
Chapter 2
Lorentz Transformations
2.1 Elementary ConsiderationsWe assume we have two coordinate systems S and S0 with coordinates x; y; z; t andx0; y0; z0; t0 , respectively. Physical events can be measured in either system, and theLorentz transformation give the relation between the coordinates x0; y0; z0; t0 and x; y; z; t.The transformation has to ful�ll the following requirements:1. The transformation should be linear. Otherwise a speci�c system S, or a point inspace or time would be distinct. (For a linear transformation, the inverse has thesame form.)2. Each point inR3 given by x0; y0; z0 in S0 moves with constant velocity ~v with respectto a point x; y; z in S.3. A measurement of the speed of light should give C in both systems.We assume the uniform motion is in z�direction. Thenx0 = x ; y0 = y : (2.1)From (1) follows z0 = a1z + a2t (2.2)t0 = b1t + b2z26



From (2) follows, if z0 = 0, then z = vt, thusa2 = �va1 (2.3)Then 2:3 becomes z0 = z1 (z � vt) (2.4)t0 = b1t + b2zConsider the consequences of (3). A light pulse is sent atx = y = z = t = 0 in systems S (2.5)and x0 = y0 = z0 = t0 = 0 in systems S0 ; (2.6)where S is the rest frame and S0 some moving frame. In both systems, the speed of lightis given by c, i.e., rest frame S : qx2 + y2 + z2 = ct (2.7)moving frame S0 : qx02 + y02 + z02 = ct0 (2.8)From this followsx02 + y02 + z02 = x2 + y2 + a21 (z � vt)2 (2.9)= x2 + y2 + a21 �z � vc qx2 + y2 + z2 � 2= c2 t02= c2 (b1t + b2z)2= c2  b1c qx2 + y2 + z2 + b2z !2
This must be identical for x; y; z and x2 + y2; z px2 + y2 + z2 ; z2.Terms proportional to x2 + y2 : 1 � a21 v2c2 = c2 b21c2 (2.10)z qx2 + y2 + z2 : � a21c = c2 b1b2cz2 : a21  1 + v2c2! = c2  b21c2 + b22 !27



These are three equations for three unknowns, which give for a1; b1; b2:a1 = b1 = 1q1 � v2c2 (2.11)b2 = � vc2 a1Thus the Lorentz transformations becomez0 = z � vtq1 � v2c2 (2.12)t0 = t � vc2zq1 � v2c2The inverse transformations are obtained by replacing v with �v :z = z0 + vt0q1 � v2c2 (2.13)t = t0 + vc2 z0q1� v2c22.2 Lorentz Transformations as Orthogonal Transfor-mations in Four DimensionsA Lorentz transformation leaves the expressionx21 + x22 + x23 � c2t2 (2.14)invariant. Proof by insertingx021 + x022 + x023 � c2t02 = x21 + x22 + (x3 � vt)21 � v2c2 � c2 (t � vc2 x2)21 � v2c2 (2.15)= x21 + x22 + x23 � c2t228



De�ning x4 : ict, the invariant quantity can be written as4X� = 1 x2� = x� x� = x�0 x0� (2.16)This means that the length of a vector x� in R4 remains unchanged under Lorentz trans-formations. Thus, a Lorentz transformation can be interpreted as rotation in a four-dimensional space, x�0 = a�� x� (2.17)with a�� a�� = ��� . For the special case that S0 moves with v in x3�direction, one has
a��(�) = a�� (��) = 0BBB@ 1 0 0 00 1 0 00 0 
 i
�0 0 �i
� 
 1CCCA (2.18)

where � � vc and 
 = 1p1 � �2 .Let us consider vectors and tensors in a four-dimensional space. A� is a four-dimensionalvector, if its components transform as the coordinates of a four-dimensional vector space,i.e., A�0 = a�� A� : (2.19)A tensor of rank 2 transforms as A��0 = a�� a�� A�� : (2.20)Those vectors have a special meaning. Since according to Einstein's principle of relativ-ity all systems moving with a uniform velocity are equivalent, the laws of physics mustobey the same equations in e.g., system S and system S0. Compare rotations in threedimensions. The laws of physics are independent from the position of one coordinatesystem with respect to the other. Physical quantities are described by scalars, vectorsand tensors, and the physical laws are given by combination of those quantities. Sincethe physics is independent from the position of the coordinate system, the form of theequation is the same in each coordinate system.Since the laws of physics can be described in each moving frame, and according to spe-cial relativity all moving frame are equivalent, the laws of physics must be described by29



equations which do not change when going from one frame to another. Thus, they mustbe expressed as scalars, vectors and tensors in a four-dimensional space. (The Maxwellequations are Lorentz invariant. Newtonian mechanics not.)The quantity A� B� is a four-scalar. If A� A� = 0 in a Minkovski metric (imaginarycomponents), then this does not imply that all components are zero. A vector is space-likeif A� A� > 0, and time-like if A� A� < 0.For the vector product in three dimension, the totally antisymmetric " tensor
"ijk = ������� �i1 �i2 �i3�j1 �j2 �j3�k1 �k2 �k3 ������� (2.21)with "ijk "lmk = ����� �il �im�jl �jm ����� = �il �jm � �jl �im (2.22)played a special role. Analogously we introduce a four-dimensional totally antisymmetrictensor "��
� = ��������� ��1 ��2 ��3 ��4��1 ��2 ��3 ��4�
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Now we can de�ne a `vector product'C�� = "���� A� B� (2.25)30



