5 Discussion

The upward trends in BMIs, sometimes viewed as alarming, seem to exist worldwide. Europe

is an exception to a certain extent. In the terminology of growth economics, European nations

form a convergence club. The evidence above suggests that Europeans converge in height-

adjusted weights. Put differently, the rising trend of BMIs in Europe is, at least on average,

related to a catching-up effect. Through the lens of the simple theoretical model discussed in

Section 2, it constitutes a trajectory toward a steady-state equilibrium. Nevertheless, conver-

gence of BMIs is not a desirable outcome per se. As we commented in the introduction, it also

depends on the long-run equilibrium that these dynamic behaviors approach and the distance

of this equilibrium from a healthy level. The steady-state estimates in the baseline models sug-

gest that European nations are converging towards an average BMI of 28.3, a relatively high

level in the overweight BMI category. Again, this value is above the upper limit of the range of

healthy BMIs and most of the confidence intervals for long-term BMIs do not include healthy

levels. These results motivate a key question: Why do adults’ weights converge in Europe and

not in the rest of the world? After we address this question, we discuss the implications of our

results for obesity forecasting.
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5.1 Why do European countries converge in weight?

European nations show convergence in BMI because their governments –in contrast to those

from other world regions– have regularly applied food and health policies that, combined with

other market regulations and trade policies, have tended to moderate, directly or indirectly,

intentionally or unintentionally, the growth in their citizens’ weights.

Common food patterns and agricultural policies

Some literature suggests the formation of a common food pattern in European countries.

Grigg (1993) argues the existence of convergence in the nutritional composition of European

diets. Gil et al. (1995) and Gracia and Albisu (2001) predict a relatively low growth in food

consumption in the European Union (EU) because it has reached a level close to its maximum.

Furthermore, it is possible that the historical regulation of the agricultural sector, jointly with

trade barriers, determined the number of available food products and possible shaped consump-

tion habits towards healthier foods to a certain extent.20 The European Common Agricultural

Policy may have contributed to the homogenization of food production and consumption pat-

terns in that direction. As long as consumption habits persist over time, then our findings of

convergence in BMIs could be related in part to this pattern of food consumption, which seems

to be more frequently observed in Europe than in other world regions. This implies, in turn,

a flatter BMI curve over time, and consequently, a higher convergence rate among European

nations.

Health policies

Sisnowski et al. (2015) report a wide array of supranational and national regulatory ap-

proaches that the EU members have followed to reduce obesity. Supranationally, EU reg-

ulations cover aspects such as consumer information through nutrition labeling, marketing

practices, food reformulation, and setting-specific nutritional standards, among others. At the

national level, governments’ efforts aimed to regulate food advertising (4 out of 28 EU coun-

20In this line of argument, Cutler et al. (2003) contend that people in more regulated countries, and particu-
larly, more regulated agricultural sectors, tend to be less obese.
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tries), nutrition labeling (6 countries), product reformulation (6 countries), and taxation (3

countries).

Some examples can illustrate this point. First, the most important differences in the policies

applied in the EU with respect to those in the US rely on food advertising, product reformula-

tion, and taxation (see Table 2 in Sisnowski et al., 2015). Second, Denmark, France, Hungary,

and Iceland have used different tax instruments to change food purchasing behaviors.21 Third,

limitations to trans fat content are in place in six EU states (Austria, Belgium, Denmark,

Greece, Sweden, and the UK) and Iceland.

Though the attempts and advances in food and health policies in Europe probably played

a role in curbing BMI growth, such policies probably had limited effectiveness for at least

two reasons. First, these policies were applied especially over the last years of our period of

analysis, which is consistent with the view that it was not until the 2000s that the EU focused

on overweight individuals and obesity (Kurzer and Cooper, 2011). Second, as Sisnowski et

al. (2015) argue, such regulations are limited in reach and scope. Thus, although these food

and health policies could have helped convergence in BMI, they can be only part of a more

comprehensive explanation.22

Through the lens of the simple rational eating model, the preferences for local healthy goods

and especially the concern about healthy levels of weight, probably represented or induced by

the policies mentioned above, can be captured by the parameter that governs the disutility

of deviations of the individual’s weight from the healthy weight (b in the utility function). It

can be shown that the higher the value of b, the higher the convergence rate toward a (lower)

steady state.23

21Denmark abolished the tax on saturated fat in 2013.
22Social environmental characteristics can be another mechanism through which health policies can influence

BMIs. For example, Raftopolou (2017) shows that green areas or neighborhood safety positively affect individual
and women’s BMI and obesity in Spain.

