Chapter 4

The Dirac Equation

4.1 Towards the Dirac Equation

Dirac tried to find a partial differential equation with a positive probability density. He
realized that the problem in (3.13) resulted from the fact that one started from the
non-relativistic definition jyp in (3.9). This equation cannot determine a definite sign.
For solving the problem, one could start from pyg, but then one would need a different
equation of 1st order, since the possibility of defining p = *¢ is related to the fact
that the Schrodinger equation contains only a first derivative with respect to the time.
Thus, one faces the following problem; that one needs a differential equation (1st order)
for ¢(x), which leads to the correct energy-momentum relation

pupt = — —p° = mc. (4.1)

This problem cannot be solved for a scalar function ¢, and the crucial point of Dirac’s
idea was to introduce a ”vector” quantity

and thus a positive definite density
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p(x) = 3 V() Yalz) . (4.3)

a=1

The most general form of a first-order differential equation for this ¢(z) is given by

Y [ivhs Ou — mTap] p(x) = 0 (4.4)
B
for« = 1,2,---, n (notation consistent with the one of Bjorken/Drell).

Here v and Top(pp = 0,1,2,3; o, 3 = 1,2,---,n) are coefficients, which we assume
to be complex constants, since we do not consider forces. Note that 9, is the operator
for the four-momentum. With the matrix notation v* := (v45) and I' := (T's5), Eq.
(4.4) can be written as

(i7" 9, — mI) d(x) = 0 (45)

so that energy and momentum fulfill the relation (2.67). Dirac required that each com-
ponent ¢, (x) of the wave function separately fulfills the Klein-Gordon equation (2.71):

(O + m?) () = 0 (4.6)

for« = 1,2,---,n. The requirement is compatible with (4.5) and leads to relations for
the v* and I'.

To illustrate this further, we want to mention that a similar formal relation occurs when
considering electromagnetic waves. There are free Maxwell equations
divE = 0 rot B — ~E =0

divB = 0 rot E +

Al =

B =0 (4.7)

—

represent a first-order differential equation for ( B > It can be recast into the form

(4.4), where the 75, turn to six-dimensional matrices, and I',s vanish. On the other hand
follows from Maxwell’s equations
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m(é):(), (4.8)

i.e., the same wave equation is valid for each component. We proceeded the other way.
Starting from an equation

(O + m*)1 ) = 0 (4.9)

for the components, we want to determine the matrices v* and 7. For this we apply onto
(4.5) the ’conjugate’ operator (—iy” 0, — ml):

(—y"0, — mI)(iv* 0, — mI) ¢y = 0
[7”’)/" 0, + im(y'I — )9, + m*T 2] Y = 0 (4.10)
where
2 9,0 o 4.11)
05, = 0,0, = ——— :
e : dzv Oxt (
and v being the common summation index. A comparison with (4.6) gives
v Vv 92 _
fy fy al/[J, - Dl
,Yl/ r — F,YI/ _
r# =1 (4.12)

These equations determine five matrices, 7°, 7%, 2, v3,I" uniquely up to similarity trans-
formations.

Together with v*,[' the quantities

Syt S
Sr st (4.13)

— 2
[

fulfill equations (4.12), where S is an arbitrary, non-singular matrix. Next, one has to
explicitly construct the v-matrices. First, from (4.12) follows that I' is a non-singular
matrix:

, (4.14)



thus, multiplying (4.5) with ['™! gives

(5" 8, — ml) ¥(z) = 0. (4.15)

Without loosing generality, we can choose I' = 1, and thus the second equation (4.12)
is fulfilled.

Thus, the Dirac equation takes the form

(i7" 8, — m) tb(z) = 0 (4.16)

or, when introducing 7 or ¢ explicitly

(ih v* 0, — mc) YP(x) = 0. (4.17)

The latter can be verified by dimensional considerations:

According to the first Eq. (4.12) the y-matrices are dimensionless. ¢ 0, stands for the
four-momentum, and thus the second term in (4.17) has to contain the momentum mec.

