Chapter 2

Lorentz Transformations

2.1 Elementary Considerations

We assume we have two coordinate systems S and S’/ with coordinates z,¥, z,t and
xl,yl, z1,t! , respectively. Physical events can be measured in either system, and the
Lorentz transformation give the relation between the coordinates x/, y/, 2/, t/ and x,y, z, t.
The transformation has to fulfill the following requirements:

1. The transformation should be linear. Otherwise a specific system S, or a point in
space or time would be distinct. (For a linear transformation, the inverse has the
same form.)

2. Each point in R? given by z/, y/, 2/ in S’ moves with constant velocity ¥ with respect
to a point z,y,z in S.

3. A measurement of the speed of light should give C' in both systems.

We assume the uniform motion is in z—direction. Then
x=x, y =vy. (2.1)
From (1) follows

2l = a1z + ast (2.2)
tr = blt + ng
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From (2) follows, if 2/ = 0, then z = wvt, thus
a; = —vay (2.3)
Then 2.3 becomes

21 = 2z (2 — vt) (2.4)
tr = blt + ng

Consider the consequences of (3). A light pulse is sent at
x =y =z =t =0 insystems S (2.5)

and
xl = y = z/ =t =0 insystems S/, (2.6)

where S is the rest frame and S/ some moving frame. In both systems, the speed of light
is given by ¢, i.e.,

rest frame S : \/x2 + Y2 4+ 22 = ¢t (2.7)
moving frame S’ : \/le + yP? + 2P = ct/ (2.8)
From this follows
o 4 oy o2 = 2 4+ Y+ df (2 — vt)? (2.9)
= 2 + ¥ + df (z—g\/x2+y2+22>2
c
= At

= 62 (blt + bQZ)Q

2
b
= ¢ (—1 Vi +yr+ 2t + sz>
C

This must be identical for z,y, z and 22 + 3%, 2z V22 + 2 + 22, 2%
Terms proportional to

v? b?
o+ Yl —a 5 = (2.10)
C

z\/x2+y2+22 s —

C
2 2
2 . 2 v oo (b 2
VA : Cll <1+C—2>—C <C—2+b2>



These are three equations for three unknowns, which give for aq, by, bs:

1
a; = b1 = 7@2 (2'11>
L=
Y
bg = — C_Q ay
Thus the Lorentz transformations become
P z vt (2.12)
1 — 2
r -
= c?z

r = e (2.13)

2.2 Lorentz Transformations as Orthogonal Transfor-
mations in Four Dimensions

A Lorentz transformation leaves the expression

r; + 13 + a3 — A (2.14)
invariant. Proof by inserting
3 — vt)? t Y xq)?
x4 o 4 xR — AP o= 2?4 2k o+ (i’iﬂ) - ( . szﬁ) (2.15)
T 2
= ] + 125 + a5 —
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Defining x4 : ict, the invariant quantity can be written as

4
Yoooxl = za 2% = x4l a1 (2.16)
a =1

[0}

This means that the length of a vector z, in R* remains unchanged under Lorentz trans-
formations. Thus, a Lorentz transformation can be interpreted as rotation in a four-
dimensional space,

Tyl = au x” (217)
with a,, a** = 4. For the special case that S/ moves with v in x3—direction, one has
10 0 0
0 1 0 0
00 —infg v

_ 1
where f = 2 and v = —(——.

/B C ’Y /1 — ﬂQ
Let us consider vectors and tensors in a four-dimensional space. A, is a four-dimensional
vector, if its components transform as the coordinates of a four-dimensional vector space,
ie.,

Ay = ay, A (2.19)

A tensor of rank 2 transforms as

Al = aup ayy A7 (2.20)

Those vectors have a special meaning. Since according to Einstein’s principle of relativ-
ity all systems moving with a uniform velocity are equivalent, the laws of physics must
obey the same equations in e.g., system S and system S/. Compare rotations in three
dimensions. The laws of physics are independent from the position of one coordinate
system with respect to the other. Physical quantities are described by scalars, vectors
and tensors, and the physical laws are given by combination of those quantities. Since
the physics is independent from the position of the coordinate system, the form of the
equation is the same in each coordinate system.

Since the laws of physics can be described in each moving frame, and according to spe-
cial relativity all moving frame are equivalent, the laws of physics must be described by
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equations which do not change when going from one frame to another. Thus, they must
be expressed as scalars, vectors and tensors in a four-dimensional space. (The Maxwell
equations are Lorentz invariant. Newtonian mechanics not.)

The quantity A, B* is a four-scalar. If A, A* = 0 in a Minkovski metric (imaginary
components), then this does not imply that all components are zero. A vector is space-like

it A, A* > 0, and time-like if 4, A* < 0.