which is an antisymmetric tensor of rank 2 with six independent components. Everyantisymmetric tensor of rank 2 can be associated with a dual tenor~C�� = 12 "��
� C
� (2.26)with ~C�� = C��. If C�� stands for a vector product, then~C�� = A� B� � A� B� : (2.27)Most operations can be carried through from three to four dimensions@�@x� � gradient � vector (2.28)@A�@x� � gradient = scalarR�� = "��
� @A�@x
 = antisymmetric tensor of rank 2~R�� = @A�@x� � @A�@x�
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2.3 Electrodynamics in Four VectorsFrom the vector potential ~A and the scalar potential �, one can construct a four vectorA� = (A1; A2; A3; i�) with @A�@x� = ~r ~A + 1c @�@t = 0 ; (2.29)which states that the divergence of the four potential to zero (Lorentz condition). Similarlyone introduces a four current J� = (J1; J2; J3; ic �), and the continuity equation becomes@J�@x� = ~r � ~J + @�@t = 0 : (2.30)The wave equation can be written as2A� = � 4�c J� ; (2.31)where 2 := @2@x� @x� = � � 1c2 @2@t2 : (2.32)This equation is identical with the two equations � � 1c2 @2@t2! ~A = � 4�c ~J (2.33) � � 1cc @2@t2! � = �4� �We now de�ne a totally antisymmetric tensor of rank 2F�� := @A�@x� � @A�@x� (2.34)and the corresponding dual tensor 32



~F�� = 12 "���� F�� = "���� @A�@x� (2.35)Explicitly F�� is given by
F�� = 0BBB@ 0 B3 �B2 �iE1�B3 0 B1 �iE2B2 �B1 0 �iE3iE1 iE2 iE3 0 1CCCA =  "ijk Bk iEiiEi 0 ! (2.36)~F�� = 0BBB@ 0 �iE3 iE2 B1iE3 0 �iE1 B2�iE2 iE1 0 B3�B1 �B2 �B3 0 1CCCA =  �i"ijk Ek Bi�Bi 0 !

These tensors allow to write the Maxwell equations in a very compact fashion@ ~F��@x� = 0 , r � ~E + 1c @B@t = 0 ; r ~B = 0 (2.37)@F��@x� = 0 , r � ~B � 1c @E@t = 0 ; r ~E = 4� �
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2.4 Lorentz Transformations in a Four Vector Nota-tionAside of setting x4 = ict, it is also customary to use ~x = (x1; x2; x3) and x0 = x1 = ct.If one considers xi = � xi; i = 1; 2; 3, then the invariant line element c2t2 � x21 � x22 � x23can be written as x�x� = c2t2 � ~x2.x� := (x0; x1; x2; x3) = (x0;�x1;�x2;�x3) is the covariant four vector,x� := (x0; x1; x2; x3) is the contravariant four vector.The invariant line elements is written asd�2 = g�� dx� dx� (2.38)where g�� is the covariant metric tensor withg�� = 0BBB@ 1 0 0 00 �1 0 00 0 �1 00 0 0 �1 1CCCA : (2.39)In special relativity the metric tensor is constant. The contravariant metric tensor g�� isgiven by the relation g�� g�� = ��� (2.40)which is equivalent to g�� = g��. Thus one hasx� = g�� x� (2.41)x� = g�� x� (2.42)(2.43)Scalars, vectors and tensors are given by their transformation properties. An arbitrarytensor of higher rank may have covariant as well as contravariant components, e.g.,A��� = g�� A��� : (2.44)
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2.5 Elements of Special RelativityExplicitly a Lorentz transformation is given asx0� = ��� x� ; (2.45)which leaves the scalar product x2 = (x0)2 � ~x 2 (2.46)invariant. From the invariance of the scalar product, i.e., x02 = x2 follows�T g � = g : (2.47)This condition is ful�lled by matrices of the form� = 0BBB@ cosh � � sinh � 0 0� sinh � cosh � 0 00 0 1 00 0 0 1 1CCCA (2.48)The parameter � is called rapidity and depends on the velocity ~v. Explicitlytanh � = vc : (2.49)and cosh � = 1q1 � (vc )2 = 
sinh � = vc 1q1 � (vc )2 = �
 (2.50)If one adds to the Lorentz transformations (2.45) translations in space and timex0� = x� + a� (2.51)where a =  a0~a ! (2.52)is an arbitrary four-vector, one obtains the symmetry group which characterizes the theoryof special relativity: x0 = �x + a with �T g� = g : (2.53)35