Considering the first Eq. (4.12) shows that due to the symmetry 95, = 0,

v 1 4 4
VY O = 5 (M + ) G (4.18)
On the other hand,

O =09, = ¢ &, ,

(4.19)

from which follows
{77} =AM+ = 29 (4.20)

These equations define the Dirac y-matrices. The Dirac problem is solved as soon as
we find matrices fulfilling (4.20).

In Summary: With the help of the y-matrices, it is possible to explicitly take the
square root of the d’Alembert operator:
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v=a = i* 9, . (4.21)

In fact:
(iv" 9,)° = =" 05,
]‘ v v 2
= =5 0"+ ") 9
_ v 92
= —g™o, = -0. (4.22)

This last calculation clearly stresses the importance of the anti-commutation relation
(4.20).

4.2 Properties of the yv-Matrices

All physically relevant information about the y-matrices are given in the anti-commutation
relation (4.20). For p # v follows

Y = = (4.23)
pw=v =20
(") =1 (4.24)
w=v==kK, k=123
(Y¥)? = —1. (4.25)

From (4.23) follows that the dimension n of the matrix has to be larger than 1. If n = 2
then (4.20) reminds of the commutation relations of the Pauli matrix oy

)

{ok, 00} = 20k 1 (4.26)

and one can show that
* o= oy (4.27)
fulfills (2.51) for £ = 1,2, 3. Since every 2 x 2 matrix can be written as linear combination

of o, and the unit matrix, we start with
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7 = al + Y by . (4.28)
V4

Using (4.27) and (4.26):

{(°, 7%} = da{l,04} + i > b {00, 0%}
7

2i(aoy + bil)
0 (4.29)

from which follows a = b, = 0, thus 7/° = 0, since o} and 1 are linearly independent.
In this case (4.24) is not fulfilled, thus the y-matrices cannot be two dimensional.

Instead of discussing n = 3 we want to show that n has to be an even number. We
define

7= iyl (4.30)

+® anti-commutes with all other y-matrices:

{1 = 0. (4.31)

For the proof, (4.23) is applied several times, i.e.,

VA0 = Oy ly2Ba0
S N ONCINAN

N INAINCINA

— 7070717273

= —%° (4.32)

In addition, one can show that
(v°)? = 1. (4.33)

Finally, one obtained from (4.31) and (4.33)

A = P (4.34)

and
tr(y") = —tr (v°9"9)
= —tr (7")"")
= —tr (v") (4.35)
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from which follows
tr(y*) = 0. (4.36)

From (4.36) follows: n has to be even.

7% can be chosen as hermitian matrix, thus has only £1 as eigenvalues (see (4.24)). After
diagonalization, one obtains the following structure

1 0
1
0o _
A= (4.37)
-1
0 -1
ny n_
with n = n; + n_. Because of (4.36) one has in addition the condition ny — n_ = 0,
thusn = 2n, = 2n_.
Now we consider n = 4 for the y-matrices, i.e., we consider matrices
A B
( c D ) , (4.38)

where A, B,C, D are 2 x 2 matrices. We will show that the standard representation of
the y-matrices fulfills (4.20):
1 0
0 _
= (05

V= (_?Tk Jok> (4.39)

where o, are the usual Pauli matrices

(U)o (U) e (L0)

One has, e.g., then

gt = ( Tkt 0 ) (4.41)

OO0y
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and thus

N 7% B .
(5 4 = ( 0 og1 ) = 20wl (4.42)

which corresponds to (4.20) for p = k and v = ¢. But now +° also fulfills the relations:

0 o
0k _ k) _ _ k.0
Y= (Uk 0 ) = =77
1 0
0 = (o () = (149
In addition, one has because of of = o
P =40
(V) = —F. (4.44)

Thus, the y-matrices are anti-hermitian. For 7° one obtains

0 1

5

- (1)
0010
0001

~l1000 (4.4)
0100

As mentioned earlier, the representation of the ~-matrices is not unique. A different set
of important y-matrices, which is used in the so-called spinor analysis is given by

v = (é _01> (4.46)
N (_01 _01> (4.47)
= (_(;k %k) _ (4.48)



The two representations are connected through the map

g — % (i _11> (4.49)

with $2 = 1; St = § = S,

There are also y-matrices of higher dimensions. They only exist in a trivial generalization

of the case n = 4, where the sub-matrices are the four-dimensional y-matrices:
o 0
A
o : (4.50)
0

The proof follows from the fact that the relations (4.20) build a Clifford algebra with 16
independent elements together with the Theorem of Burnside:

N =Y n}, (4.51)

where n; is the dimension of i-th inequivalent representation: With n; = 4 the sum is
saturated so that there are no more inequivalent representations.

