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Abstract

In this paper, we consider the forecasting of domestic food price inflation (DFPI) using
global indicators, with emphasis on episodes of macroeconomic turbulence, namely the Global
Financial Crisis (GFC) and the COVID-19 pandemic and its subsequent repercussions. Our
monthly dataset covers about two decades for more than a hundred economies. We employ
dynamic model averaging (DMA) to tackle both model uncertainty and parameter instability
and produce pseudo out-of-sample forecasts. Thus, we are able to focus on the forecasting ability
of the global predictors of DFPI before and during the global crises. We find evidence that
the DMA specification tends to outperform statistical models frequently used in the literature
such as random walks, autoregressive models, and time-varying parameter models, especially
during global crises. We also identify the most successful predictors during the crises using
their posterior probabilities of inclusion. By comparing the distributions of such probabilities,
we find that the international food price inflation is the most useful predictor of DFPI for
numerous countries during both crises. Other indicators such as domestic CPI inflation as well
as the international inflation of agricultural commodities, fertilizers, and other food categories
improved their forecasting ability, particularly during the COVID-19 period.
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1. Introduction

The influence of food prices on household welfare has been well documented in economic re-

search. Higher food prices affect food consumption more in households from low-income countries

than in those from high-income economies (Cornelsen et al., 2015).1 Empirical evidence shows

that the affordability of food affects child malnutrition (Arndt et al., 2016; Woldemichael et al.,

2022), child mortality rates (Kidane and Woldemichael, 2020), the persistence of poverty in urban

areas (Fujii, 2013; Ha et al., 2019), and even the occurrence of social unrest (Bellemere, 2015).2

Therefore, forecasting food prices constitute a valuable tool in formulating the necessary economic

policies to alleviate the adverse effects associated with increasing food prices (Ginn and Pourroy,

2020; Attanasio et al., 2013).3

In turn, forecasting domestic food price inflation (DFPI) constitutes a challenging task. As

shown in the next section, DFPI displays higher variability than headline CPI inflation, and it is

more volatile among middle- and low-income economies compared with their high-income coun-

terparts, especially during crisis periods. On the other hand, in contrast to headline inflation,

expectation surveys of DFPI from professional forecasters or other economic agents are usually not

available for most economies. In spite of its economic relevance, research on successful methods or

models to forecast DFPI during crisis periods has received little attention in the literature.4

In this paper, we consider the task of forecasting DFPI across countries with a focus on periods of

macroeconomic turbulence. Global recessions usually involve tough times especially for low-income

households because they tend to face unemployment and, sometimes, higher costs of living. Our

monthly dataset covers more than two decades for 111 advanced, emerging market, and developing

economies. Hence, we can perform a forecast evaluation during both the Global Financial Crisis

(GFC) and the COVID-19 period and its aftermath, and the corresponding pre-crisis periods.

1Within an economy, food consumption in low-income households typically represents a larger share on total
expenditures than that among high-income households. According to Capehart and Richardson (2008), US households
with incomes in the lowest reported income category spent about 17% of their income on food in 2006, whereas
households with incomes greater than $70,000 spent 11% of their income on food.

2To be more precise, Arndt et al. (2016) observe a significant reduction in malnutrition rates among children
aged 0–59 months during the final quarter of their survey in Mozambique compared to the first three quarters.
This decrease coincided with lower inflation rates for basic food items. Woldemichael et al. (2022) find that a one
percentage point increase in month-to-month food inflation during pregnancy raised the risk of under-five stunting
by 0.95 percent in Ethiopia. Likewise, Kidane and Woldemichael (2020) estimate that a 10 percent inflation in
staple food prices during pregnancy reduced the survival rate of Ethiopian children under five by approximately 5.4
percent. Fujii (2013) argues that food inflation in Ethiopia severely and negatively impacted the most impoverished
individuals, whether they were part of agricultural households or not. Ha et al. (2019) contend that international
food prices reached a historic peak in August 2011, driving an estimated 105 million people into extreme poverty.
Lastly, Bellemare (2015) provides evidence of a causal link between food prices and social unrest using international
data for the period 1990-2011.

3For instance, forecast errors of food prices can have substantial impacts on anti-poverty programs. According to
Joutz (1997), a forecasted 1% price increase, as opposed to a 3% price increase for the Food Stamp Program budget,
results in a difference of approximately half a billion dollars.

4Regarding the forecasting of headline and core inflation during the Global Financial Crisis, a notable exception
is Hubrich and Skudelny (2017).
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In a globalized world, we expect to see that international drivers play a more prominent role

mainly among middle- and low-income small-open economies. Thus, we choose indicators that

measure commodity price movements in international markets such as food, grains, energy, and

fertilizers. Moreover, we include measures of global supply chain pressures (Benigno et al., 2022),

global business cycles (Kilian, 2009), aggregate uncertainty about climate-change related policies

(Gavriilidis, 2021), and inflation expectations in the US (University of Michigan), among others.

One of our objectives is to determine which of these global indicators can enhance the accuracy

of DFPI forecasts. To achieve this, we employ the method of dynamic model averaging (DMA)

proposed by Raftery et al. (2010) and extended by Koop and Korobilis (2012) and Catania and

Nonejad (2018). This method addresses both model and parameter uncertainty at estimation and

enables us to produce pseudo out-of-sample forecasts recursively. Thus, our approach allow us to

assess the forecasting ability of global predictors for DFPI before and during the global crises. In

particular, through the use of the posterior probability of inclusion as a comparative metric, we

can identify the most effective predictors, especially during crisis periods.

We find evidence that the DMA specification outperforms statistical models widely used in

the literature. These consider random walks, autoregressive processes, and time-varying parame-

ter models, among others. The gains in predictive accuracy—measured by the root mean square

prediction error—are mostly statistically significant. Likewise, we provide evidence that the fore-

casting performance of the DMA specification improves during global crises—especially the GFC—

compared with periods of economic normalcy. By comparing the distributions of the posterior

probabilities of inclusion, we find that the international food price inflation is the most useful pre-

dictor of DFPI for numerous countries during both crises. Furthermore, domestic CPI inflation as

well as the international inflation of agricultural commodities, fertilizers, and other food improved

their forecasting ability, particularly during the COVID-19 period.

Related literature. To our knowledge, there is a notable scarcity of research dedicated to forecast-

ing DFPI, especially during periods of global turbulence across economies. The existing literature

has primarily focused on predicting domestic prices or their percent changes for some specific food

items within individual countries, often without distinguishing between normalcy and crisis peri-

ods. For instance, Joutz (1997) conducts a qualitative assessment of forecasts of various US retail

prices, as produced by different institutions. These institutions use various forecasting models

and techniques, including the Delphi approach as well as structural and ARIMA models. The

article reports annual forecasts at the food item level for the years 1997-1998. Meanwhile, Moser

et al. (2007) use factor models, VARs, ARIMA, and forecast combinations to forecast CPI and

its subindices, including both processed and unprocessed food for the Austrian economy. Their

findings indicate that the factor model shows the highest predictive accuracy for unprocessed food,

whereas the forecast combination of the factor and VAR models provides the highest predictive

accuracy for processed food. Gómez et al. (2012) employ disaggregated data for food products

in Colombia, applying flexible least squares methods and forecast combinations. They evaluate
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the relative performance of their preferred methods against the random walk model. Macias et

al. (2022) undertake a real-time nowcasting exercise with simple univariate approaches and an

extensive dataset of online prices of food and non-alcoholic beverages in Poland. Their hypothesis

is that incorporating online prices can effectively improve DFPI nowcasts. Their competing mod-

els include different versions of the random walk model and seasonal ARMA models, as well as

forecast combinations and judgmental forecasts. They conclude that that online prices can signifi-

cantly improve nowcasts of food inflation. More recently, Barkan et al (2023) propose hierarchical

recurrent neural networks to forecast disaggregated inflation components of the US CPI (including

food components) using information from higher levels in the CPI hierarchy. We share with some

of these studies the aim of capturing parameter instabilities and combining forecasts.

Our research is related to an extensive literature dedicated to identifying the best forecasting

models for headline (CPI) inflation. While we do not attempt to provide an exhaustive summary

of this strand of literature, we will selectively discuss a few relevant contributions.5 Among such

studies, the work by Hubrich and Skudelny (2017) aligns most closely with our research objectives.

They undertake an exploration of forecast combinations as a means to address the limitations

of individual models in predicting inflation, with a specific emphasis on the (headline or core)

Harmonized Index of Consumer Prices (HICP) during the GFC. Their approach suggests the use of

performance-based forecast combination with a greater weighting on recent forecast performance.

They investigate the pre-GFC and post-GFC periods and find that performance-based weighting

outperforms simple averaging. It is important to note, however, some key distinctions with respect

to our research. First, our primary focus is on domestic food inflation across a diverse set of

economies, as opposed to the HICP inflation within a specific economy, such as the Eurozone.

More importantly, instead of working with a forecast combination of a small number of models,

DMA contemporaneously exploits a weighted average of a large number of models and addresses

parameter instability in a simple fashion. These methodological features are critical to our study’s

contribution.

