Chapter 1

Quantum Dynamics

1.1 Time Evolution

Physical system given by |a) at time to. At some later time t > t, state is given by
|a, to; ). Since time is a continuous parameter

tli)rg la, tost) = |a) . (1.1)

Two Kets at different times can be related by an operator, called the time-evolution
operator u(t, tp).

la, to;t) = ult,to) |, to) - (1.2)

Properties of the time-evolution operator? First important property is the unitarily re-
quirement, follows from probability conservation. Suppose at t, the state Ket is expanded
in terms of eigenkets of same observable A:

la,t0) = > ca (o) |a) (1.3)

then at a later time ¢



lo,to;t) = > co (8) |d) . (1.4)

In general

car (B)] # car (fo)] (1.5)

(unless A commutes with H). Probability conservation requires

> lew (t)* = D lew @) (1.6)

a’ a’

Stated in a different way, this means if the state Ket is normalized to unity at a time tg,
it must remain normalized to unity at all later times. This property is guaranteed if the
time-evolution operator is taken to be unitary

u = U" (t,t0) Ult,tg) = 1. (1.7)

Unitarily is often synonymous with probability conservation. A further requirement is
the composition property

U(tg,to) = U(t2,t1) U(tl,to) 3 t2 > tQ > t() . (18)

Consider an infinitesimal time-evolution at

‘O!,t();t() + dt) = U(t() + dt,to) ‘(l/, t0> . (19)

Because of continuity, the infinitesimal time-evolution operator must reduce to the identity
operator if dt — 0

dtthO Uty + dt, 1) = 1. (1.10)

We expect the difference between U(ty + dt, %) and 1 to be of first order in dt.



U (to+dt,tg) = 1 — iQdt (1.11)

where Q is a Hermitian operator, Q™ Q = 1. Unitarily property can be checked as
follows:

Ut (to + dt, to) Ut + dt, tg) = (1 + iQdt) (1 — iQdt) = 1 (1.12)

to the extent that terms ~ (dt)? can be neglected.

The operator €2 has the dimension of frequency or inverse time. From Planck-Einstein

relation £ = h w, it is natural to relate 2 to the Hamiltonian H
Q = % . (1.13)
So, the infinitesimal time-evolution operator can be written as
Ut + dt,tg) = 1 — %Hdt. (1.14)
Exploit the composition property to derive an equation of U and consider
Ut + dity) = Ut + dtt) Ulhty) = (1 — © H dt) Ut, ) (1.15)

h

where the time difference ¢ — ¢y does not need to be infinitesimal. From (1.15) follows

U@+ﬁj@—U@@)z—%HﬁU@%) (1.16)
or equivalently
., 0

This is the Schrodinger equation for the time-evolution operator.
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Applying (1.17) to a state Ket leads immediately to the Schrédinger equation for the
state Ket

1 h % U (t,to) |Ol,t0> = HU (t,to) ‘Oé,to) . (118)

Since per definition |«, t;) does not depend on ¢, this gives with (1.2)

If we are given U(t,t) and in addition know how U(t,ty) acts on the initial state |, tp)
it is not necessary to bother with the Schrodinger equation for the state Ket (1.19). All
one has to do is apply U(t, to) to |«, to) and obtain the state Ket or any time ¢. The first
task is to derive formal solutions for the time-evolution operator (1.17). There are three
cases to be considered.

Case 1: The Hamiltonian operator H is independent of time. This means even when
the parameter ¢ changes, the H operator remains unchanged.

Example: Hamiltonian for a spin-magnetic moment interaction with time-independent
magnetic field.

In this case, the solution of (1.17) is given by

Ultty) = exp [— % H(t—to)] . (1.20)

To prose this expand the potential

1 1 1 i\?
exp[—3 H(t-t)] = 1 - L H(—t) + 3 (—%) [H (t—to)2 + --- (1.21)
The derivation is given by
O exple LH—ty)] = = Lm 4 1 2(—i)2H2(t—t)+ (1.22)
ot P17 2 B 2 h 0 '



Comparison with (1.17) shows that (1.20) fulfills the differential equation. For ¢ — ¢t
(1.20) reduces to the identity thus the boundary conditions we fulfilled.