In the following we want to analyze the physical consequences of the Dirac equation. The
four-component quantity

(z)
P(x) = %Ex; (4.52)
(z)

is called Dirac spinor since it transforms under rotations analogously to spin—% spinors.

The Dirac equation (4.17) was introduced for particles without a force. However, it is
easy to consider the effect of an electromagnetic field. In a non-relativistic theory the
electromagnetic field can be introduced through the following substitution:

he S hpolte i
(3 7 7 C
AN N (4.53)
Zat 7 t—zat e . .



This can be rewritten in a four-dimensional form

ih 9, — ih D, = ihd, — = A, . (4.54)
C

According to Gell-Mann, this rule is called the principle of minimal electromagnetic
interaction. It is a covariant rule and thus can be applied to the Dirac equation. One
obtains

Y (ih 9, — ZA#) — me| @) = 0 (4.55)

and with h =¢c = 1

(0, — ¢ Ay — m] ¥(2) = 0. (4.56)

Eqgs. (4.55) are invariant if the following gauge transformations are carried out

A, — A;:Au+3ﬂx
v — Y = Xy (4.57)

4.3 Covariant Bilinear Forms

Through products of y-matrices it is possible to form 16 linearly independent 4 x4 matrices
a3, which often occur in Dirac theory. These matrices are

ré =1
FX:%

1
FZV = Ow = 5[7“’%/]

Lh = 5%
[P = i’y =9 = 9 (4.58)
Using the commutation relation y#v* + ~+“y* = 2¢"”1, one can show that the I'" are

linearly independent. Brief arguments are
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1) For each I' holds (I')?* = =+1.

2) For each I'™ (except I'*), there is a I'"™ such that
"™ — [ (4.59)
From this follows that tr I'* = 0:
+tr I = tr I"(I™)? = —tr [™I"™ = —tr T"(I™)* = 0. (4.60)
3) For fixed I'* and I'(a # b), there exists a I # T'* such that
rr’ = . (4.61)
4) Suppose there exist numbers a,, such that
> a, " =0. (4.62)

Then, via multiplication with I'" # T'* and taking the trace, one finds because of (4.60)
that a,, = 0. In the case of ' = I'* one finds a, = 0, and all coefficients vanish. This
proves the linear independence of the I'". From this follows that every 4 x 4 matrix can
be expressed as a linear combination of the I'".
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4.4 The Dirac Current

As the next step, we need to show that the current density defined in (4.3) corresponds to
the Dirac equation. Thus we have to show that p(z) constitutes the time-like component
of the four vector j*(x), whose divergence vanishes according to (3.7). We start from

4

7°(x) = plz) = Zl V(@) Yalz) = ¢l(@) ¢(2) (4.63)
with
Pt = (Y5, 95,935, 05) - (4.64)

To express clearly that 11 is a time-like component, we write

30 = Pl = iy = 4%y (4.65)

with
b= vt (4.66)

the adjoint Dirac Spinor. Formally (4.65) can be generalized to a four-component
quantity B
o= B (4.67)

In the following we want to show that the above defined Dirac current is indeed diver-
gence free, as well as that it transforms as four-vector under Lorentz transformations.