In a similar vein, our paper relates to the strand of the DMA forecasting literature where

headline inflation is the variable of interest. In fact, the seminar work of Koop and Korobilis

(2012) provides a prominent example of DMA’s application in forecasting US inflation, using the

GDP deflator and the Personal Consumption Expenditure (PCE) index. Their array of competing

models includes the random walk, autoregressive processes, models with time-varying parameters,

and those incorporating stochastic volatility. The main result from their investigation indicates

that DMA consistently outperforms other forecasting methods and, crucially, is never much worse

than the best-performing alternative. Expanding upon this work, Di Filippo (2015) extends the

scope to the Euro Area, incorporating additional predictors into the analysis. Interestingly, the

5Interested readers seeking a more comprehensive understanding are encouraged to explore works such as Faust
and Wright (2013), which focuses on advanced economies, and Duncan and Mart́ınez-Garćıa (2019), which delves
into emerging market and developing economies, along with the references therein.
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author finds that the importance of predictors of headline inflation such as international food

commodity prices, house prices, and oil prices tend to increase when such variables experience

large fluctuations. While our research employs the same DMA methodology, it distinguishes itself

by focusing on DFPI and its dynamics during crisis periods, offering insights derived from a large

and diverse sample of economies. This focus sets our study apart among the applications of the

DMA method.

The reminder of the paper proceeds as follows. Section 2 addresses the data and methods. This

part includes a brief description of our preferred method (DMA), the competing models, and the

forecasting exercise. Section 3 reports the main findings for the full sample and the crises periods

as well as the robustness checks. Section 4 concludes with some final remarks.

2. Data and Methods

2.1. Data

Our sample consists of monthly series for 43 high-income and 68 middle- and low-income

economies. We list all of them in Appendix A.1. This sample includes sovereign countries and non-

independent territories, and the data spans from January 2001 (2001M1) to June 2022 (2022M6).

For every economy, we calculate the DFPI rate as the year-over-year change in the logged domestic

food price index. The source is the Food and Agriculture Organization (FAO) database.

Table 1 displays summary statistics of DFPI across groups of economies and four distinct sub-

periods. Two of them correspond to recent global crises: the Global Financial Crisis (spanning

from January 2008 to December 2009) and the COVID-19 pandemic and its aftermath (from March

2020 to June 2022).6 In addition, we incorporate the corresponding pre-crisis periods—specifically,

January 2006 to December 2007 and November 2017 to February 2020. For consistency in the

analysis, we set the pre-crisis periods to match the same duration as the crisis periods.

6Despite institutions like the National Bureau of Economic Research dating the COVID-19 pandemic recession
in the US economy from February to April of 2020, we extend our analysis through June of 2022, which is the last
available month in our dataset. This extension considers the subsequent inflationary episode during the post-pandemic
times, which can be attributed to various global factors, including the initial pandemic shock, the subsequent fiscal
and monetary policy responses across countries, and the Russian invasion of Ukraine.
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Table 1: Descriptive Statistics—Domestic Food Price Inflation

Group/statistic Pre-GFC GFC Pre-COVID-19 COVID-19 Full Sample

High-income economies

Mean 4.20 5.59 2.09 3.68 3.04
Median 2.89 4.65 1.71 2.59 2.21
Std. Dev. 4.39 6.32 2.37 4.13 4.44

Middle-/Low-income
economies

Mean 7.46 11.53 3.80 7.91 7.38
Median 6.82 10.25 2.86 5.65 5.35
Std. Dev. 5.66 10.78 5.83 8.78 10.64

All economies

Mean 6.20 9.22 3.14 6.27 5.70
Median 5.08 7.25 2.25 4.34 3.83
Std. Dev. 5.44 9.75 4.87 7.62 9.02

Notes: GFC denotes the Global Financial Crisis period (2008M1-2009M12), COVID-19 refers to the COVID-19 pandemic and its aftermath
episode (2020M3-2022M6). Two corresponding pre-crisis periods are considered: 2006M1-2007M12 and 2017M11-2020M2. Our sample comprises
43 high-income economies and 68 middle- and low-income economies. The full sample spans from 2001M1 to 2022M6. The DFPI series is sourced
from the FAO’s database.

Several observations merit attention. First, the variability of DFPI measured by its standard

deviation is larger during crisis periods than is over the pre-crisis periods. Furthermore, the vari-

ability of DFPI is significantly higher within the category of middle- and low-income economies

when contrasted with high-income economies.

Table 2 shows the summary statistics of our predictors. Thus, the information displayed in

Table 1 (lower panel, last column) and Table 2 (first row) leads to a third observation. Across

all economies throughout the entire period of analysis, the variability of the DFPI rate is greater

than that of the CPI inflation rate. Taken together, these observations suggest that, in principle,

forecasting DFPI seems to be a more complex task than forecasting CPI inflation, particularly in

middle- and low-income economies during crisis periods.
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Table 2: Descriptive Statistics—Predictors

Predictor Mean Median Std. Dev.

CPI Inflation (Headline, %) 2.48 1.98 2.95

Global commodity price indices
Agriculture (international price index, %Δ) 4.15 2.05 13.10
Food (international price index, %Δ) 4.97 3.48 15.38
Other Food (international price index, %Δ) 4.04 2.36 10.79
Grains (international price index, %Δ) 5.03 4.83 19.59
Energy (international price index, %Δ) 5.52 7.69 35.85
Fertilizers Prices (international price index, %Δ) 7.65 3.49 33.98

Global indices of economic activity/uncertainty/expectations
Global Supply Chain Pressures (index) 0.04 -0.23 1.04
Global Economic Activity (Kilian index) 9.78 -2.46 72.49
Climate Policy Uncertainty (US, index) 116.38 100.80 61.03
Expected inflation (US, %) 3.04 2.90 0.72
CRB (international index, %Δ) 1.55 2.27 22.15

Notes: Headline CPI inflation is obtained from the IMF’s IFS. International price indices (energy, agriculture, food, grains, fertilizers,
other food) are from the World Bank’s database. The Global Supply Chain Pressure Index (GSCPI) is proposed by Benigno et al. (2022). The
Kilian (2009) index measures global real economic activity in industrial commodity markets. The Climate Policy Uncertainty index is developed
by Gavriilidis (2021). The expected inflation rate (the median expected price change next 12 months) come from the Surveys of Consumers
conducted by the University of Michigan. The CRB index is a commodity futures price index (19 commodities).

Figure 1 shows the average DFPI rates calculated across middle- and low-income economies

(red line) and across high-income economies (blue line). The graph also includes two shaded areas,

one for the GFC and the other for the COVID-19 pandemic crisis. One notable difference is that

the average DFPI increased at the beginning or even before the start of the GFC, while in the

case of the COVID-19 pandemic crisis, the average DFPI initially fell at the onset and rose months

later. Put differently, global crises, sooner or later, are accompanied with sharp rises in average

DFPI in both groups of countries.
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Figure 1: Average Domestic Food Price Inflation Rates in Middle- and Low-Income
and High-Income Economies
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Notes: Shaded areas indicate the GFC period (2008M1-2009M12) and the COVID-19 pandemic crisis and its aftermath (2020M3-2022M6).

In addition to CPI inflation, Table 2 provides descriptive statistics for other predictor variables

that we use for DFPI forecasting. We can divide these variables in two distinct groups, namely,

global commodity price indices and global indices that measure economic activity, aggregate un-

certainty, and inflation expectations. Appendix A.2 reports the sources of DFPI rates and its

predictors.7

Perhaps not surprisingly, the variability of the percent change in any of the international price

indices is greater than that of the DFPI rate (see Tables 1 and 2). These indices seek to capture the

7In the group of global price indices, note that the World Bank’s food price index is different from DFPI indices.
The former is a composite that includes subindices like oils and meals, grains, and other food commodities traded in
international markets, while the latter is a component of the domestic consumer price index that generally covers a
wider set of food items.
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impact of world prices of both imported final goods and production inputs (energy, certain grains,

and fertilizers) as cost push factors on DFPI rates.8

We also take into account proxy indicators of global economic factors that aim to gauge economic

activity, uncertainty, and expectations at worldwide level. For example, the Global Supply Chain

Pressure Index (GSCPI) recently developed by Benigno et al. (2022) aims to capture supply chain

disruptions in the global economy that characterized, especially, the COVID-19 pandemic times.

The index proposed by Kilian (2009) seeks to assess monthly variation in the global economic

cycle and can be viewed as a world pull factor on DFPI. The Climate Policy Uncertainty index

developed by Gavriilidis (2021) includes information about US climate policy and climate-change

related events. As a proxy of the expected inflation rate in advanced economies, we include the

median expected price change next 12 months from the Surveys of Consumers conducted by the

University of Michigan. Finally, the Commodity Research Bureau (CRB) index is incorporated to

approximate possibly anticipated fluctuations in commodity prices.

The selection of predictors draws inspiration not only from the literature on inflation forecasting,

including both DFPI and headline CPI rates, but also from the strand of literature that examines

their main covariates or determinants. For instance, a substantial body of research emphasizes

agricultural commodity prices (Irz et al., 2013; Kuhns et al., 2015; Peersman, 2022) and energy

prices (Baek and Koo, 2010; Baines, 2014) as major drivers of domestic food prices. With the

recent surge in inflation in the US and other advanced economies, some scholars have underscored

the significance of global supply chain pressures (Di Giovanni et al., 2022). In a comprehensive

survey, Castelnuovo (2019) concludes that the response of inflation to uncertainty shocks remains

ambiguous in both theory and empirical evidence. Depending on its nature and the state of the

economy, among other factors, uncertainty shocks may propagate akin to aggregate demand or

aggregate supply shocks. Lastly, there exists an extensive strand of literature establishing the the-

oretical and empirical links between expected inflation and realized inflation (for a comprehensive

review, see Binder and Kamdar, 2022).