23On the other hand, from a macroeconomic viewpoint, one could argue that convergence in height-adjusted
weight is a consequence of convergence in per capita GDP. However, the empirical evidence is not conclusive
about per capita GDP convergence in European economies (see, e.g., Cappelen et al., 2003). In addition, even
if convergence in income per person holds in our sample, there might be third factors, such as human capital,
institutions, or technology advances, behind both types of convergence. For instance, Cutler et al. (2003; p.116)
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5.2 Implications for BMI forecasting

Epidemiological forecasting focuses on predicting the BMI and prevalence rates needed for

population health planning and evaluation. The rational eating model jointly with our results,

also has implications in BMI forecasting, at least for Europe.

Several models and techniques have been proposed to predict BMI: multiple linear regression

models (Haby et al., 2011) and generalized additive models (Majer et al., 2013), among others.

Other works focus on forecasting prevalence rates mostly related to overweight individuals and

obesity (Kelly et al., 2008; Mills, 2009; Wang et al., 2011; Finkelstein et al., 2012). The use

of linear trend components to forecast BMI or prevalence rates is not unusual (Stamatakis et

al., 2010; Haby et al., 2011; Wang et al., 2011; Finkelstein et al., 2012). Notably, Wang et al.

(2008) projects a prevalence rate of 100% in the overweight and obese categories in the US by

2048.

In our view, the reduced-form of the rational eating model derived and estimated above

suggests an alternative to predict average long-term BMIs. If the average short- or medium-

term trends we observe are actually a transitional dynamic toward a long-run equilibrium,

as our model suggests, then there exists an upper bound to any forecast of future BMI that

practitioners and forecasters should consider in European countries.24 Put differently, our

findings back the forecasting models that predict a leveling off of BMIs in the future over those

that include linear trend components and predict unbounded growth in BMIs.

6 Summary and Final Remarks

In this paper, we examine two predictions of the rational non-addiction eating model: long-

run overweight BMI levels and convergence in BMIs level. Despite the upward and seemingly

contend that “Over the broad sweep of history, improvements in health and income are both the consequence
of new ideas and new technology, and one might or might not cause the other.”

24Likewise, we should observe an upper limit to prevalence rates if the distribution of BMIs and the parameters
that govern its variance do not change in the long run.
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alarming trends in the prevalence of overweight and obesity in many countries, we identified

a world region in which average BMIs tend to converge across economies: Europe. In turn,

we found limits to the rational eating model in explaining long-run dynamics of body weights.

We believe that much still remains to do to extend or improve this theoretical framework.

Our results suggest different policy challenges and research agendas across world regions. In

the rest of the world, in which we do not observe converge in BMIs, we need to be cautious

because of the heterogeneity in BMIs across economies and over time. It is required to identify

the countries that might be approaching levels of BMI classified as overweight and those that

show a sharp upward, perhaps alarming, trend in their BMI series. In that sense, it is desirable

to determine what type of policies could drive countries to converge to healthy levels of BMI.

The convergence observed among heterogeneous countries as the European nations, as well as

the variety of their policies, lead to the natural task of assessing what kind of public policy

(health, food, agricultural, trade, or other25), if any, has been effective to prevent higher long-

run BMIs.

In any case, given the low convergence rates found in Europe, probably due to the persistence

in eating habits and physical activities, policies that seek to reduce obesity in the world have

to be as persistent as the BMIs series. For the same reason, any serious evaluation of the

effectiveness of such policies would require more than a few years.

25Educational policy could be added to the list (see, e.g., Etilé, 2014).
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Appendix

A Mathematical Appendix

A.1 Proof of Prediction 1.

The Lagrangean function associated with the optimization problem is

L =
∞∑
t=0

βtEt

{
ct

(
c− ct

2

)
− b

2

(
wt − wI

)2
+ λt [wt+1 − (1− δ)wt − φct − εt+1]

}
(1)

where λt is the Lagrange multiplier. The first-order conditions are

∂L
∂ct

= c− ct − φλt = 0 (2)

∂L
∂wt+1

= λt − βEt

[
b
(
wt+1 − wI

)
+ (1− δ)λt+1

]
= 0 (3)

∂L
∂λt

= wt+1 − (1− δ)wt − φct = 0 (4)

The non-stochastic steady-state equilibrium is characterized by the following equations:

λ =
c− c

φ
(5)

λ = β
[
b
(
w − wI

)
+ (1− δ)λ

]
(6)

c =
δw

φ
(7)

Equations (5) and (6) imply

c− c

φ
=
βb

(
w − wI

)
1− β (1− δ)

Using equation (7) to eliminate c and rearranging terms,

[[1− β (1− δ)] δ/φ + φβb]w = [1− β (1− δ)] c+ φβbwI
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Given that c = δw
φ , we define now w ≡ φc

δ , so then

[[1− β (1− δ)] δ/φ + φβb]w = [1− β (1− δ)] (δw/φ) + φβbwI

Solving for w yields the steady-state equilibrium

wss = αww + (1− αw)w
I

with αw ≡ [1−β(1−δ)]δ
[1−β(1−δ)]δ+φ2βb

and 0 < αw < 1. Put differently,

wss = αw(w − wI) + wI .