To calculate the divergence of (4.67), we need to consider

0uj" = ¥ y"(0u¥) + (0u¥) V" ¥ (4.68)

For the first term on the right-hand side, we use the Dirac equation directly:

(7“ (iau_ eAu) - m) p =0 (4.69)
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gives
i o, = (WM ed, + m) . (4.70)

For the second term, we start from the adjoint equation

Wiy (=i, — eA,) —m) = 0. (4.71)

Multiplication from the right with +° and considering

o=y (4.72)

=2

gives

B (i, — edy) — m) = 0. (179

Using the properties of the y-matrices (4.44), (4.23, 4.24, 4.25) gives ¥ = ~* and thus

p(y* (z%# + eAd,) +m) = 0
0, " = —(v" eA, + m) . (4.74)

With (4.70) and (4.74) follows

0y gt = J’(’Y“eAu + m) 1 — J’(’Y“eAu + m) ¢
0 (4.75)

Thus
Qg = O (") =0 (4.76)

and the Dirac spinor can be used via the Dirac current as quantum mechanical probability
amplitude.

We need to consider the space-like part of the probability current j*:

=" =970 ="y = ylay (4.77)
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with

=

a = v

From the explicit forms of v° and 7 follows

L _ (07
“\# o)

(4.78)

(4.79)

(4.80)

thus @ consists of hermitian matrices. In addition, the trace vanishes, so that (4.77) only

contains mixed products ¥}z with a # (.
Gordon-Decomposition of the Dirac Current

For A, = 0 (4.70) and (4.74) gives
1,
Vo= — oY
m
- 1 -,
77b = ——Za,,'l,/}’y
m

Inserting this into

1 - ~
gt = 5(1/)7“1& + Y " )

gives

HAV ' v 1 v

[, 7"]

N~ DN =

1 v
LA N

77

(4.81)

(4.82)

(4.83)

(4.84)



With the anti-commutation relations (4.20) and the definition of the spin tensor

14 7: v
o =g " (4.85)
follows
1
Y=g+ -
i
1
,YV,)/H = g’“j — - O"W . (486)
i
Inserting into (4.83) leads to
PP b 0 (B ) (487)
2m 2m
The first term is called ‘orbital current’
e L5 o 4.88
Jorbit T % 77[) w ( : )
the second, the spin part of the current,
gh = L 0, (b o™ ) . (4.89)
spin m
Let us consider the spatial part j*. With 08 = —0, = —(ﬁ)k, the orbital part is given

bs‘
.(kﬂ bit 2 w ( ; ) ,l/)

= Lyt @) (4.90)

2me

This is obviously a generalization of the non-relativistic current (3.9), which we encoun-
tered with the Klein-Gordon equation, and will describe the probability current due to
the spatial movement of an electron. For the second term, (4.89), we write

1 1

jfpin = % af (’LZ O-kl 77[)) + % 80 (77[_) Uko w) : (491)
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The matrices o*¢ and %0 fulfill
Om O m
o = epom ( 0 > = Chtm O

oK = (=) ( U “0’“> — (=) ot (4.92)

We introduced here the spin matrices >, which describe the spin in a Dirac theory.
Thus the first term on the right-hand side of (4.91) contains directly the spin. The second
term is of relativistic nature, since here spatial and time components are mixed.
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4.5 Solutions of the Free Dirac Equation and Inter-
pretation of the Dirac Spinors

Solutions of (iv* 0, — m) ¢(x) = 0 will be studied next. The combination *a, of the
~v-matrices with an arbitrary four-vector is abbreviated as

Ya, = (4.93)

and with this the Dirac equation takes the following form:

@@ — m) () = 0. (4.94)

The coefficients of the differential equation are constant, thus the ansatz

U(a) = e P up) = e P u(p) (4.95)

will be a solution. Here u(p) is a spinor which does not depend on z#. Inserting of (4.95)
into (4.94) gives
(p — m)u(p)) =0, (4.96)

or

4
> (Vhs D — m Gag) ug(p) = 0, (4.97)
p=1

i.e., a homogeneous system of four equations for the four components of u. The p, stands
at present for four arbitrary parameters. The system of equations (4.97) has a non-trivial
solution if

det(p — m) = 0. (4.98)

This condition leads to a fourth-order equation for p

(p* — m*)? =0, (4.99)
which can be written with p? = (p°)? — p'? as

{(p0 — Pt 4+ m?) (0" + \P? m?)}2 = 0. (4.100)