It is worth noting that we are unable to include variables related to domestic economic activity,

aggregate uncertainty, and inflation expectations at the country level because they are largely

unavailable at a monthly frequency for a large sample like ours. Instead, headline CPI inflation

might partially capture some of the inflationary pressures stemming from domestic sources such as

demand shocks and changes in fiscal and monetary policies.

8Peersman (2022) finds that international food price shocks have an impact on food retail prices through the food
production chain in the Euro Area. There is a group of articles that regard the price of energy as a covariate or
determinant of domestic food prices (e.g., Baek and Koo, 2010; Baines, 2014).

8



2.2. Methods and models

2.2.1. Dynamic model averaging

In a forecasting exercise like ours, one can argue that a combination of predictors can provide a

useful forecast of DFPI. Moreover, one may consider different sets of predictors suggested by eco-

nomic theory with time-varying coefficients (their marginal effects), which may capture structural

changes in different periods.

One methodology to address this general case is dynamic model averaging (DMA). This method

was originally proposed by Raftery et al. (2010) in an industrial application. Later, DMA was

adapted for inflation forecasting by Koop and Korobilis (2012). The idea is to capture both model

uncertainty and parameter uncertainty in a parsimonious fashion. This seems an appropriate

option in our case because we have potentially many exogenous variables (including several global

indicators and lags of the dependent variable) and a large sample of economies. In addition,

parameter instabilities are usually present during episodes of macroeconomic turbulence.

In this section, we adopt a state-space specification and follow mainly the notation proposed

by Koop and Korobilis (2012) and Catania and Nonejad (2018).9 Let πt denote the DFPI rate.

Consider a set of K models that can have a vector of potentially different predictors x
(k)
t with

k = 1, 2, ...,K. Then, we can represent the kth dynamic linear model—our null specification

(M0)—as

πt = x
(k)
t θ

(k)
t + ε

(k)
t , ε

(k)
t ∼ N

(
0, V

(k)
t

)
(1)

θ
(k)
t = θ

(k)
t−1 + η

(k)
t , η

(k)
t ∼ N

(
0,W

(k)
t

)
(2)

where θ
(k)
t is the vector of (stochastic) parameters for the model with k regressors, V

(k)
t and W

(k)
t

are the corresponding conditional variances of the error terms ε
(k)
t and η

(k)
t , and these satisfy that

E[ε
(k)
t η

(k)
t ] = 0. Note that all these elements of the system are allowed to vary over time.10

Raftery et al. (2010) suggests an approximation within a Bayesian approach to obtain a compu-

tationally efficient and feasible estimation. Leaving some technical details aside, this approximation

entails the choice of three parameters, 0 < δ ≤ 1, 0 < β ≤ 1, and 0 < α ≤ 1 that are known as

forgetting factors. The first two govern the motion of W
(k)
t and V

(k)
t over time. For example, if

δ = 1, then W
(k)
t = 0 and, thus, θ

(k)
t = θ

(k)
t−1. That is, there is no time variation in the coefficients

and we go back to the standard model with constant slopes. On the other hand, if δ is close to

zero, then we induce (extremely) large time variations in the vector of slopes. Similarly, when

β = 1, then V
(k)
t = V (k) and we recover the constant-variance model. Values of this parameter

9For additional technical details and the multiple applications of DMA in macroeconomics forecasting, see Nonejad
(2021).

10The terminology “dynamic model averaging”, as described by Koop and Korobilis (2012), refers to the state-space
system that includes different models at each period, with the models being averaged using conditional probabilities.
Furthermore, the marginal effects of the predictors have the potential to vary over time.
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close to zero imply (extremely) large observational volatility. In turn, the parameter α generates

time variation in the full model set (Catania and Nonejad, 2018; Nonejad, 2021). Values of this

parameter closer to zero induce (extremely) fast switches among models. Thus, practitioners tend

to pick values close to one for all those parameters. Based on simulations, Catania and Nonejad

(2018) suggest fixing δ close to 1 if the practitioner chooses β < 1.

As in Catania and Nonejad (2018), we assume β = 0.96 and α = 0.99 and fix a grid such that

δ ∈ {0.90, 0.91, ..., 1}. For the vector of predictors, we include an intercept, six lags of DFPI, the

domestic (headline) CPI inflation, the 12-month change in the log of each international price index

(agriculture commodities, food, other food, grains, energy, fertilizers, CRB), the GSCPI, the Kilian

index, the CPU index, and the expected inflation rate as defined in subsection 2.1. Since we have

K = 18 predictors, we consider a total of 218 − 1 = 262143 possible combinations at each point

in time for a given value of δ, while contemporaneously allowing that their coefficients evolve over

time.11 If we consider the values of the grid of δ, we have (218 − 1)(11) = 2883573 possible model

combinations including averaging over δ.

2.2.2. Competing models

We confront our null specification (M0) with a variety of competitors. The set of competing

forecasting models or methods is the following:

M1: Driftless random walk (RW). In this case, πt+h = πt, for any forecast horizon h > 0.

M2: Autoregressive (AR(p)) model with fixed parameters (AR), with p lags.

M3: Time-varying parameter (TVP) model, which is an AR(p) process where each parameter

evolves as a unit-root process with a time-varying variance.

M4: The kitchen sink approach (KS). This specification contains six lags of the dependent

variable and all the predictors discussed above, which are always included. We set β = 1,

α = 0.99, and fix a grid for δ ∈ {0.90, 0.91, ..., 1}.

M5: Dynamic model selection (DMS). This is similar to the DMA specification but selects

the model with the highest posterior probability at each period and use it to forecast. We

also assume β = 0.96 and α = 0.99.

Most of these benchmark models are suggested by the strands of literature reviewed in section 1.

These include studies focused on inflation forecasting for both advanced and developing economies

11The smallest possible model considered is the only-intercept model. The prior for the coefficients at t = 0 is a
multivariate Gaussian with zero mean vector and variance-covariance matrix equal to 100I19 , where I is the identity
matrix. Further details can be found in Catania and Nonejad (2018).
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(see Faust and Wright, 2013; Hubrich and Skudelny, 2017; Mandalinci, 2017; Duncan and Mart́ınez-

Garćıa, 2019), as well as those centered on DFPI forecasting (Moser et al., 2007; Gómez et al.,

2012; Macias et al., 2022), and the DMA literature (Koop and Korobilis, 2012; Nonejad, 2021).

For instance, among the various versions of the random walk (RW) model, we include the

driftless RW as our first competing model, which serves as a popular benchmark in the literature

(e.g., Faust and Wright, 2013). We also examine the well-known variant proposed by Atkeson and

Ohanian (2001) as a robustness check. Our second model takes the form of an AR process. This type

of competing model finds widespread use in other studies focused on food price forecasting (Moser

et al., 2007; Gómez et al., 2012; Macias et al., 2022). While the RW model assumes the presence

of a unit root, AR models typically provide a stationary alternative. The third model combines

an autoregressive process with time-varying parameters. This feature has proven to be especially

useful in inflation forecasting, particularly among emerging and developing economies (Mandalinci,

2017). Our fourth model (KS) extends the autoregressive process to include all the predictors

used in the null model. This model is commonly referred to as the “kitchen sink” approach in the

DMA literature (Catania and Nonejad, 2018). Since both M4 and the DMA specification consider

the same predictors, this aspect allows us to evaluate the advantages of DMA in terms of model

selection. Finally, the fifth specification considers dynamic model selection (Koop and Korobilis,

2012; Nonejad, 2021). In contrast to DMA that weights models, DMS will choose a single model.

The objective is to assess the different alternatives of model selection.

We opt to use up to six lags in most of our models, following the approach in Hubrich and

Skudelny (2017). We refrain to extend the maximum number of lags beyond six, as this value at a

monthly frequency corresponds to the inclusion of two lags at a quarterly frequency. The latter is

a standard value established in the literature on inflation forecasting (see, e.g., Faust and Wright,

2013; Duncan and Mart́ınez-Garćıa, 2019; Duncan and Mart́ınez-Garćıa, 2023). The rationale

behind this decision rests on the potential drawbacks associated with introducing irrelevant lags

and large noise due to parameter estimation. This can deteriorate the forecasting power of some

competing models like the autoregressive model with fixed parameters.12 This scenario could

artificially favor our DMA specification, which can automatically drop useless predictors that the

autoregressive process is forced to keep. As we discuss below, on average, the AR(1) slightly

outperforms the AR(6) process. That said, we also investigate the performance of an AR(6) and

an AR(p) with optimal lag selection in the section of robustness checks.