For the vector product in three dimension, the totally antisymmetric ¢ tensor

di1 Oip Ois
8ijk = 6]'1 (Sj (Sj (221)
Okt Oka Oks
with
Eijk Elmk = ‘ 5; 5]' = 0y 5jm - 5jz dim (2-22)

played a special role. Analogously we introduce a four-dimensional totally antisymmetric
tensor

dp1 Opa Op3 Opa
aBvr = 2.23
€apy 571 572 573 574 ( )

with
6(11/ 504)\ 6(10
Cafyr Evrer = 6ﬁu 6ﬂ)\ 6ﬁ0 (224)
‘Sw % 570

= 6041/ (5ﬁ/\ 670 + 604/\ 6ﬁ0 671/ + 6(10 6ﬁ1/ 67/\
- 6041/ 6ﬁ0 67)\ - 6(1)\ 6ﬁu 670 - 6(10 6ﬂ)\ 671/

Eafyp Evdu = 2 0ay Opx — 2 dax Opy

Now we can define a ‘vector product’

Caﬁ = Eafuv A” B,, (2.25)
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which is an antisymmetric tensor of rank 2 with six independent components.

antisymmetric tensor of rank 2 can be associated with a dual tenor

~ 1
Caﬁ = 5 Eafyr C’yﬂr

with é’ag = Cyp. If Cyp stands for a vector product, then

Cos = Aq By — Ay B, .

Most operations can be carried through from three to four dimensions

0
9 = gradient = vector
Oz,
0A
—*" = gradient = scalar
Oz,
0A, ) .
Rog = €apyr T = antisymmetric tensor of rank 2
v

~ 0Ap 0A,

R = —

o 0, O0zp
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2.3 Electrodynamics in Four Vectors

From the vector potential A and the scalar potential ¢, one can construct a four vector
A# = (AI: AQ, Ag, Z¢) with

A,

B

= VA + =0,

[ N

0¢
o (2.29)

which states that the divergence of the four potential to zero (Lorentz condition). Similarly

one introduces a four current J, = (.Ji, J2, Js,ic p), and the continuity equation becomes
d0J, S o dp
— = J + — = 0. 2.30
oxH ot ( )

The wave equation can be written as

4dT
04, = — —J,, (2.31)
where 52 s
O= ——— = A — — — . 2.32
Oz, Ox+ 2 Ot? ( )
This equation is identical with the two equations
Ao LByl g (2.33)
2 Ot? N c '
1 02
A — — — = —4
( ¢ 8t2> ¢ p
We now define a totally antisymmetric tensor of rank 2
0A 0A
F,, - £ 2.34
a 0z, 0z, ( )

and the corresponding dual tensor
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~ 1
F;w 5 Euvio F)\a
Explicitly F),, is given by
0 B; —By —iE;
roo_ —B; 0 B, —iFE,
pe B, —-B, 0 —iFEs
1By 1By 1By 0
0 —iE3  iFEy, B
P 1E3 0 —iE By
we —iFEy  1FE, 0 Bs
-B, -By, -—-B* 0

These tensors allow to write the Maxwell equations in a very compact fashion

oF,, ,
—* -0 & V x E
ox,
oF,, "
—® -0 & V x B
oz,
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0B
ot

0E

ot

<
sl

(2.35)

(2.36)

(2.37)



2.4 Lorentz Transformations in a Four Vector Nota-

tion
Aside of setting z, = ict, it is also customary to use ¥ = (x1,29,73) and 2° = x; = ct.
If one considers z; = — 2%, i = 1,2, 3, then the invariant line element ¢?t> — 2? — 22 — 22
can be written as z¥x, = *t? — 2.
T, = (Tg, T1, To, 3) = (2°, —2', —x?, —2?) is the covariant four vector,
x¥ = (2% ', 2, 23) is the contravariant four vector.
The invariant line elements is written as
do® = g,, dz" dz” (2.38)
where g, is the covariant metric tensor with
1 0 0 0
0 -1 0 0
= 2.
S 0 0 -1 0 (2:39)
0 O 0 -1

In special relativity the metric tensor is constant. The contravariant metric tensor g* is
given by the relation

9" Gua = 0q (2.40)
which is equivalent to ¢** = g,,. Thus one has
T, = Guw " (2.41)
& = g™z, (2.42)
(2.43)

Scalars, vectors and tensors are given by their transformation properties. An arbitrary
tensor of higher rank may have covariant as well as contravariant components, e.g.,

AN = g, AV (2.44)
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2.5 Elements of Special Relativity

Explicitly a Lorentz transformation is given as

ot o= A, (2.45)
which leaves the scalar product
2 = (2% - 7° (2.46)
invariant. From the invariance of the scalar product, i.e., 2> = 22 follows
ATgA =g. (2.47)