80



Considering p,, as four-vector, the above equation is fulfilled for momenta p obeying
P’ = £ VP2 + m? as energy eigenvalues. Eq. (4.96) has for each of the two values a
two-dimensional solution space, with a basis, which can depend on p:

m(P) 5 pe(p)  for p° = +\/F? + m?
ps(@) , pa(p)  for p° = — /% + m? (4.101)

u = <“§> , (4.102)

where u” and u® are two-component spinors. Inserting the explicit representation of the
~v-matrices leads to

Kpoam —pOO—m> N (—6(')-;5' 56]3)] <Z§> =0, (4.103)

i.e., to
(pO - m L &ﬁ S
P + m)yu® = G-pul (4.104)
Expressing v® through u” gives
w = TP b (4.105)
p’ + m

and inserting this into the first equation (4.104) leads to (after multiplication with (p° +

m))
(%) = m?| ub = (G - p)Put = gt (4.106)

This equation has non-trivial solutions for u* if
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®°)? = p5% + m”. (4.107)

Here ul can be chosen arbitrarily and u® can be calculated using (4.105). However,

(4.107) allows p° = + P2 + m? and p° = — /p2 + m?2 For the different signs,

one obtains different solutions u°.

In case of very small momenta and negative energies, numerator and denominator of
(4.105) can become very small, in the limit 7 — 0 one obtains %. Thus for p° < 0 it is
better to use the first equation of (4.104) to determine ul

= 2y (4.108)

and first determine u”°.

In Summary:

For arbitrary momenta p’ there exists solutions of the Dirac equation with positive and
negative energies. For each p" and for each sign of the energy exists a two-dimensional

solution space.

It is tempting to connect the dual degeneracy to the sign and the conclusion is:
The Dirac equation describes spin % particles.
This is a surprising and non-trivial result, since during the entire derivation there was no

assumption about the spin of the particle described by ).

We study now the spin-properties for the physically easier case of positive energies. Ac-
cording to (4.105), u® can be always expressed via ul for the case p° > 0.

For | p'| < m, one has

G
b o~ —ul =

5 G- v ut . (4.109)

N |

Since | 7 | = % is small compared to 1 (= speed of light), one can neglect the small
component u° with respect to the large component u”:
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Y(r) = e P* <u0L> for — << 1. (4.110)

The wave function is solely determined through the four-momentum p and the two ar-
bitrary two-spinors u”. The latter can be interpreted as Pauli spinors, and especially as
eigenvectors of

53 = < 03 . (4]_]_]_)

This leads to u% with
oz uf = +ul. (4.112)

If one cannot neglect u® (which is true for ¥ # 0), one has to determine the spin operator.
The choice

Uy
i

(4.113)

N =

7N
o Q

QI ©
N——
Il
N | —
\gfl

is obvious.

First we need to show that the two-spinors u” really are equivalent to Pauli spinors, and
then we need to show that

i
describes the total angular momentum for the Dirac spinor, since
d — —
—J =0 4.115
p (4.115)

and J is the generator of rotations in the space of Dirac spinors.
First we want to study the spin properties of ¢ or u for arbitrary velocities. Choosing u’

as eigenvector of o3 leads with (4.105) to the conclusion that u° is only then eigenvector
of o3, if the momentum p’ points into the three-direction. Thus, it is obvious to work
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with states, for which the component of the spin in the direction of the momentum is
measured. We introduce the operator

Qu
Ty

A = (4.116)

E=TI R

and choose u” to be its eigenvector u, with

Auy = Auy; A= =£1. (4.117)

In the following, we consider u%. From (4.105) and

u] =0 (4.118)

S ) L

Uy, = —— U 4.119

A po + m A ( )
with

ANui = Auy . (4.120)
Thus the spinor
L
uy = (Z%) (4.121)

is according to (4.113) eigenvector of the operator ngﬂﬁ with the eigenvalue % A

The operator A is called helicity operator, its eigenstates uy are called helicity states.