12Interestingly, Dufour (1984) shows that any AR(p) models with fixed parameters can produce unbiased forecasts
even if the order of the estimated model is lower than the actual one. This result holds exactly when the parameters
are estimated by OLS in finite samples.
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2.2.3. Forecast evaluation

We use the direct method to produce pseudo out-of-sample forecasts. Ing (2003) concludes that

the RMSPE of the direct approach is not greater than that of the iterated approach if the model is

misspecified. In general, direct forecasts are more robust to model misspecification (Ing, 2003).13

We employ recursive estimation windows to calculate pseudo out-of-sample forecasts at various

horizons, namely 1, 6, and 12 months. The prediction error is determined by taking the difference

between the actual and predicted values. The initial training sample period spans from January

2001 to June 2004. For instance, the first forecast with a horizon of 1 month is generated in July

2004, while the final forecast is made in June 2022.14

To evaluate the forecasting performance, first, we compute the root mean squared prediction

error (RMSPE) for each economy, specification, and forecast horizon. Then, we construct the

relative RMSPE, also known as Theil’s U statistic, which is the ratio of the RMSPE of the DMA

specification to the RMSPE of each competing model. Values less than one imply that the DMA

specification outperforms the alternative models or methods in terms of lower RMSPE.

To assess the statistical significance of the difference of the relative RMSPE from one, we

use a one-sided Diebold-Mariano-West (DMW) test (Diebold and Mariano, 1995; West, 1996)

for non-nested models. To account for small sample sizes, we adjust the test statistic using the

approach proposed by Harvey et al. (1997). The test statistics are calculated using Newey-West

heteroskedasticity and autocorrelation consistent (HAC) standard errors.

3. Results

3.1. Main findings

To start, we offer an overview of the forecasting accuracy of our DMA specification. Table 3

displays statistics summarizing the distribution of RMSPEs for each forecast horizon (h). These

statistics cover all economies throughout the entire period of analysis. For example, the median

RMSPE stands at 1.27 percentage points (p.p.) at the one-month forecast horizon. Considering

the substantial standard deviation of DFPI (9 p. p.; as detailed in the last column of Table 1), the

predictive accuracy of the DMA model, as measured by the RMSPEs, appears reasonable across

different quartiles.15

13It is worth adding that Marcellino et al. (2006) contend that whether one approach is better than the other
remains a largely empirical matter.

14We set the length of the burn-in period equal to 24 periods. That is, results from the first two years are discarded.
15It is noteworthy that the maximum values at the six-month and twelve-month horizon correspond to the Bahamas

and Gabon, respectively.
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Table 3: Distribution of RMSPEs of the DMA Specification

h = 1 h = 6 h = 12

Minimum 0.45 0.75 0.73
First quartile 0.91 1.49 1.49
Second quartile 1.27 2.16 2.44
Third quartile 2.17 3.34 3.55
Maximum 4.89 76.02 48.55

Notes: Each entry reports a statistic for each forecast horizon (h-
month ahead forecasts), including all economies during the full period of
analysis.

Table 4 reports the median and mean of the average forecast error (AFE) of the DMA speci-

fication across the 111 economies of our sample. As can be seen, the median of the AFE ranges

between -0.02 and 0.03 p.p. Furthermore, the table shows the number of economies with a p-value

greater than 0.05 and 0.1 for the null hypothesis that the AFE is equal to zero. This is a test of

unconditional unbiasedness. The p-values are calculated using Newey-West HAC standard errors.

We cannot reject the null that the mean bias of the DMA specification is equal to zero for the great

majority of the economies in our sample.16

Table 4: Average Forecast Error of the DMA Specification

h = 1 h = 6 h = 12

Median 0.00 0.03 -0.02
Mean 0.00 0.04 0.03
#p-value> 0.05 110 106 107
#p-value> 0.1 107 103 104

Notes: Rows for medians (means) report the median (mean) of the
average bias from the DMA specification calculated over all countries. The
rows #p-value> 0.05 and #p-value> 0.1 report the number of economies
that show a p-value greater than 0.05 and 0.1, respectively, for the null
hypothesis of an average bias equal to zero using Newey-West HAC stan-
dard errors.

Table 5 shows the median and mean of the ratios of the RMSPEs of our DMA specification

(M0) relative to competing models (M1 −M5) for each forecast horizon (h = 1, 6, 12) using the full

sample of economies and periods.

The last column reports the mean across forecast horizons. The table also displays the count

of cases (economies) where the relative RMSPE falls below 1, as shown in the row labeled # < 1.

This count signifies that our null specification provides superior forecasting ability in predicting

DFPI compared with its competitor. The last two rows for each model panel shows the number of

cases in which the p-value related to the null hypothesis of equal predictive ability (equal RMSPEs)

is below 0.1 and 0.05, respectively.

16In the Appendix Table A1, we provide analogous statistics for the competing models.
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Table 5: RMSPE of the DMA Specification Relative to Competing Models

h = 1 h = 6 h = 12 Mean

M1: RW
Median 0.96 0.55 0.38 0.63
Mean 0.98 0.94 0.53 0.82
# < 1 84 108 106 99
#p-value< 0.1 40 105 104 83
#p-value< 0.05 28 104 103 78

M2: AR
Median 0.95 0.58 0.48 0.67
Mean 0.96 1.00 0.67 0.88
# < 1 87 107 105 100
#p-value< 0.1 50 106 103 86
#p-value< 0.05 36 104 101 80

M3: TVP
Median 0.98 0.70 0.63 0.77
Mean 0.99 1.13 0.88 1.00
# < 1 80 106 104 97
#p-value< 0.1 26 104 103 78
#p-value< 0.05 16 97 98 70

M4: KS
Median 0.85 0.85 0.86 0.85
Mean 0.84 0.83 0.90 0.85
# < 1 109 110 104 108
#p-value< 0.1 103 90 87 93
#p-value< 0.05 92 76 76 81

M5: DMS
Median 0.95 0.92 0.92 0.93
Mean 0.95 0.91 0.93 0.93
# < 1 104 109 106 106
#p-value< 0.1 86 97 93 92
#p-value< 0.05 74 92 84 83

Notes: Rows for medians (means) report the median (mean) ratio of RMSPE from the DMA specification
relative to that of the competing forecasting models calculated over all countries. Values less than one imply that
DMA has a lower RMSPE than does the competitive benchmark. The row # < 1 reports the number of economies
that show relative RMSPE lower than 1 for a particular forecast horizon (h) and model. The rows #p-value< 0.1
and #p-value< 0.05 report the number of economies that show a p-value lower than 0.1 and 0.05, respectively, for
the null of equal predictive accuracy measured by the RMSPEs of the DMA and the alternative model. We use the
Diebold-Mariano-West statistic modified by the Harvey et al. (1997) adjustment for small samples. AR denotes the
AR(1) model, RW is driftless the random walk model, TVP is the AR(6) model with time-varying parameters, KS
denotes the “kitchen sink” approach with all the regressors and AR(6) component, DMS stands for dynamic model
selection.

An examination of the median relative RMSPE reveals consistent values below one for all

competing models and horizons. This finding suggests an advantage for the null specification,

particularly at longer horizons (6 and 12 months ahead). Put differently, the relative RMSPE
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tends to decline as the forecast horizon increases. The number of cases with a RMSPE ratio lower

than one is mostly above a hundred (out of 111 economies). Most of the gains in lower RMSPE

are statistically significant at a 10% significance level. For example, 83 out of 111 economies

(around 75%) show, on average, a RMSPE of the null specification statistically lower than that of

the RW across all forecast horizons. Notice that the KS (M4) and the DMS (M5) specifications

own a predictive ability closer to that of our DMA specification, which suggests that the inclusion

of the predictors above mentioned (aside from lags of the DFPI) is playing an important role in

forecasting DFPI. This observation is consistent with DMA’s comparable forecast performance to

DMS, as supported by prior studies (see Koop and Korobilis, 2012; Catania and Nonejad, 2018).

3.2. Crisis and pre-crisis periods

3.2.1. Can we forecast DFPI better during the Global Financial Crisis?

How do these metrics perform in both crisis and pre-crisis scenarios? Table 6 shows the summary

statistics related to the ratios of the RMSPEs and p-values for two subsamples, namely, the pre-

GFC period (2006.1-2007.12) and the GFC episode (2008.1-2009.12).
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Table 6: RMSPE of the DMA Specification Relative to Competing Models—Global
Financial Crisis

Pre-GFC period GFC period

h = 1 h = 6 h = 12 h = 1 h = 6 h = 12

M1: RW
Median 1.01 0.68 0.51 0.93 0.47 0.34
Mean 1.02 0.72 0.54 0.97 0.80 0.37
# < 1 47 104 105 77 108 109
#p-value< 0.1 10 54 47 30 89 82
#p-value< 0.05 5 30 16 15 73 44

M2: AR
Median 0.99 0.73 0.60 0.87 0.50 0.41
Mean 1.00 0.76 0.65 0.92 0.82 0.47
# < 1 60 97 101 88 107 109
#p-value< 0.1 16 48 34 46 93 73
#p-value< 0.05 8 23 20 30 73 35

M3: TVP
Median 0.98 0.82 0.70 0.96 0.63 0.56
Mean 1.00 0.82 0.73 1.01 0.99 0.64
# < 1 66 96 98 76 107 106
#p-value< 0.1 20 41 24 27 68 42
#p-value< 0.05 13 14 10 18 39 14