This group is called Poincar�e or inhomogeneous Lorentz group. A general approachto relativistic quantum mechanics can be designed the following way: According to thegeneral principles of quantum mechanics, the Poincar�e group has to be represented in theHilbert space of quantum states as unitary (or anti-unitary) operators:(�; a) �! U(�; a) : (2.54)The problem is then to determine the irreducible (unitary) representations of the Poincar�egroup. This problem was solved in 1939 by Wigner. He obtained the result:For every real number m � 0 and each j = 0; 12 ; 1; 32 ; ��� exists an irreducible representationof the Poincar�e group characterized by (m; j).The "quantum numbers" m and j can here be associated with the mass and spin of acorresponding particle (particle physics).A more elementary (and historical) approach is to look for a Schr�odinger equation, whichful�lls Lorentz covariance. Obviously, one cannot start from the well-known expressionsi�h ddt j  s(t)i = H(~P ; ~Q) j  s(t)i (2.55)or ddt AH(t) = i�h [H(~P ; ~Q); Ah(t)] ; (2.56)since both equations contain time t and space ~Q in an asymmetrical fashion, namely tas c-number and ~Q as hermitian operator. A symmetric form is only achieved if eithert becomes an operator or Q a c-number vector. In the �rst case, one would have tointroduce in analogy to [Pj; Qk] = �hi �jk (2.57)the commutator [H; t] = �hi : (2.58)However, the latter contradicts the physical requirement that the spectrum of H has tobe bounded from below. Thus, we choose the second possibility and work exclusively inthe coordinate representation, where the operator ~Q appears only as c-number vector ~r,and the wave function is represented as (x) �  (x0; x1; x2; x3) =  (ct; ~x) : (2.59)Here space and time enter on the same footing.36



The di�erent equation for  (x), which has to correspond to (2.55), has to contain therelativistic relation between energy and momentum, i.e., for a particle moving withoutthe in
uence of a force, the relationE = c q~p 2 + (mc)2 (2.60)has to be valid. Energy and momentum are in quantum mechanics replaced asE �! i�h @@t~p �! �hi ~r~r : (2.61)The above relations correspond to E = �h!~p = �h~k (2.62)which re
ect the translational invariance with respect to space and time, and which shallstay valid in a relativistic quantum mechanics. In order to bring the relations (2.61) intoa formal covariant form, dimensions and signs have to be considered:1c E := p0 �! i�h @@(ct) = i�h @@x0�(~p)k := pk �! � �hi (~r~r)k = i�h @@xk (k = 1; 2; 3) (2.63)As a Reminder: The derivative with respect to the contravariant components formthe covariant components of a four-vector. Consider @@x� applied to a scalar function ofx2 = x� x� @@x� f(x2) = f 0(x2) @@x� (x�x�) = f 0(x2) 2x� : (2.64)Thus, @@x� := @� ; � = 0; 1; 2; 3 andp� �! i�h @� ; (2.65)which shows that p� transforms as a covariant vector. Inserting (2.63) into (2.60) leadsto 1c E � q~p 2 + (mc)2 �! i�h @0 � s��h2 Xk @2k + (mc)2= i�h @0 � q��h2 � + (mc)2 : (2.66)37



The last expression is unfortunately again asymmetric with respect to the di�erentiationwith respect to time and spatial coordinates. This asymmetry can be avoided whenstarting from the squared energy momentum relation�1c E�2 = ~p 2 + (mc)2 (2.67)in the form (mc)2 = �1c E�2 � ~p 2 = p20 � ~p 2 = p�p� : (2.68)One obtains: p�p� � (mc)2 �! (i�h)2 @�@� � (mc)2= ��h2 "@�@� + �mc�h �2# (2.69)Here the derivatives with respect to time and space coordinates are symmetric, and onede�nes 2 := @�@� = 1c2 @@t2 � � : (2.70)According to the previous considerations, the relativistic relation between energy andmomentum is ful�lled, if the wave function  (x) obeys the di�erential equation 2 + �mc�h �2!  (x) = 0 ; (2.71)which is the so-called Klein-Gordon equation.Remark on Natural Units:In principle, one would like to have fundamental units for space, time and mass, whichare derived from the fundamental laws of physics.elementary length `0elementary time t0elementary mass m0A modern candidate for `0 is the Planck length`P lanck = sg�hc2 = 1:6 � 10�33 cm (2.72)(g: gravitational constant) 38



Even if `0 is not explicitly �xed, one can use c and �h to �x units for t0 and m0:t0 = `0c := elementary time = time, which light needs to pass `0.m0 = �h`0c := elementary mass from the Compton relation.If one chooses `0; t0 and m0 as elementary units, then:The speed of light has the numerical value 1 : c = 1.The Planck constant �h has the numerical value 1 : �h = 1.Starting from these natural units, all other units can be related to the unit of length, e.g.,cm. Some important relations acquire the formE = qp2 + m2E = !~p = ~k� = e2~� = e2m gs ~S (magnetic moment)(2 + m2)  (x) = 0 (Klein�Gordon equation) (2.73)
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