Thus, if w > wI , then wss > wI .

A.2 Proof of Prediction 2.

By the method of undetermined coefficients, we guess that ct = A+Bwt, with parameters A

and B to be determined.

The law of motion of weight implies that

wt+1 = φA+ (1− δ + φB)wt + εt+1 (8)

Plugging the guess, (8), and (2) in (3) we obtain

c− (A+Bwt)

φ
= βEt

[
b
[
φA+ (1− δ + φB)wt + εt+1 − wI

]
+ (1− δ)

(
c− (A+Bwt+1)

φ

)]

Using (8) again and rearranging, we get

(c−A)−Bwt = φ2βbA− φβbwI + β (1− δ) [c−A (1 + φB)] +
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+ [φβb (1− δ + φB)− β (1− δ)B (1− δ + φB)]wt

Therefore, we can equalize terms as follows

c−A = φβb
(
φA− wI

)
+ β (1− δ) [c−A (1 + φB)] (9)

and

−B = φβb (1− δ + φB)− β (1− δ)B (1− δ + φB) (10)

The solution for A in (9) yields

A∗ =
[1− β (1− δ)] c+ φbβwI

1− β [(1− δ)(1 + φB∗)− φ2b]

In addition, equation (10) can be rewritten as a quadratic form:

B2 − ψB − b = 0

with ψ ≡
[
1−β(1−δ)2+φ2βb

β(1−δ)φ

]
and whose solution has the form

B∗ = (ψ ±
√
ψ2 + 4b)/2

Given the solution for weight, in the steady state: wss = φA∗ + (1 − δ + φB∗)wss, we have

that

wss =
φA∗

δ − φB∗

Because wss > 0, then either A∗ > 0 and δ−φB∗ > 0 or A∗ < 0 and δ−φB∗ < 0. In the second

case, the law of motion of weight has a negative intercept (φA∗ < 0) and a slope larger than
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one on the (wt, wt+1) plane. Therefore, we discard this possibility since it corresponds to an

unstable equilibrium. The saddle-path equilibrium is, thus, given by A∗ > 0 and δ − φB∗ > 0

with B∗ = (ψ −
√
ψ2 + 4b)/2 < 0. This implies that the the law of motion of weight has a

positive intercept and a slope lower than one on the (wt, wt+1) plane. In terms of equation (4)

from Section 2, we obtain α0 ≡ φA∗ > 0 and α1 ≡ −δ + φB∗ < 0.

A.3 Derivation of Equation (5)

We can rewrite equation (4) in period T for every country i as

wiT = α0 + (1 + α1)wiT−1 + εiT (11)

By backward substitution in equation (11), we obtain

wiT = α0

T−1∑
j=0

(1 + α1)
j + (1 + α1)

Twi0 +
T−1∑
j=0

(1 + α1)
jεiT−j (12)

Under convergence, it is true that −1 < α1 < 0 and, hence,

T−1∑
j=0

(1 + α1)
j = − [1− (1 + α1)

T ]

α1
> 0

Hence, we can rewrite (12) as

wiT =
−α0[1− (1 + α1)

T ]

α1
+ (1 + α1)

Twi0 +

T−1∑
j=0

(1 + α1)
jεiT−j (13)

Or, in absolute changes as

wiT − wi0 =
−α0[1− (1 + α1)

T ]

α1
+

[
(1 + α1)

T − 1
]
wi0 +

T−1∑
j=0

(1 + α1)
jεiT−j (14)
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Dividing both sides by T , which is a constant, and defining γ0 ≡ −α0[1 − (1 + α1)
T ]/(α1T ),

γ1 ≡ (1/T )[(1 + α1)
T − 1], and νiT ≡ (1/T )

∑T−1
i=0 (1 + α1)

jεi,T−j, we obtain equation (5) from

Section 4:

wiT − wi0

T
= γ0 + γ1wi0 + νiT

In the non-stochastic steady-state equilibrium, wit = wit−1 = wss, for every t including the

initial and last period, and the optimal weight is

wss = −γ0
γ1

=
α0[1− (1 + α1)

T ]/(α1T )

(1/T )[(1 + α1)T − 1]
= −α0

α1
> 0.

B Data

B.1 Definitions and sources

• BMI: body mass index, expressed in kilograms per square meters. Source: NCD Risk

Factor Collaboration (2016). The unadjusted data are the dataset estimated without co-

variates. The adjusted data are the dataset estimated with covariates as reported in NCD-

Risc (2016). NCD-RisC collects 1,698 population-based data sources, with more than

19.2 million adult participants (9.9 million men and 9.3 million women) in 200 countries

and territories between 1975 and 2014. Each of those sources have their own sampling

method. NCD-RisC aggregates, with use of a consistent protocol, the population-based

survey to aggregate data at a country level. Further details about the data sources can

be found in the Appendix of NCD-Risc (2016; Table 2).