M4: KS
Median 0.85 0.87 0.88 0.83 0.85 0.86
Mean 0.85 0.86 0.88 0.85 0.84 0.87
# < 1 98 90 83 103 99 82
#p-value< 0.1 57 23 7 61 35 12
#p-value< 0.05 37 13 2 46 21 3

M5: DMS
Median 0.97 0.94 0.94 0.92 0.90 0.94
Mean 0.95 0.93 0.93 0.92 0.93 0.94
# < 1 84 96 92 97 97 91
#p-value< 0.1 30 23 6 54 43 4
#p-value< 0.05 18 9 1 39 19 0

Notes: Rows for medians (means) report the median (mean) ratio of RMSPE from the DMA specification relative to that
of the competing forecasting models calculated over all countries for the pre-GFC period (2006.1-07.12) and the GFC episode
(2008.1-09.12). Values less than one imply that DMA has a lower RMSPE than does the competitive benchmark. The row # < 1
reports the number of economies that show relative RMSPE lower than 1 for a particular forecast horizon (h) and model. The rows
#p − value < 0.1 and #p − value < 0.1 report the number of economies that show a p-value lower than 0.1 and 0.05, respectively,
for the null of equal predictive accuracy measured by the RMSPEs of the DMA and the alternative model. We use the Diebold-
Mariano-West statistic modified by the Harvey et al. (1997) adjustment for small samples. AR denotes the AR(1) model, RW is
driftless the random walk model, TVP is the AR(6) model with time-varying parameters, KS denotes the “kitchen sink” approach
with all the regressors and AR(6) component, DMS stands for dynamic model selection.

The main message is that it is possible to obtain relative gains in forecasting DFPI using our null

specification (M0) during the GFC for most of the economies. Looking at the row of the medians,
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the relative RMSPEs are always below one and usually smaller during the GFC compared with

those prior to that crisis. For the number of cases with p-values lower than 10%, a similar pattern

in favor of the null model is observed. For some competing models such as the AR process (M2),

the number of statistically significant differences is relatively high in the GFC period (e.g., it is 93

out 111 at the six-month horizon). Once again, the KS (M4) and the DMS (M5) specifications,

that take into account the same set of predictors used in our null model, constitute the closest

competitors. This suggests that the chosen set of predictors contain useful information to forecast

DFPI across economies.

3.2.2. Can we forecast DFPI better during the COVID-19 outbreak?

Table 7 displays the statistics concerning the RMSPE ratios and p-values for the pre-COVID-19

period (2017.11-2020.2) and the COVID-19 episode (2020.3-2022.6). Recall that we consider the

pandemic and its aftermath, including the Russian invasion to Ukraine and the resulting fluctua-

tions in international oil and gas prices. Hence, the energy price index might play a key role in

forecasting DFPI during this period.
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Table 7: RMSPE of the DMA Specification Relative to Competing Models—COVID-
19 Period

Pre-COVID-19 period COVID-19 period

h = 1 h = 6 h = 12 h = 1 h = 6 h = 12

M1: RW
Median 0.97 0.61 0.38 0.94 0.52 0.37
Mean 1.00 0.62 0.39 0.93 0.52 0.38
# < 1 70 107 111 76 110 111
#p-value< 0.1 25 85 87 35 70 42
#p-value< 0.05 16 52 48 16 35 17

M2: AR
Median 0.97 0.66 0.47 0.92 0.50 0.41
Mean 0.99 0.65 0.49 0.91 0.54 0.46
# < 1 70 106 108 79 107 110
#p-value< 0.1 27 69 59 36 65 34
#p-value< 0.05 18 45 35 16 25 18

M3: TVP
Median 1.00 0.76 0.70 0.97 0.65 0.61
Mean 1.03 0.78 0.70 0.98 0.65 0.63
# < 1 60 102 102 74 107 105
#p-value< 0.1 17 46 30 28 52 17
#p-value< 0.05 9 28 9 13 18 4

M4: KS
Median 0.95 0.87 0.84 0.93 0.86 0.82
Mean 0.94 0.87 0.85 0.91 0.86 0.82
# < 1 92 101 100 96 103 105
#p-value< 0.1 44 41 17 44 44 34
#p-value< 0.05 30 26 4 34 22 15

M5: DMS
Median 0.98 0.92 0.91 0.96 0.93 0.93
Mean 0.97 0.92 0.91 0.95 0.92 0.93
# < 1 82 105 96 88 97 95
#p-value< 0.1 34 44 16 44 45 13
#p-value< 0.05 20 23 6 24 23 6

Notes: Rows for medians (means) report the median (mean) ratio of RMSPE from the DMA specification relative to that of the
competing forecasting models calculated over all countries for the pre-COVID-19 period (2017.11-20.2) and the COVID-19 episode
(2020.3-22.6). Values less than one imply that DMA has a lower RMSPE than does the competitive benchmark. The row # < 1
reports the number of economies that show relative RMSPE lower than 1 for a particular forecast horizon (h) and model. The rows
#p-value< 0.1 and #p-value< 0.05 report the number of economies that show a p-value lower than 0.1 and 0.05, respectively, for the
null of equal predictive accuracy measured by the RMSPEs of the DMA and the alternative model. We use the Diebold-Mariano-
West statistic modified by the Harvey et al (1997) adjustment for small samples. AR denotes the AR(1) model, RW is driftless the
random walk model, TVP is the AR(6) model with time-varying parameters, KS denotes the “kitchen sink” approach with all the
regressors and AR(6) component, DMS stands for dynamic model selection.

Once again, we usually obtain gains in forecasting DFPI with our null specification during this

COVID-19 period. Regarding the median relative RMSPE, we can note that the values reported
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are below one and they are mostly lower during the COVID-19 period than in the prior period,

which is a pattern also observed in the case of the GFC episode. The number of cases with p-

values lower than 10% tend to be higher during the COVID-19 episode for the shortest forecast

horizons (h = 1, 6). That is, although we have gains in predictive accuracy overall, such gains are

statistically significant mainly in the (very) short term.

3.2.3. Can we forecast DFPI better during crisis periods?

Figure 2 displays the proportion of p-values below 10% during the pre-crisis and crisis periods.

Each proportion considers all the competing models and forecast horizons for both crises in each

economy of our sample. Visually, the majority of the economies lie above the 45-degree line,

indicating that the DMA method exhibits higher predictive accuracy than its competitors during

the crisis periods compared with the pre-crisis periods.

Why might the DMA method be relatively more successful than the competing alternatives?

Our preferred method offers several theoretical advantages. Firstly, the coefficients of the model

predictors can change over time. This feature allows capturing structural breaks in the relations

between predictors and the forecasted variable, which are often more prevalent during the crisis

periods under examination. Previous research has confirmed the existence of structural shifts in

(headline) inflation dynamics and its correlates since the Great Recession (Stock and Watson, 2010;

Luengo-Prado et al., 2018) and the COVID-19 pandemic (Cavallo and Zavaleta, 2023). These stud-

ies include those addressing the so-called “missing disinflation puzzle” (Coibion and Gorodnichenko,

2015) and the “missing inflation puzzle” (Ciccarelli et al., 2017). The virtue of incorporating struc-

tural breaks allows the DMA specification to outperform fixed-parameter models like the RW and

the autoregressive process in numerous cases.

Secondly, the DMA method has the capacity to incorporate many potential predictors while

disregarding useless ones, thus effectively capturing various sources of shocks without introducing

significant noise due to parameter estimation. As previously discussed in sub-section 3.1, we em-

ploy six lags of the dependent variable and twelve predictors. This extensive array of predictors

translates into an even more substantial number of potential models, where models are defined as

combinations of these predictors. We discuss the specific contribution of the main predictors in the

next subsection. Moreover, the forecasting model might potentially change over time, allowing for

automatic model updates during pre-crisis and crisis episodes. These features might be the reasons

behind the relative success of the DMA specification, particularly when compared to the KS and

DMS methods.

In summary, these attributes equip the DMA method with the capability to detect structural

shifts in predictor-forecast variable relationships and consider potentially different models, which

can be more effective during the turbulent times under study.

19



Figure 2: Proportion of P-values of the DMW Test Below 10%: Pre-Crisis and Crisis Periods
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3.2.4. Which predictors are more useful to forecast DFPI during Global Crises?

In order to assess if certain predictors could perform better during an economic crisis, we

calculate the probabilities of inclusion of each predictor for every country and period. The idea is

to compare the predictor’s contribution to forecast DFPI during both the pre-crisis and the crisis

period.

The DMA method allows the calculation of such probabilities using the posterior distribution

of each estimated model. For a given value of the forgetting factor δ, the DMA method updates the

(posterior) probability of each model at each period t. For a given model, its posterior probability at

t depends on the predictive likelihood of that model to predict DFPI at t. These model probabilities

are used to calculate a weighted average of the forecasts of all the estimated models at each period.

Since a high predictive likelihood indicates that the predictors used in that model are relevant for

forecasting DFPI, the model probabilities are also used to calculate a probability of inclusion for

each predictor. Thus, even though the inclusion of predictors in a model is pre-determined by all

the possible combinations of them, this posterior probability of inclusion can be calculated as the

sum of all these model probabilities in which the predictor was included. Then, a predictor with a

probability of inclusion equal to zero means that the predictor was included in models that have a

zero posterior predictive probability. That is, it was included in models that were not used in the

calculation of the forecast.