Case 2: The Hamiltonian is time-dependent, but the H's at different times commute.

Example: Spin magnetic moment with magnetic field, whose strength varies with time,
but the direction is unchanged.

The formal solution of (1.17) is given by

Ult, t) = exp [—% Lt H (t')] . (1.23)

to

For a proof replace in (1.20) H(t — t,) with [ dt’ H(t').
Case 3: The H's at different times do not commute. In the example above that would
involve a magnetic field whose direction changes with time. Since, e.g., S; and S, do not

commute, a Hamiltonian with a term S - B would fall in this category.

The formal solution in this case is given by

Ultte) = 1+ 3 (—%)n /: dt tt dty - [ dty H (t2) H (82) - H (t,) (1.24)

to

which is sometimes knows as Dyson Series. Dyson developed a perturbative expansion
of this form in quantum field theory.

In usual applications, one considers Case 1. Then the effect of the time-evolution operator
is particularly straightforward to obtain, if the basis states are eigenstates to an operator
A with

(A, H] = 0 (1.25)

such that the eigenstates of A are also eigenstates of H with

Hl|d) = Eu|d). (1.26)



Expanding (1.20) in terms of |a’) (a’| (at ¢, = 0 for simplicity) gives

exp (— % H t) = > Y |d) (a'|exp (— % H t) la'y (d'| (1.27)

a’ a’

! i !
= Z |a)exp(— ﬁEa: t) A{d|

The time-evolution operator written in this form allows to solve any initial value problem
once the expansion of the initial Ket in terms of {|a’} is known. Suppose

o to = 0) = 3 ) (dla) = 3 cola). (1.28)

al

We then have

la, to = 0;) = exp (_ L H t) @t =0) = Y [d!) (]a) exp <_ > o t) . (1.29)
In other words, the expansion coefficient changes with time as

co (t = 0) — cy @y = ca (t = 0)exp (— % Ey t) : (1.30)

It is modulus unchanged. The relative phases among the various components vary with
time since the oscillation frequencies are different. If the initial state {|a’)}, i.e., |, ty =
0) = |a') then

a, o = 0: 1) = |a')exp (_ L By t) , (1.31)

thus, if the system is initially a simultaneous eigenstate of A and H, it remains so at all
times, within a phase modulation. In this sense the observable A is compatible with H
and is a constant of motion.



It is instructive to study how the expectation value of an observable changes as function of
time. Suppose at ¢ = 0 the initial state is eigenstate of an observable A with [A, H] = 0,
and we look at the expectation value of an observable B, which does not commute with
A or H. Because of |d', tg = 0; t) = U (¢, 0) |a’) we have

(B) = (d|U"(t,0) BU (,0) |a') (1.32)
= (a'|exp ( % FE' t) Bexp (— % Ey t) la’)
= (| B |d)

which is independent of t. For this reason energy eigenstates are called stationary states.

The situation is more interesting when the expectation value is taken with respect to a
superposition of energy eigenstates or a non-stationary state. Suppose the initial state is
given by

o, t = 0) = ) cyld . (1.33)

al

Then

(B) = [Z ¢ (d/| exp ( % E. t) ] B [Z Car €XP (— % Eu t) \a”)] (1.34)

= 2% Goew (@ 1B aexp (= 1 (Bw = E)t) .

a’ a'

Thus the expectation value consists of oscillating terms whose frequencies are determined
by

(Ea,” — Ea/)

. (1.35)

Waltg! =



1.2 Time-Dependent Wave Equation

Consider the Schrédinger picture and study the time-evolution of |« to;t) in the coordi-
nate representation, i.e., examine the behavior of the wave function

Y (@ 1) = (T [, to; 1) (1.36)

as function of time. The Hamiltonian is given by

2

H = — V(Z 1.37

YoV (1.37

where V(Z) is a local operator, i.e., (Z'|V(Z)|Z) = V(Z) 6 (& — '), and V(&) be

a real function. The Schrédinger equation for the state (1.19) written in coordinate
representation is

ih % (@ |, to; 1) = (2| H |, tg;t) . (1.38)

Inserting the Hamiltonian (1.37) leads to

. 0 h? . N
i h 5 (@ |a,tosty = — o V2T |a,te;t) + V(&) (&, to;t) . (1.39)

This represents the time-dependent Schrodinger equation and is the starting point for the
so-called wave mechanics.