Pictorially they define a screw motion, for A\ = +1 a right-handed, and for A\ = —1 a
left-handed. Explicitly, one obtains from (4.116) and (4.119) for wuy:

uy
Uy = Py Ui’ . (4.122)

P’ +m
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For explicit calculations, one needs the normalization of (4.122). If ), is a two-dimensional
unit vector and eigenvector of A, i.e.,

771\ m = 1, Any = A (4.123)
then
L
uy, = N ) 4.124
! ( p0 @ m A T ) ( )

The factor N only depends on the normalization condition for the Dirac spinor uy, namely
if the probability density was normalized to one via

ul uy = 1 (4.125)

or if via

one has chosen a Lorentz invariant normalization.

In the first case (4.125), one obtains

P+ m
N = 4.127
o (4.127)
and in the second (4.126)
P+ m
N = 4.128
o (4.128)

With the above developed expression we want to prove:
Fast moving electrons cannot have a transverse polarization.

For the proof we use the Dirac spinor

u(@) = N ( . ) (4.129)

p0+m77
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with nfn =1; N = (pO(ZZO)m) . The momentum p points in 1-direction: p=|p'|e;. For
the expectation value X3 from (4.113) follows:

| —

2
p
UT(ZB') 23 U(ﬁ) = N2 77T osn + (ﬁ) 77T 010301 77]

— |

2
| P
= N2 ’]’]T 0'377 — (m 7’]1. 03 77

= 2
770377[ <p0+m

2m
= N? — 0" osn (4.130)

and using the explicit expression for N gives

m
ul(p) L3 u(p) = ] n' osn . (4.131)
For p° — oo this expression vanishes independent of n' o3n, the result which was to be

shown.

One can understand this result also pictorially with the help of Lorentz contractions.
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A ps
> 0)
\ 5
/ -1 -1 -1 -1
1-2 plane 1-3 plane 1-2 plane 1-3 plane
-> > >
p=0 |p|>>m
Figure 9.1 Transversal depolarization due to high momenta.
Fig. 9.1 shows an electron at rest with o3 = 41 moving in the 1-2 plane. If the electron

moves with momentum p, the circular movement deforms to an ellipse, which can be

interpreted as tilting of the spin into the direction of p.

For the Dirac current (4.87)

1 - op 1 _
oo =9 nz
J 2m¢8 'Q/)+2m V('Q/}U ¢)
the solution is .
v o= e PP u.
Here B
Yoy = ao™u

(4.132)

(4.133)

(4.134)

independent of x, which means the second term does not give any contribution. The first

term leads to (after differentiation)

-lj/ _ r —
Jorbit = uu .

(4.135)



With (4.129) and the explicit form of 4°, one obtains
au = u' yu

= N [n*n— mn*(ﬁ'ﬁ)%l

=12
PY + m)?
(
m
_ 5 (4.136)
Thus for the free solution, one has
n
= (4.137)
p
and especially
p = j =1
i = ]% = 7. (4.138)

Thus the plan wave (4.95) describes a probability density which is normalized to 1. The
i

probability current is given by the relativistically defined velocity v = 20
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4.6 Successes of the Dirac Theory: G-Factor of the
Electron and Spin Orbit Coupling

First, we need to write the Dirac equation in the presence of an electromagnetic field A,
where we use minimal coupling.

(70 = £4,) = me) v =0, (4.139)
or with p, = —h/i0/0x"
ALy SAFLLS B (4.140)
7 ox’  he " ! h - '

In the following we use the abbreviation k& = mc/h. The adjoint Dirac equation gives

0 ie
e FOVE ot —
<3:r” hcAV> P ()T — kY =0, (4.141)
with (77)T9? = 499" and ¢ = 1T7° we get
0 _ley Py — ik =0 (4.142)
oxr  he )Y B '
or .
<pu + —Ay> vy —me =0 (4.143)
c

Starting from (4.140), we can write the Dirac equation in noncovariant form as differential
equation of first order in time

0 ie (0 ie
Ol — 4+ —A ¢ 4+ A k| ¢ =0. 4.144
(7 <8x0+h6 0>+i§37 <8ml+hc >+Z>w ( )
Multiplication with 7%ific from the left and considering that 9/0x° = 9/dct gives
0P 20 i 0 0 i 0, 2
ih— = | —=they’ | D v'== | +ep+e’ D A+ me* | ¢ (4.145)
ot iy 07 i=1,3
This equation (4.145) has the form
., O
h—=H 4.146
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where H is Hermitian, since 7°v¢ = (%99, With p = (p1, p2, p3), 7°7' = —717° = o,

and v° = 3 we can write

H = ca(p — EA) + mc? Beg. (4.147)
c
The following relations hold:
pto=p
@) = ot
af+pa = 0
ofol +alaf = 26" (4.148)

The importance of H is the following. If one takes expectation values of operators, i.e.