Figures 3 and 4 show kernel density estimates of the probabilities of inclusion during the pre-

GFC and the GFC periods for 6- and 12-month ahead forecasts, respectively. We use the Gaussian

kernel function and the Silverman’s bandwidth estimator adjusted by 0.8. To simplify the expo-

sition, we disregard the case when h = 1 because the DMA’s gains in predictive accuracy tend to

be more substantial when there is more uncertainty; that is at h = 6 and h = 12. The median of

each density is displayed with a vertical line (the median for the pre-crisis period is represented in

pastel pink, while that for the crisis period is shown in pastel blue). We also report the p-value

associated with the Kruskal and Wallis (1952) test to compare the distribution of probabilities are

before and during the GFC.17

The figures mostly show right-skewed distributions for both forecast horizons. During the GFC,

most of the densities and their corresponding medians shift to the right. The most significant shifts

are observed for certain predictors such as the international food price inflation (at h = 6, 12) as

well as the domestic CPI inflation and the Kilian index (at h = 12). In most of these cases, the

median probability of inclusion of the predictors increases above 0.25.

17P-values close to zero suggest evidence that distribution of the probabilities of inclusion differs between crisis
and pre-crisis periods. We interpret the results of the Kruskal-Wallis test with caution because it is assumed that
the observations within and between groups are independent.
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Figure 3: Kernel Densities of the Posterior Probabilities of Inclusion—Pre-GFC and GFC Periods (h = 6)
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Figure 4: Kernel Densities of the Posterior Probabilities of Inclusion—Pre-GFC and GFC Periods (h = 12)
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The previous estimates are also calculated to compare the most recent economic crisis, driven

by the COVID-19 pandemic period, and its corresponding pre-crisis period (see Figures 5 and 6).

These figures show now a mix of right-skewed and left-skewed distributions. In the latter group,

we have those of the domestic CPI inflation and the inflation of international prices of agriculture

commodities, food and other food items, and fertilizers. In terms of the median probability of

inclusion, the international food price inflation is a predictor with a very high forecasting ability

during the COVID-19 pandemic with a median probability of inclusion around 0.75.

Aside from the indicators mentioned above, relevant predictors of DFPI with medians above

the 0.25 threshold are the international price inflation of fertilizers and grains. Except for the CPU

index, other indicators such as the international price inflation of energy, expected inflation, and

the Kilian index among others, could be important to predict food inflation for some countries, but

their inclusion probabilities are generally concentrated at low values. In other words, we cannot

disregard the contribution of such predictors to DFPI forecasting in certain economies, especially

for the largest forecast horizon (h = 12).

Overall, the distributions of the probabilities of inclusion suggest that after the GFC, domestic

food price inflation can be better forecasted using domestic CPI inflation as well as the international

price inflation of food, other food items, fertilizers, grains, and agricultural commodities. In par-

ticular, these variables improve their forecasting ability for many countries during the COVID-19

pandemic and its aftermath.
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Figure 5: Kernel Densities of the Posterior Probabilities of Inclusion—Pre-COVID-19 and COVID-19 Periods
(h = 6)
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Figure 6: Kernel Densities of the Posterior Probabilities of Inclusion—Pre-COVID-19 and COVID-19 Periods
(h = 12)

P−value: 0.563

P−value: 0

P−value: 0.003

P−value: 0.007

P−value: 0

P−value: 0.011

P−value: 0.992

P−value: 0

P−value: 0

P−value: 0.192

P−value: 0.032

P−value: 0
International Grain Price Inflation Kilian Index Michigan Inflation Expectations Other Food Price Inflation

Global Supply Pressure Index International Energy Price Inflation International Fertilizer Price Inflation International Food Price Inflation

Agriculture Price Inflation CPU Index CRB Index Domestic CPI Inflation

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

10

20

30

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

4

5

0

1

2

3

Inclusion Probability (h= 12 months)

de
ns

ity

Nov 2017 − Feb 2020 Mar 2020 − Jun 2022

Note: The median probability for the pre-COVID-19 period is represented in pastel pink, while that for the COVID-19 pandemic and its aftermath is shown in pastel
blue, both marked with a vertical line.

26



Regarding the lags of DFPI used as predictors, the probabilities of inclusion predominantly

cluster around values below 0.20, with medians rarely exceeding 0.15. The exception is the first

lag, where the median probability of inclusion nears 0.9 for the GFC period. This observation

could suggest that after the GFC, more distant history of the DFPI itself ceases to provide relevant

information for accurate forecasting. For the sake of simplicity, we opt to report the graphs of these

distribution in the Appendix Figures A1-A4.

Further evidence that supports this argument is provided by the evolution of the forgetting

factor δ. Recall that the predictive likelihood of a model depends on this parameter. We use a

grid of 11 values of δ (from 0.9 to 1) and their corresponding probabilities are updated at each

period.18 Figure 7 displays the percentiles 25, 50, and 75 associated with the distribution of the

weighted δ at each period starting in January 2005. For a given country and forecast horizon, we

use the updated probability for each δ to calculate the country’s weighted average of δ. Percentiles

are calculated at each period using these cross-country samples of the weighted average estimates

of δ.

The figure allows two interesting insights. First, it is apparent that all the percentiles of this

distribution decline during the GFC compared with its pre-crisis period. This observation aligns

with Catania and Nonejad (2018), who argue that a lower δ is expected during recessions or periods

of market turmoil, when there is increased time variability in the model’s slope parameters. Let

us recall that smaller values of δ indicate more instability on the predictors’ parameters. Following

Catania and Nonejad (2018), a value of δ equal to 0.91 imply that observations from 12 (24) months

ago receive approximately 32% (10%) as much weight as the last period’s observation. This result

is also consistent with the need to use more predictors to forecast DFPI with more precision after

the GFC (more on this below).

Second, the downward trend of all the percentiles in Figure 7 appears to stabilize at lower

values, converging towards 0.9, extending from the post-GFC period through to the end of the

sample, including the COVID-19 crisis period. This fact seems to suggest that since the GFC, the

global economy has entered a regime of persistently high instability in terms of the parameters of

the DFPI’s predictors.

18The initial prior for each of these probabilities is 0.091. Thus, for a given model, its posterior probability is
weighted using the updated probability for each of the δ values.
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Figure 7: Percentiles of the Posterior Weighted Average Estimate of δ (h = 6, 12)
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Note: The graph plots the percentiles of the distribution of the posterior weighted average estimate of the forgetting factor δ across economies for every period.
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Finally, Figure 8 provides percentiles for the mean number of predictors. This metric is com-

puted using the updated model probabilities as weights, resulting in a weighted average number of

predictors for each country and forecast horizon. Percentiles are calculated at each period using

these cross-country samples of averages. On average, there is an increase in the required number

of predictors to forecast DFPI accurately, especially when looking 12 months ahead.

In summary, the dynamics of these measures (i.e., inclusion probabilities, weighted average

estimates of δ, and the mean number of predictors) indicate that predicting DFPI using its own

historical data becomes more challenging after the GFC. Given the time variability in model pa-

rameters, the use of the most recent lags of DFPI coupled with the international price inflation of

food, other food categories, fertilizers, grains, and agricultural commodities can be more useful to

predict DFPI more accurately.

29



Figure 8: Mean Number of Predictors (h = 6, 12)
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3.3. Robustness checks

3.3.1. Additional models

We also run the forecasting horserace using the following variants of the random walk and the

autoregressive process:

M6: Atkeson and Ohanian (2001) random walk (AO-RW). In this case, πt+h = 1
6

∑6

i=1
πt−i+1,

for any forecast horizon h > 0.

M7: Autoregressive model (AR(p)) with fixed parameters and p = 6 lags.

M8: Autoregressive model (AR(p)-BIC) with fixed parameters and p chosen using the Bayesian

Information Criterion (BIC).

While the RW-AO model may seem like a trivial approach (just a simple average of the most

recent values of the DFPI rates), it has found its place as a benchmark model in the forecasting

toolkit for headline inflation (see, e.g., Faust and Wright, 2013; Duncan and Mart́ınez-Garćıa,

2019). This unit-root process has proved to be useful especially as a benchmark for CPI inflation

forecasting among emerging market economies. The reason is that the RW-AO model provides

a straightforward method to downweight later data, which is a useful strategy when there are

unknown structural breaks and model misspecification (Duncan and Mart́ınez-Garćıa, 2019). Based

on the median relative RMSPEs, the results are somewhat similar to those of the standard driftless

RW with a positive but slight difference in favor of the latter (see Appendix Tables A2-A4).

Furthermore, we investigate the performance of two autoregressive models, namely the AR(6)

and the AR(p)-BIC process (M7 and M8), where the optimal lag (p) is determined using the

BIC statistic for each period, economy, and forecast horizon. The maximum number of possible

lags assumed is 12. Appendix Tables A2-A4 present the outcomes of this analysis. The AR(6)

exhibits slightly higher median relative RMSPE ratio compared with its AR(1) counterpart in the

full sample for all the forecast horizons (see Tables 5 and A2). In contrast, the AR(p)-BIC tends

to outperform the AR(1) model particularly at longer horizons (h = 6, 12). This finding would

indicate that the key to enhanced forecasting may not solely lie in the number of lags present

within the autoregressive component of the models used in this study.