Eigenfunctions of the Hamiltonian have the simple time dependence of (1.31),

@ |d 1) = (]a’)exp (— ~ o t), (1.40)
where it is understood that initially the system is prepared in a simultaneous eigenstate
of A and H with eigenvalues @’ and E,. Substituting (1.40) into (1.39) leads to the
time-independent Schrédinger equation

h2
— 5= V2(F ) + V(@) (@ |d) = B (@ |d) . (1.41)



This partial differential equation is satisfied by the energy eigenfunctions (#'|a’) with
energy eigenvalues F,.

Let us turn to the interpretation of the wave function. The expression (¥ |a,to;1) is to
be considered as the expansion coefficient of |« to;¢) in terms of the position eigenstates
{|2")}. The quantity p (&',t) defined by

p @ 1) = [v @ I = (@ | tost)]” (1.42)

is, therefore, regarded as the probability density in quantum mechanics, e.g., when using
a detector to ascertain the presence of the particle within a volume element d® 2’ around
7, the probability of recording a positive result at time ¢ is given by p (Z', t) d® z'.

Defining a probability fluz j(Z,t) by

@0 = - () W vv - (@v) (143

= Lg vy

we can derive the continuity equation

ap = -
S +V-i=0. (1.44)

In obtaining this result, the Hermiticity of V (a reality of V) plays a crucial role. A
complex potential can phenomenologically account for the disappearance of particles.

Rewrite the wave function as

W@, 1) = \/p(@, 1) exp (%S(f, ) (1.45)

with S real and p > 0. Any complex function of ¥ and ¢ can be represented this way.
Consider
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W VY = Jhexp (— % S> [v JPexp ( % S) + /P % VS exp ( % S)](1.46)

1

and

1
YVt = VoV Ve — 5 pVp (1.47)
follows from (1.44)
i@ 1) = p(;’ DG (0 . (1.48)

Thus, the gradient of the phase S, i.e., the spatial variation of the phase of the wave
function characterizes the probability flux. The stronger the phase variations, the more
intense the flux. The direction of j at some point Z is seen to be normal to the surface of
a constant phase that goes through that point.

Consider simple case of plane wave

1 1
T t) ~ —p - - - F . 1.4

Then V S = 7. Tt is tempting to regard v S/m as some kind of velocity, so that the
continuity equation reads

é F‘ /=1

as in fluid dynamics. But caution!
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1.3 Propagators

In Section 1.1 we showed that the most general time-evolution with a time-independent
Hamiltonian can be solved once the initial state is expanded in terms of eigenstates of an
observable that commutes with H.

h
= ; la'y{a' |, ty) exp [ - % Ey (t— tO)]

atoit) = exp [—iH(t—to)] a, o) (1.51)

Multiplying with (Z '| gives

(@ oy toit) = SF 1) (d o, to) exp [— % Ea,(t—to)] (1.52)

a/

which is of the form

b (@0 = Y e (to) uw (') exp [-% ; (t-to)] , (1.53)

a’

where uy (') = (&' |a') stands for the eigenfunctions of an operator A with eigenvalue a'.
Note also that

d |a, to) /d3 d |7 (' |, to) (1.54)

which corresponds to the usual rule for obtaining the expansion coefficients of an initial
state:

ca ( /d3 ut (&) Y (@, to) - (1.55)

Combining (1.52) and (1.54) can be written as some kind of integral operator, which acts
on the initial wave function to yield a final wave function:

12



o (@, 1) = / PRK(F 1 T, b)) 0 (&, to) (1.56)

where the kernel of the integral operator is given by

K (2",t; @, t) = Y (&' |d) (d |T')exp |- % Eqy (t—to) (1.57)

al
and is known as propagator.