— / Pt A, (4.149)
then
9 3 f f
DAy = [ | Sty +gtagy
-/ df":m/ﬁ%[ﬂ, Ay
0A
= (— 4.1
() (1150)
so that 94 )
i
— =-[H,A 4.151
= L[, 4] (1.151)
Let us consider the particle velocity as example, which should give
0 i
V= gx= ﬁ[H’ x| (4.152)
For the components we have
. o
%xk = h[H a*) = %cal[pl,:rk] = %ca%&kl = ca®, (4.153)
Because of (af)? = (799%)2 = 704F704% = —(19)2(4%)2 = (=1)(=1) = 1 follows that

the eigenvalues of o = £1, and thus the eigenvalues of v*¥ = 4¢. Thus in general the
expectation values for the velocity can take any value between +c and —c.

Using h and ¢ equal 1, (4.147) reads

oY
th — o Hvy
H = @@ — SA) + pm + epl. (4.154)
C



Considering the dimensions, we have

[ep] = [ch] = [ep] = [energy] . (4.155)

For small velocities (4.147) should become an equation of non-relativistic quantum me-
chanics, i.e., the Pauli equation. In the following this aspect should be considered.

According to the experiences of the previous chapter, we decompose the Dirac spinor into
two parts. Further, we split off the time dependence of ¢, which results from the rest
energy m. Thus, we make the ansatz

W(z) = e (‘ﬁ(x) ) | (4.156)

From (4.147) follows

iao @[)(ZE) = 280 (e—imx

> , (4.157)

ie.,

i (¢(x) > = (H — m1) (¢(x) > . (4.158)

7To=p — ed, (4.159)

B 0 &7 0 0 ep 0
H — ml = (3-7? 0 >+<0 _2m>+<0 es&)' (4.160)
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Thus one has

i ¢ =
Wy X =

X + epd
¢ — (2m — ep) x . (4.161)

g7
o -7

It is important to note that the mass m only occurs in the second equation. If the kinetic
energies and the field-interaction energies are small compared to the rest mass m, one can
write (since then also | ep | < 2m)

[ x|~ (B —m) [x|<|x[s@m - ep) [x] - (4.162)

From the second equation of (4.161) follows

2m —ep)x = O - T
- 1 e
N — ¢~ — (1 — G- To. 4.163
2m—eg0¢ 2m<+2m<p>a T ( )

As aremark: for ¢ = 0, A = 0, BEq. (4.163) corresponds to the relation (4.109) of
the previous chapter, what should be expected. Inserting this into the upper equation of
(4.161) leads to

1
i00 6 = — 7 (1 v 2 go) GRd + ep b . (4.164)
2m 2m

This equation allows to establish a relation to non-relativistic quantum mechanics. This
shall be done in two steps:

1) Consider the operator ;- (37) (57)

Standard o-matrix algebra gives

(G7) (7)) = 7 + id (7 x 7). (4.165)

The first term is according to its definition (4.159)

7= (7 — ed)?. (4.166)
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The second term does not vanish! One obtains

(T x ©) o = —E[§xg+gx§]¢
i
= —% (V x D) ¢ + (Vo) x 4+ Ax (Vg)]
= — E, rot ff¢
i
- —SBy¢ (4.167)
i
Thus one has
1 1 - e
— (&) (07) = — (p — ed)? — — B 4.1
- (GRER) = 5 (7~ AP - -G (4.168)
The second term on the right-hand side can be written as
22§ . B=—gusS-B (4.169)
2m

with ¢ = 2 as a g-factor of the electron. Thus, the interaction of the magnetic moment
with the B-field and g = 2 are a consequence of the Dirac equation.