Comparing crisis and pre-crisis periods, once again, we find that the relative RMSPE ratios are

mostly below one and they are usually lower during the GFC and the COVID-19 pandemic than

their corresponding pre-crisis episodes. However, the statistical significance varies depending on

the model, horizon, and crisis period under consideration. More precisely, the gains in predictive

accuracy are primarily more significant during the GFC times.
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3.3.2. Alternative definition of the GFC

In this subsection, we analyze the sensitivity of our results to an alternative definition of the

GFC period. It can be argued that this global crisis started in December 2007 and ended in June

2009 as in the US economy (see the Business Cycle Dating at the National Bureau of Economic

Research’s website).

Table A5 confirms that the relative RMSPEs from the redefined GFC period are mostly below

one and often smaller than those from the pre-crisis period. A comparable tendency favoring the

null model is observed regarding the number of cases with p-values below 10%. Additionally, we

confirm that the DMS (M5) specification remains as the DMA’s closest competitor among the

alternative models.

4. Concluding Remarks

This paper focuses on forecasting domestic food price inflation (DFPI), a notably volatile com-

ponent of headline inflation, with a particular emphasis on periods of macroeconomic turbulence,

including the Global Financial Crisis (GFC) and the COVID-19 pandemic and its subsequent

repercussions. Our study considers a diverse array of economies, spanning from high-income to

low-income economies. We systematically evaluate different specifications and methods, as well as

the effectiveness of various predictors during each crisis.

We find that the dynamic model averaging (DMA) method, combined with a set of global com-

modity price indices, mostly outperforms conventional time-series models commonly employed in

the forecasting literature. We identify the international food price inflation as the most influential

indicator to forecast DFPI during crises in numerous economies. Other relevant predictors, espe-

cially during the COVID-19 episode, are domestic headline inflation, and the international inflation

of agricultural commodities, fertilizers, and other food categories.

Our results also reveal that after the GFC, the global economy has entered a regime with greater

instability in the parameters of predictors. This suggests that given the current context, distant

historical data might not sufficiently provide the necessary information for predicting the DFPI.

Methods such as DMA, which accounts for model and parameter uncertainty, are better suited for

forecasting DFPI.
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Duncan, R. and E. Mart́ınez-Garćıa. 2019. New Perspectives on Forecasting Inflation in Emerg-
ing Market Economies: An Empirical Assessment. International Journal of Forecasting 35 3, 1008-
1031.
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A. Appendix

A.1. Sample

Group of high-income economies (43): Austria, Bahamas, Belgium, Brunei Darussalam, Canada,

Chile, China, Hong Kong SAR, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland,

France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Kuwait, Latvia, Lithua-

nia, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of Korea, Romania,

Saudi Arabia, Singapore, Slovenia, Spain, Sweden, Switzerland, Trinidad and Tobago, United

Kingdom of Great Britain and Northern Ireland, United States of America, and Uruguay.

Group of middle- and low-income economies (68): Albania, Algeria, Angola, Armenia, Azerbai-

jan, Bangladesh, Belarus, Benin, Bolivia (Plurinational State of), Botswana, Brazil, Bulgaria, Burk-

ina Faso, Burundi, Cambodia, Cameroon, China, mainland, Colombia, Congo, Costa Rica, Cote

d’Ivoire, Dominican Republic, Ecuador, Egypt, El Salvador, Ethiopia, Fiji, Gabon, Georgia, Ghana,

Guatemala, Guinea-Bissau, Haiti, Honduras, India, Indonesia, Jamaica, Jordan, Kenya, Madagas-

car, Malaysia, Maldives, Mali, Mauritania, Mauritius, Mexico, Mongolia, Morocco, Nicaragua,

Niger, Nigeria, North Macedonia, Pakistan, Paraguay, Peru, Philippines, Republic of Moldova,

Rwanda, Serbia, South Africa, Sri Lanka, Thailand, Tonga, Tunisia, Turkiye, Uganda, United

Republic of Tanzania, and Vietnam.

A.2. Data sources

The DFPI series is sourced from the Food and Agriculture Organization (FAO) database.

Accessed on 12.15.2022. The DFPI rate is the year-over-year change in the logged DFPI

series.

Headline CPI inflation is obtained from the International Financial Statistics (IFS) database

of the International Monetary Fund. It is defined as the year-over-year percent change in the

CPI series. Accessed on 12.23.2022.

International price indices (agriculture, food, other food, energy, grains, fertilizers) are from

the World Bank database. Roughly, the agriculture index includes beverages, food, and raw

materials. The basket of the food subindex contains oils and meals, grains, and other food.

The latter contains bananas, beef, chicken, oranges, and sugar. Energy includes coal, crude

oil, and natural gas. Grains consider barley, maize, rice, and wheat. Fertilizers contain natural

phosphate rock, diammonium phosphate, potassium, and urea. Accessed on 12.02.2022.

The Global Supply Chain Pressure Index (GSCPI) is proposed by Benigno et al. (2022).

The index is standardized such that positive (negative) values represent how many standard

deviations the index is above (below) its historical average value reflecting higher (lower)

supply chain pressures (Benigno et al., 2022). Accessed on 12.15.2022.

36



The Kilian (2009) index measures global real economic activity in industrial commodity

markets. As other business-cycle indicators, this is expressed in percent deviations from

trend. Accessed on 3.15.2023.

The Climate Policy Uncertainty index is developed by Gavriilidis (2021). We use it to ap-

proximate aggregate uncertainty about climate change and related policies in the US. This

indicator calculates the number of relevant articles published in eight leading US newspapers

every month. The average of the rescaled series is normalized to have a mean value of 100

(or 4.61 in logarithmic scale). Accessed on 3.15.2023.

The expected inflation rate (the median expected price change next 12 months) is sourced

from the Surveys of Consumers, University of Michigan, University of Michigan: Consumer

Sentiment © [MICH], retrieved from FRED, Federal Reserve Bank of St. Louis. Accessed

on 3.16.2023.

The Commodity Research Bureau (CRB) index is a commodity futures price index that

comprises 19 commodities. The source is stooq.com. We use the close value of the index. The

agriculture commodities are cocoa, coffee, corn, cotton, Lean Hogs, live cattle, orange juice,

soybeans, sugar, and wheat). The non-agriculture commodities are aluminum, copper, crude

oil, gold, heating oil, natural gas, nickel, silver, and unleaded gas. Accessed on 10.02.2023.
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A.3. Average Forecast Error of the Competing Models

Table A1: Average Forecast Error of the Competing Models

h = 1 h = 6 h = 12

M1 : RW
Median 0.03 0.14 0.14
Mean 0.04 0.14 0.14
#p-value> 0.05 111 111 111
#p-value> 0.1 111 111 111

M2 : AR
Median -0.01 0.00 0.27
Mean -0.08 0.16 0.59
#p-value> 0.05 97 87 63
#p-value> 0.1 92 83 56

M3 : TVP
Median 0.00 0.02 0.06
Mean -0.03 0.02 0.19
#p-value> 0.05 106 105 104
#p-value> 0.1 102 101 101

M4 : KS
Median 0.03 -0.02 -0.01
Mean 0.01 -0.09 -0.01
#p-value> 0.05 107 107 104
#p-value> 0.1 96 98 96

M5 : DMS
Median 0.01 0.04 -0.01
Mean -0.01 0.06 0.04
#p-value> 0.05 109 107 108
#p-value> 0.1 107 102 105

Notes: Rows for medians (means) report the median (mean) of the average forecast error from the competing
specifications calculated over all countries. The rows #p-value> 0.05 and #p-value> 0.1 report the number of
economies with a p-value greater than 0.05 and 0.1, respectively, for the null hypothesis of an average forecast error
is equal to zero using Newey-West HAC standard errors. AR denotes the AR(1) model, RW is driftless the random
walk model, TVP is the AR(6) model with time-varying parameters, KS denotes the “kitchen sink” approach with
all the regressors and AR(6) component, DMS stands for dynamic model selection.
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A.4. Robustness checks

Table A2: RMSPE of the DMA Specification Relative to Additional Competing
Models—Full Sample

Full Sample

h = 1 h = 6 h = 12 Mean

M6 : RWAO
Median 0.51 0.48 0.38 0.46
Mean 0.54 0.85 0.54 0.64
# < 1 109 108 106 108
#p-value< 0.1 106 105 103 105
#p-value< 0.05 105 104 103 104

M7 : AR(6)
Median 0.97 0.60 0.46 0.68
Mean 0.98 1.00 0.62 0.87
# < 1 80 106 106 97
#p-value< 0.1 39 105 104 83
#p-value< 0.05 28 102 102 77

M8 : AR(p)-BIC
Median 0.99 0.57 0.39 0.65
Mean 1.06 0.98 0.55 0.86
# < 1 66 107 105 93
#p-value< 0.1 30 103 103 79
#p-value< 0.05 14 103 103 73

Notes: Rows for medians (means) report the median (mean) ratio of RMSPE from the DMA specification relative to that of
the competing forecasting models calculated over all countries for the full sample. Values less than one imply that DMA has a lower
RMSPE than does the competitive benchmark. The row # < 1 reports the number of economies that show relative RMSPE lower
than 1 for a particular forecast horizon (h) and model. The rows #p-value< 0.1 and #p-value< 0.05 report the number of economies
that show a p-value lower than 0.1 and 0.05, respectively, for the null of equal predictive accuracy measured by the RMSPEs of
the DMA and the alternative model. We use the Diebold-Mariano-West statistic modified by the Harvey et al (1997) adjustment
for small samples. RWAO (M6) denotes the random walk model proposed by Atkeson and Ohanian (2001). The AR(p)-BIC model
(M8) is estimated using an optimal lag chosen by the Bayesian information criterion for each period, economy, and forecast horizon.