In any given problem the propagator depends only on the potential (via H) and is in-
dependent of the initial wave function. The time-evolution of the wave function is com-
pletely determined once K (", ¢; &, t) is known and ¢ (&', t) is given. In this sense, the
Schrodinger theory is a perfectly causal theory. The time development of a wave function
subjected to some potential is as deterministic as classical mechanics provided the system
15 left undisturbed. If a measurement is intervenes, the wave function changes abruptly.

Properties of the propagator:

1. Fort > to, K (Z";7, to) satisfies Schrodinger’s time-dependent wave equation in
variables #’ and ¢ with #’ and ¢, fixed (via construction).

2. Fort — to

lim K (77,t; ',t) = & (F — &) (1.58)

t—to

because of the completeness of {|a’)}

In fact, (1.57) can be written as

K (#',6:3t0) = (& [exp|= 2 H (t—to)| |7) . (1.59)

This means the propagator acts on a state |7') at a given ¢, and propagates it to state
|Z") at time t.

To obtain information over the wave function ¢ (', t,) distributed over a finite space, one
multiples ¢ (#,t) with K and integrates over the entire space.
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The propagator is the Green’s function for the time-dependent Schrodinger equation sat-
isfying

2
[_ <h_) V2 4 V@) — ihD | K (@57 t) = —ih @ —F) 6 (t—t5) (1.60)
2m ot

with the boundary condition

K (i‘w,t;fl,to) =0 for t < ty. (161)

The 6—function § (¢ —%y) is needed in (1.60), since K varies discontinuous at ¢t = t,.

The particular form of K depends on the potential in the Hamiltonian. Consider the
simplest case of free propagation, i.e.,

Hy = — . (1.62)

The obvious observable to commute with H are the momentum eigenstates with p|p’) =
P'|p') Starting from (1.59) and setting ¢, = 0 for convenience, one obtains

K (#,6:7,0) = (|exp [—%HO t] ) (1.63)
= [y @en |- 2o 5y @ 1)
h 2m

= [ @ @ ) @ e | - £
h 2m

. 3 1 i 7 (@ -7 i 2 t

= d P (271' 7'7,)3 eh e kR 2m
1 ilp. @ - f’)—% t

= (27r h)?) / d3 pl eh [ 2 ] .

Splitting up the integral into [ dp| --- [ dp, --- [ dp} --, one has to solve

/ dp e% (m 5 t) . (1.64)
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Consider exponent

2 2,2 2
D t 9 Tr°m x
——t = - — — Tpr + = 1.65
( +px> om <+p t PP T ) 2 ¢ (1.65)
_ t <+ m:v)2 z*m
- 2m p t 2t

Thus
2
z xr t zmw2 2 h —r(z 2m _ t
/dpeh (p th) = /d(p- %> en 2 %e h(2 ¢~ P ) (1.66)
zmmz th t X 2m —x(2 2_m_p )
f— i - d . R\ 2 2m
N (p\/zmh 2Vth>
i m 2mh
= eFa cmn /d56—15
i 2m
frnd h
i 2mmh
= ehr 2t
it
Thus \ ) )
i .CC—p—t m 1/2 imm2
dpe” ” ) = ( ) R 1.67
oh / pe omint) (1.67)
Thus for (1.64) one obtains
1 A - ip’2
K (7,t,7,0) = @ hp /d3p' en Pr@=T) o=pom !t (1.68)
_ ( m )3/2 i m (f” 51)2
2mih t

This expression can be used to study the spreading of a Gaussian wave pocket over time.
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Certain space and time integrals derivable from K (Z"t; @', to) are of special interest. Set
again tg = 0 and consider 7 = 7’ and integrate over space, i.e.,

G(t) = / & o K (#,1,7,0) (1.69)
= / d* 2’ > [(Fd)]?exp [ — % Ey t]

= Zexp [— % Eal t

a

Notice that setting 27 = 2’ is equivalent to taking the trace of the time-evolution operator
in the & representation. The trace is independent of the representation, thus one can use
a basis in which H is diagonal. In a sense (1.70) is just a sum over states, reminiscent of
a partition function in statistical mechanics. Continue the variable ¢ analytically into the
complex plane and define

b= (1.70)

to be real and positive. Then (1.70) can be identified with the partition function

Z = Zexp(—ﬁ E.) . (1.71)

For this reason, some of the techniques used in statistical mechanics can provide useful
in dealing with propagators in quantum mechanics.