• GDP per capita: Expenditure-side real GDP at chained PPPs (in mil. 2011 US$ dollars)

divided by population (in mil. of persons). Source: Penn World Tables 9.0; Feenstra et

al., (2015).

• Human capital index: based on years of schooling and returns to education; see human

capital in Penn World Tables. Source: Penn World Tables 9.0; Feenstra et al., (2015).
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• Urbanization rate: percentage of population living in urban areas as defined by national

statistical offices. It is calculated usingWorld Bank population estimates and urban ratios

from the United Nations World Urbanization Prospects. Source: World Development

Indicators (World Bank).

• Controls are constructed based on the last three series above and expressed in percent

deviations from their long-run levels. The long-run component of logged PPP-adjusted

real GDP per person is estimated using its corresponding Hodrick-Prescott trend. The

long-run components of the logs of the human capital index and the urbanization rate

are defined as their corresponding sample means over time.

• Population weights –used in the models reported in Table A1– were constructed using

total population and female/male percentage of population for each country. Population

series are from PennWorld Tables 9.0 (Feenstra et al., 2015). Female and male population

percentage series are from World Bank’s World Development Indicators.

B.2 Samples

The Europe sample comprises 45 economies: Albania, Armenia, Austria, Azerbaijan, Belarus,

Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Esto-

nia, Finland, France, Georgia, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan,

Latvia, Lithuania, Luxembourg, Macedonia (TFYR), Malta, Moldova, Montenegro, Nether-

lands, Norway, Poland, Portugal, Romania, Russian Federation, Serbia, Slovakia, Slovenia,

Spain, Sweden, Switzerland, Turkey, Ukraine, and United Kingdom. These economies come

from 7 different world regions defined by the database authors (see NCD Risk Factor Collab-

oration, 2016). We omit Andorra and Greenland due to the absence of GDP data.

The non-Europe sample includes 127 countries and territories: Algeria, Angola, Antigua

and Barbuda, Argentina, Australia, Bahamas, Bahrain, Bangladesh, Barbados, Belize, Benin,

Bermuda, Bhutan, Bolivia, Botswana, Brazil, Brunei Darussalam, Burkina Faso, Burundi,
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Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China,

China (Hong Kong SAR), Colombia, Comoros, Congo, Costa Rica, Cote d’Ivoire, Djibouti,

Dominica, Dominican Republic, DR Congo, Ecuador, Egypt, El Salvador, Equatorial Guinea,

Ethiopia, Fiji, Gabon, Gambia, Ghana, Grenada, Guatemala, Guinea, Guinea Bissau, Haiti,

Honduras, India, Indonesia, Iran, Iraq, Israel, Jamaica, Japan, Jordan, Kenya, Kuwait, Kyr-

gyzstan, Lao PDR, Lebanon, Lesotho, Liberia, Madagascar, Malawi, Malaysia, Maldives, Mali,

Mauritania, Mauritius, Mexico, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal,

New Zealand, Nicaragua, Niger, Nigeria, Oman, Pakistan, Panama, Paraguay, Peru, Philip-

pines, Qatar, Rwanda, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines,

Sao Tome and Principe, Saudi Arabia, Senegal, Seychelles, Sierra Leone, Singapore, South

Africa, South Korea, Sri Lanka, Sudan, Suriname, Swaziland, Syrian Arab Republic, Taiwan,

Tajikistan, Tanzania, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkmenistan, Uganda,

United Arab Emirates, United States of America, Uruguay, Uzbekistan, Venezuela, Vietnam,

Yemen, Zambia, Zimbabwe.

The Mediterranean Europe sample includes 12 economies: Albania, Bosnia and Herzegovina,

Croatia, Cyprus, France, Greece, Italy, Malta, Montenegro, Slovenia, Spain, and Turkey.

The European Union sample comprises 28 economies: Austria, Belgium, Bulgaria, Croatia,

Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ire-

land, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania,

Slovakia, Slovenia, Spain, Sweden, and United Kingdom.

The Eastern Europe sample includes 21 economies: Albania, Armenia, Azerbaijan, Be-

larus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Georgia, Hun-

gary, Latvia, Lithuania, Moldova, Montenegro, Poland, Romania, Russian Federation, Serbia,

Slovakia, and Ukraine.
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Figure 1: Average Change in Female BMI and Initial BMI.

Note: The parameters estimates and robust standard errors of each cross-sectional regression are re-
ported in Table 2, columns (1), (3), and (5).



Figure 2: Average Change in Male BMI and Initial BMI.

Note: The parameters estimates and robust standard errors of each cross-sectional regression are re-
ported in Table 2, columns (2), (4), and (6).
