39



Table A3: RMSPE of the DMA Specification Relative to Additional Competing
Models—GFC Period

Pre-GFC period GFC period

h = 1 h = 6 h = 12 h = 1 h = 6 h = 12

M6 : RWAO
Median 0.62 0.64 0.52 0.41 0.38 0.33
Mean 0.63 0.68 0.56 0.47 0.68 0.39
# < 1 107 101 104 108 108 109
#p-value< 0.1 89 73 47 104 96 83
#p-value< 0.05 67 34 20 96 86 42

M7 : AR(6)
Median 0.98 0.68 0.52 0.95 0.53 0.40
Mean 0.98 0.69 0.57 0.99 0.86 0.44
# < 1 73 101 104 75 106 108
#p-value< 0.1 27 56 45 30 81 70
#p-value< 0.05 15 34 25 23 57 33

M8 : AR(p)-BIC
Median 1.00 0.67 0.52 0.98 0.49 0.34
Mean 1.02 0.74 0.54 0.99 0.78 0.37
# < 1 57 105 107 66 108 110
#p-value< 0.1 13 57 42 30 88 85
#p-value< 0.05 5 30 15 19 72 43

Notes: Rows for medians (means) report the median (mean) ratio of RMSPE from the DMA specification relative to that
of the competing forecasting models calculated over all countries for the pre-GFC period (2006.1-2007.12) and the GFC episode
(2008.1-2009.12). Values less than one imply that DMA has a lower RMSPE than does the competitive benchmark. The row # < 1
reports the number of economies that show relative RMSPE lower than 1 for a particular forecast horizon (h) and model. The rows
#p-value< 0.1 and #p-value< 0.05 report the number of economies that show a p-value lower than 0.1 and 0.05, respectively, for the
null of equal predictive accuracy measured by the RMSPEs of the DMA and the alternative model. We use the Diebold-Mariano-
West statistic modified by the Harvey et al (1997) adjustment for small samples. RWAO (M6) denotes the random walk model
proposed by Atkeson and Ohanian (2001). The AR(p)-BIC model (M8) is estimated using an optimal lag chosen by the Bayesian
information criterion for each period, economy, and forecast horizon.
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Table A4: RMSPE of the DMA Specification Relative to Additional Competing
Models—COVID-19 Period

Pre-COVID-19 period COVID-19 period

h = 1 h = 6 h = 12 h = 1 h = 6 h = 12

M6 : RWAO
Median 0.60 0.57 0.40 0.49 0.47 0.38
Mean 0.63 0.59 0.44 0.52 0.48 0.40
# < 1 108 106 111 108 111 111
#p-value< 0.1 94 80 70 93 70 38
#p-value< 0.05 79 59 34 72 38 15

M7 : AR(6)
Median 0.98 0.61 0.41 0.95 0.52 0.40
Mean 0.98 0.62 0.44 0.93 0.55 0.44
# < 1 73 105 110 80 110 109
#p-value< 0.1 29 76 70 33 64 44
#p-value< 0.05 18 59 45 18 36 24

M8 : AR(p)-BIC
Median 0.98 0.63 0.39 0.96 0.51 0.37
Mean 1.03 0.66 0.41 0.99 0.57 0.40
# < 1 67 107 109 75 110 110
#p-value< 0.1 26 75 85 34 73 40
#p-value< 0.05 20 53 48 14 29 17

Notes: Rows for medians (means) report the median (mean) ratio of RMSPE from the DMA specification relative to that of
the competing forecasting models calculated over all countries for the pre-COVID-19 period (2017.11-2020.2) and the COVID-19
episode (2020.3-2022.6). Values less than one imply that DMA has a lower RMSPE than does the competitive benchmark. The
row # < 1 reports the number of economies that show relative RMSPE lower than 1 for a particular forecast horizon (h) and
model. The rows #p-value< 0.1 and #p-value< 0.05 report the number of economies that show a p-value lower than 0.1 and 0.05,
respectively, for the null of equal predictive accuracy measured by the RMSPEs of the DMA and the alternative model. We use the
Diebold-Mariano-West statistic modified by the Harvey et al (1997) adjustment for small samples. RWAO (M6) denotes the random
walk model proposed by Atkeson and Ohanian (2001). The AR(p)-BIC model (M8) is estimated using an optimal lag chosen by the
Bayesian information criterion for each period, economy, and forecast horizon.
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Table A5: RMSPE of the DMA Specification Relative to Competing Models—
Alternative Definition of the GFC Period

Pre-GFC period GFC period

h = 1 h = 6 h = 12 h = 1 h = 6 h = 12

M1 (RW)
Median 1.01 0.70 0.52 0.95 0.50 0.38
Mean 1.01 0.75 0.56 0.98 0.82 0.42
# < 1 47 105 104 75 109 109
#p-value< 0.1 13 39 9 29 77 25
#p-value< 0.05 5 18 3 14 53 2

M2 (AR)
Median 0.99 0.76 0.64 0.90 0.50 0.39
Mean 0.99 0.78 0.67 0.94 0.82 0.45
# < 1 59 96 100 88 108 109
#p-value< 0.1 14 38 22 41 78 27
#p-value< 0.05 7 15 11 27 48 15

M3 (TVP)
Median 0.98 0.82 0.73 0.96 0.62 0.56
Mean 0.99 0.83 0.76 1.02 1.00 0.62
# < 1 70 94 97 75 108 107
#p-value< 0.1 18 25 7 22 56 17
#p-value< 0.05 10 9 3 15 25 3

M4 (KS)
Median 0.86 0.89 0.88 0.84 0.85 0.85
Mean 0.85 0.88 0.88 0.87 0.86 0.87
# < 1 97 85 88 95 93 83
#p-value< 0.1 55 14 3 56 32 2
#p-value< 0.05 37 7 1 39 15 0

M5 (DMS)
Median 0.97 0.95 0.95 0.91 0.91 0.95
Mean 0.95 0.94 0.93 0.92 0.91 0.94
# < 1 80 85 86 92 95 86
#p-value< 0.1 27 14 0 57 26 0
#p-value< 0.05 17 7 0 36 12 0

Notes: Rows for medians and means report the median/mean ratio of RMSPE from the DMA specification relative to that
of the competing forecasting models calculated over all countries for the pre-GFC period (2006.5-2007.11) and the GFC episode
(2007.12-2009.6). Values less than one imply that DMA has a lower RMSPE than does the competitive benchmark. The row # < 1
reports the number of economies that show relative RMSPE lower than 1 for a particular forecast horizon (h) and model. The rows
#p − value < 0.1 and #p − value < 0.1 report the number of economies that show a p-value lower than 0.1 and 0.05, respectively,
for the null of equal predictive accuracy measured by the RMSPEs of the DMA and the alternative model. We use the Diebold-
Mariano-West statistic modified by the Harvey et al. (1997) adjustment for small samples. AR denotes the AR(1) model, RW is
driftless the random walk model, TVP is the AR(6) model with time-varying parameters, KS denotes the “kitchen sink” approach
with all the regressors and AR(6) component, DMS stands for dynamic model selection.
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A.5. Kernel Densities of the Posterior Probabilities of Inclusion—Lags of DFPI

The Figures A1-A4 below report the kernel density estimates of the probabilities of inclusion

associated with the six lags of the dependent variable (DFPI) during the pre-GFC, the GFC, the

pre-COVID-19, and COVID-19 periods for 6- and 12-month ahead forecasts, respectively.
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Figure A1: Kernel Densities of the Posterior Probabilities of Inclusion—Lags of DFPI, Pre-GFC and GFC Periods
(h = 6)
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Note: The median probability for the pre-GFC period is represented in pastel pink, while that for the GFC period is shown in pastel blue, both marked with a vertical
line.
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Figure A2: Kernel Densities of the Posterior Probabilities of Inclusion—Lags of DFPI, Pre-GFC and GFC Periods
(h = 12)
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Note: The median probability for the pre-GFC period is represented in pastel pink, while that for the GFC period is shown in pastel blue, both marked with a vertical
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Figure A3: Kernel Densities of the Posterior Probabilities of Inclusion—Lags of DFPI, Pre-COVID-19 and COVID-
19 Periods (h = 6)
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Note: The median probability for the pre-COVID-19 period is represented in pastel pink, while that for the COVID-19 period is shown in pastel blue, both marked with
a vertical line.
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Figure A4: Kernel Densities of the Posterior Probabilities of Inclusion—Lags of DFPI, Pre-COVID-19 and COVID-
19 Periods (h = 12)
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