Consider the Laplace-Fourier transform of G(t)

G = - = | gt G(t) exp (% Et) (1.72)
1 [ 1 1
= 3 dt%:exp<—%Ea/t)exp<ﬁEt).

0

The integrand is indefinitely oscillatory. Thus let E acquire a small imaginary part
E — e+ ie. Then one obtains in the limit e — 0
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G(E) =Y ﬁ (1.73)

al

Here the entire energy spectrum is exhibited as simple poles of G(E) in the complex
E-plane. Thus, to find the energy spectrum of a physical system, it is sufficient to study
the analytic properties of G' (E).

To gain further insight into the physical meaning of the propagator, we wish to relate it to
the concept of a transition amplitude. According to (1.59) K (Z”,t; 2", ty) can be written
as

waw@):<wmﬁ—%ﬂa—mﬂf> (1.74)
=l Z ! ! /L' =
= Z(x|exp[—ﬁHt] la"y {d'| exp [gHto] |Z")
= (7"t |7, to) .

where the states |7/, t9) and (", t) are to be understood as eigenket (bra) in the Heisen-
berg picture.

In this notation ("t |7, ¢| can be identified as the probability amplitude for the particle
prepared at time ¢, with position eigenvalue ' to be found at a later time ¢ with position
eigenvalue 7".

Roughly speaking, (Z",t |%',to) is the transition amplitude for the particle to go from
space time point (Z',%y) to another space time point (Z”,t).

Yet another way to interpret (Z"t| Z'tp) is to view |Z'ty) as position Ket at t, with
eigenvalue . Thus (2"t |Z'to) is a transformation function that connects two sets of base
Kets at different times, i.e., the time-evolution can be viewed as unitary transformation

that connects one set of basis Kets {|7,)} to one formed by {|Z",t)}.

To use a more systematic notation, we write (Z”,t" |2,t') Since at any given time those
sets form a complete basis, the identity can be represented as

/d%WMﬂﬂHﬂJﬂzl. (1.75)
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Thus the time-evolution from ¢ to ¢ can be divided into two intervals:
(¢, ") — (', ") U (", ") with ¢ > ¢ > t'as

<:1—,/_illl7 t”’|f’ / d3 —'III III|:1—,/_iII t > <i;II7 tll|igl7 tl) (176)

We call this the composition property of the transition amplitude. Clearly, the considered
time interval can be divided into as many smaller subintervals as desired

<fllll’ t””| / d3 / d3 .T” fllll’ t”” |£_'III’ t”,> (1 77)

—*III t”l> <:1—,/_'II II> < t”| = t”‘f’ tl)
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1.4 Feynman Path Integral Formulation

Without loss of generality, consider here only one-dimensional problems. Consider the
transition amplitude for a particle going from an initial space time point (x1,¢;) to a final
space time point (z,,t,). The entire time interval between ¢; and ¢ is divided into N —1

equal parts

(ty —tn) (1.78)

tj—tjflEAt: N —1

Exploiting the composition property gives

<$n>tN‘$1at1> = /dl“N—l / dey_g - / dzsy <$n,tN|l“N—1,tN—1) (1-79)

(xn_1,tN-1]|TN_2,tN_2) - (X2, to|T1,t1) .

To visualize, consider the x — ¢ plane in Fig. 1.1.

A (Xpe )

N s

/ \ t3
5 :
e

(x 1 tl) Fig.
1.1 Paths in the x-t-plane

The initial and final space-time points (z1,%;) and (zy,ty) are fixed. For each time
segment, i.e., between ¢,_; and ¢,, we are instructed to consider the transition amplitude
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to go from (z, 1,%, 1) to (x,,t,) and then integrate over xs,z3, - -- xx 1. This means
that we must sum over all possible paths in the space time plane with the end points fixed.