This condition is fulfilled by matrices of the form

cosh x —sinh x 0 0
B —sinh x cosh x 0 0
A = ) R (2.48)
0 0 01
The parameter y is called rapidity and depends on the velocity v. Explicitly
tanh y = L. (2.49)
¢
and
1
cosh y = —— = v
O
inh z ! 3 (2.50)
sinh y = — ——— = [y :
- p
If one adds to the Lorentz transformations (2.45) translations in space and time
" = 2" + d* (2.51)

where

a = ( ‘i_; ) (2.52)

is an arbitrary four-vector, one obtains the symmetry group which characterizes the theory
of special relativity:
g = Az + a with AT gA = g. (2.53)
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This group is called Poincaré or inhomogeneous Lorentz group. A general approach
to relativistic quantum mechanics can be designed the following way: According to the
general principles of quantum mechanics, the Poincaré group has to be represented in the
Hilbert space of quantum states as unitary (or anti-unitary) operators:

(Aya) — U(Aa) . (2.54)

The problem is then to determine the irreducible (unitary) representations of the Poincaré
group. This problem was solved in 1939 by Wigner. He obtained the result:

For every real number m > 0 and each j = 0, 1 5 1,32 5, -+ exists an irreducible representation

of the Poincaré group characterized by (m, j).

The "quantum numbers” m and j can here be associated with the mass and spin of a
corresponding particle (particle physics).

A more elementary (and historical) approach is to look for a Schrédinger equation, which
fulfills Lorentz covariance. Obviously, one cannot start from the well-known expressions

zh— Y1) = H(P,Q) | ¢s(1)) (2.55)
" dA _ ! 2] 2.56
o An() = = [H(P.Q), Au(0)] (2.56)

since both equations contain time ¢ and space Cj in an asymmetrical fashion, namely ¢
as c-number and Q as hermitian operator. A symmetric form is only achieved if either
t becomes an operator or () a c-number vector. In the first case, one would have to
introduce in analogy to

h
[P}, Q] = 7 Ok (2.57)

the commutator "
[H,t] = 7 (2.58)

However, the latter contradicts the physical requirement that the spectrum of H has to
be bounded from below. Thus, we choose the second possibility and work exclusively in
the coordinate representation, where the operator Q appears only as c-number vector 7,
and the wave function is represented as

O(z) = Y0 2", 2% 2% = (ct, T) . (2.59)

Here space and time enter on the same footing.
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The different equation for ¢(x), which has to correspond to (2.55), has to contain the
relativistic relation between energy and momentum, i.e., for a particle moving without
the influence of a force, the relation

E = cy\/p? + (mc)? (2.60)

has to be valid. Energy and momentum are in quantum mechanics replaced as

0
E — ih —
ot
— h =
p — — Vi, (2.61)
i
The above relations correspond to
EF = hw
7 = hk (2.62)

which reflect the translational invariance with respect to space and time, and which shall
stay valid in a relativistic quantum mechanics. In order to bring the relations (2.61) into
a formal covariant form, dimensions and signs have to be considered:

1 0 0
- FE = — ih = th —
c Po ' d(ct) " a0
h = . 0
As a Reminder:  The derivative with respect to the contravariant components form
the covariant components of a four-vector. Consider % applied to a scalar function of
2 = 2¥zx,
1) = [0 (@n) = ) 2 (2.64)
Ozt Ozt Y o '
Thus, % = Ouy; p = 0,1,2,3 and
Pu — ih au ’ (265)

which shows that p, transforms as a covariant vector. Inserting (2.63) into (2.60) leads
to

1
EE_ p? 4+ (me)? — ihag—\/—h228§+(mc)2
P

— ihdy — =P A + (me)? . (2.66)
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The last expression is unfortunately again asymmetric with respect to the differentiation
with respect to time and spatial coordinates. This asymmetry can be avoided when
starting from the squared energy momentum relation

1 2
(S E) =+ (mep (2.67)
in the form )
]_ - —
e = (ZB) -5 =4 - 5 = (2.68)

One obtains:

_ [aﬂau 4 (%ﬂ (2.69)

Here the derivatives with respect to time and space coordinates are symmetric, and one

defines
0= = L9 _ A (2.70)
g c? Ot?
According to the previous considerations, the relativistic relation between energy and
momentum is fulfilled, if the wave function ¢ (z) obeys the differential equation

2
(D i (%) ) (z) = 0, (2.71)
which is the so-called Klein-Gordon equation.

Remark on Natural Units:

In principle, one would like to have fundamental units for space, time and mass, which
are derived from the fundamental laws of physics.

elementary length £
elementary time
elementary mass my

A modern candidate for ¢, is the Planck length

gh

2

Cotanck = =16 - 10 em (2.72)

(¢9: gravitational constant)
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Even if /; is not explicitly fixed, one can use ¢ and A to fix units for ¢, and mq:

%0 := elementary time = time, which light needs to pass /.

ty =
mo = Ehc := elementary mass from the Compton relation.
If one chooses (g, ty and mg as elementary units, then:
The speed of light has the numerical value 1 : ¢ =1.

The Planck constant A has the numerical value 1 : A = 1.

Starting from these natural units, all other units can be related to the unit of length, e.g.,
cm. Some important relations acquire the form

E = \p + m?

E = w

P o=k

a = €

i = igsg (magnetic moment)
2m

(O + m?) ¢(x

~—

0 (Klein — Gordon equation) (2.73)
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