Short review of path integrals in classical mechanics:

The classical Lagrangian is written as

Lclassical (.’L‘,.Q?) = 5 - V(.’E) . (180)

Given this Lagrangian with fixed end points (z1,t;) and (xy,tny), we do not consider
just any path joining the end points. There exists a unique path that corresponds to the
actual path of a classical particle. E.g., for

V(z) = mgzx (1.81)
(xlvtl) = (h,O)

wnn) = (o)

the classical path in the x — t-plane can only be

t2
z = h —97. (1.82)

According to Hamilton’s principle, the unique path that minimizes the action is defined
as

t2
) dt Lclassical (l‘,f) =0 (183)

t1
from which the equations of motion are obtained.
The basic difference between classical mechanics and quantum mechanics is that in clas-
sical mechanics a definite path is associated with the particle’s motion. In contrast, in

quantum mechanics all possible paths are included. Yet, classical mechanics must be
reproduced in a smooth manner in the limit A — 0.
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Introduce the notation

tn
S(n,n—1) = / dt Loassioat (7, 7) - (1.84)

th—1

Because Legssica 1S a function of z and %, S(n,n — 1) is defined only after a definite path
is specified along which the integration is to be carried out.

Consider a small segment between (n, 1,%, 1). According to a suggestion by Dirac an

” evolution operator” exp (% S(n,n — 1)) should be associated with that segment. Going
along a definite path, successively expressions of this type need to be multiplied:

nliexp [% S(n,n — 1)] = exp [% i S(n,n — 1)] = exp [% S(N, 1)] : (1.85)

n=2

This does not yet give (z,,t,|x1, ) rather describes the contribution along a particular
path. One still needs to integrate over xy, x3, --- Tny_1. At the same time, let time
interval At be infinitesimally small. Thus, in a loose sense we may write

(aastnlent) & Y exp [1 S(N, 1)] , (1.86)

all paths h

where the sum is to be taken over an infinite set of paths.
Qualitative remarks:

As b — exponent in (1.82) oscillates strongly, thus destructive interference for most
paths.

Consider a path that satisfies 6 S(/N,1) = 0, where the change in S is due to a slight
deformation of the path with the end point fixed (i.e., the classical path of Hamilton’s
principle). As long as a deformation of the classical path is small, there will be constructive
interference, even if A is small. For larger deformations, destructive interference. As
a result, as long as we stay near the classical path constructive interference between
neighboring paths is possible. In the limit 7 — 0 the major contributions must arise
from a very narrow stripe containing the classical paths.

To formulate Feynman’s conjecture more precisely, write
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(Tpytp|Tn—1,th—1) = ﬁ erp [% S(n,n — 1)] (1.87)

where the difference At = t,, —t, ; is assumed to be infinitesimally small, and S(n,n—1)
is evaluated in the limit ¢ — 0. The weight factor ﬁ is assumed to depend only on

the time interval ¢, — t,_1, and is necessary since (T, tp|Tn_1,t,_1) has the dimension

of m. Consider the exponent S(n,n — 1) in the limit ¢ — 0. Since §t small, a

straight-line approximation between (z,_1,%,_1) and (z,,t,) is justified.

S(n,n—1) = /tt dt l— _ V(:v)] (1.88)

Consider the free motion case, V = 0, where (1.87) becomes

1 i m (T, — Ty 1)?
(xn,tn|xn,1,tn,1) - Memp [ﬁ 5 T] . (189)

This expression is equivalent to the one for free particle propagation given in (1.69).
1

w(At)
for the free propagation. Because of the normalization (z,, t,|Tn_1,tn_1) = §(zn — Tn_1),

we obtain with
00 im &2 [2m 1 h At
= 4f/— 1.
/—oo d€ exp <2h At) m (1.90)

The weight form is assumed to be independent of V (), so it may well be evaluated

for —w(lA o)

1 [ m
w(At) ~ Vorin At (1.91)

and
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. m im &2
BV o7 A P (M) =9 (1.92)

In summary, as At — 0 one obtains

m 1
ytp1) = ) ———— — - 1) . 1.
(nstalt 1t 1) = |5 €@ |5 Snn—1) (1.93)

Thus, the final expression for the transition amplitude, where t,, — ¢; is finite, is given as

_ m \(N-1/2 N ;
(N, tn |z, 1) = ngréo (QWihAt) / d$N—1/d$N—2"' /d$1nl;[2€XP [ﬁs(nan - 1)]
(1.94)

where the limit N — oo is taken with x5 and ty fixed. It is customary to define the
functional

. , m (V12

and
TN 1 tn .
(o il ) = [ D [a(t)] exp [5 /t dt Lassical (7, x)] . (1.96)
Tl 1
This expression is known as Feyman’s path integral.
The above was not meant to be a shift derivation. The ideas borrowed from the conven-

tional quantum mechanics are:

1. the superposition principle, used in summing up the conditions from various alter-
nate paths

2. the composition property of the transition amplitude

3. the classical correspondence in the limit 4 — 0.
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Now we need to show that Feynman’s expression for (zy,tx|z1, ;) satisfies the time-
dependent Schrodinger equation in the variables zx,ty. We show with

(xn, tn|ze,t) = /d$N—1<l‘N,tN|l‘N—1,7fN—1)($N—1,tN—1|331,t1> (1.97)

00 m im(zy — N 1) @
frnd _ - -~ - 6 6 =G = __ __ t
/oo HN-1\ rin At P [Qh At Ry A

(xN—1,tN_1]T1,11)

where ty —ty_1 = At is assumed to be infinitesimal. Further introduce § = zy — xny_1
and let zy — X, and ty = t+ At. Then (1.97) becomes

2
(T, t + At|z1,t1) = ’/27rzhAt / d€ exp [%Kt - %VAt] (x — & tley,tr) . (1.98)

From (1.92) it is obvious that in the lim §¢ — 0 the major contributions to the integral
come from the £ =~ 0 region. Thus, we expand (z — &,t|z1,¢;) in powers of £, and

(x,t+ At|zy,t1) and exp [ —iy At] in powers of At.

<$,t‘$1,t1> + At 2 <.’L‘ t‘iEl,'h) (199)

- 27rz7'zAt p%A_Qt _%
ST /d§ l f“l VAL + ]

2 2
X l<$,t|x1,t1> + <%> 88—52 (@, t|zy,t1) + ]

where we dropped the term linear in &, since it vanishes when integrating with respect to

€.

The first term on the right-hand side just integrates to (z,t|z1,¢1) since the integral
cancels the factor due to (1.91). In collecting the terms of first order in At gives

At%(m,ﬂxl,tl) S (%) ALV (z, bz, 1) (1.100)
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3/2 2
1 h At 1 0
+ 27 4 h 21 i h At Var ( ) 2 8—52 (wtlz1, 1)

where we have used

. . 3/2
= 2 im & ih At
/_OO dE €2 exp l% At] — Vor ( - . (1.101)
Thus
., 0 R\ 02
ih 5% (z,tlz1, 1) = — pyel e (z,t|z1,t1) + V {z, tla, ) (1.102)

which corresponds to the time-dependent Schrodinger equation for the quantity (x, t|zq, 1)
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Chapter 2

Lorentz Transformations

2.1 Elementary Considerations

We assume we have two coordinate systems S and S’/ with coordinates x,y, z,1 and
xl,yl, 21,11, respectively. Physical events can be measured in either system, and the
Lorentz transformation give the relation between the coordinates x/, y/, z/,t! and z, vy, 2, t.
The transformation has to fulfill the following requirements:

1. The transformation should be linear. Otherwise a specific system S, or a point in
space or time would be distinct. (For a linear transformation, the inverse has the
same form.)

2. Each point in R3 given by 2/, y/, 2/ in S’ moves with constant velocity ¥ with respect
to a point z,y,z in S.

3. A measurement of the speed of light should give C' in both systems.

We assume the uniform motion is in z—direction. Then
=z, y =y. (2.1)
From (1) follows

2l = a1z + ast (2.2)
tr = bit + bez
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