2) Consider the Operator ;% (G7) ¢ (J7)

This operator contains terms of the second- and third-order in the potentials, which shall
not be considered here. Here we want to consider the linear part corresponding to the
approximations in non-relativistic physics. In this approximation, one obtains

(& (&

1 (0F) ¢ (07) ~ 1 (5D) v (D) - (4.170)
First consider
(6P) ¢ (6P) = okoe pk ¢ pr - (4.171)
According to
1
OkOC = 5 {ok, 00} + 5 (o), 0]
= Ope + i€kim Om (4.172)
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we obtain
(D) ¢ (GD) = Pk ¥ Pr + i€kem Om Pk @ Pe - (4.173)

For the second term, we obtain

i€kem Om Pk P D0 = €tmOm (P> @) Do + 1€ktm Om © DrDe
= i€ktm Om [Pk, P] De
€kem Om {(61&{?) Pe — @(ﬁkm)}
= €ktm Om (61&0) De
= & (Vo x p), (4.174)

where the second term vanished due to the symmetry to piyp, together with the anti-
symmetric tensor €gp,.

Thus, one has

(& (& o R (&
1 09 ¢ (6F) = 5 Ped + 50 (Ve x D)

Here V;, describes a spin-orbit coupling. One can see this when considering a static,
rotational invariant potential with

E = —Vp = —cp'z. (4.176)
r
In this case, one has
e ]- ! = —
Vo = —4m2;<ﬂa(7“ X p)
e 1 , >
- — ~44F -1
am?z 777
1 el ,- <
= ———-¢ L -8 = V. 4.177
2 m2 o’ Ls ( )

This is the correct expression for the spin-orbit coupling with the Thomas factor %:

2
(i) Yvii.d (4.178)

m r

VLS =

N =
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where V' = ep.

The term V; in Eq (4.175) is new, i.e., does not have a non-relativistic correspondence.

Since V) contains the square of the velocity %, it corresponds to a correction of the or-
2

der (%) . However, such corrections are due to the approximation (4.163) not completely

considered. One has to expect further contributions in this order, and for an exact calcula-

tion one needs systematic approximations. These are provided by the Foldy-Wouthuysen

transformation.

Considering the approximation (4.163), one can say that the physical success of the Dirac
theory manifests itself in the non-relativistic approximation for the total Hamiltonian

1 e ~ = ]. 2]_ - —
H=—(ﬁ—eA)2+V—2uBS-B+§(—> V'L - S, (4179)

2m m T

where V' = ep.
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4.7 Non-Relativistic Limit - Foldy-Wouthuysen Trans-
formation

To investigate the non-relativistic limit of the Dirac equation, we work out the expansion
2 2
to order (%) ~ (%) x leading terms. In making estimates, we assume all potentials V°

and V to be of the same order as the kinematic energy term. Since all leading order terms

2 4
are of order %, we need all terms up to order %.

We assume positive energy solutions

W(E 1) = e P <¢(x) > (4.180)

where the total energy is £ = m + 7. Inserting (4.180) into the Dirac equation (4.147)
and assuming 7 — p'— V (V = eA) gives

This leads to

G-(F-V)x+m+V°—E)¢ = 0 (4.182)
G-F=V)o + (—m+V'—E)x = 0
and with E =m + T to
T¢ = V' + G- (F—V)x (4.183)
2m+T)x = V' + 6’-(17—‘7)¢.

In the non-relativistic limit 7, | p’| and all components of | V# | are assumed to be much
smaller than m. Thus, the second equation of (4.184) shows that the lower component of
the Dirac spinor is much smaller than the upper, and, therefore, the equations are solved
approximately by eliminating the lower component. Proceeding directly by solving the
equation for x and substituting the solution into the equation for the upper component
leads to the formal solution

To = [V 4 667 (5ugpys) O 0P 0 s
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Since 7' is of the same order as V(2 %2), it is necessary to expand the denominator of
the second term if we want to collect all terms of order p*/m3. This expansion gives

1 — —
Ty = VO"‘%&'(ﬁ—V)&'(ﬁ—V)
1 . R — . R —
- WU'(p—V)(T_VO)U'(p—V) 0 (4.185)

The presence of 7" in (4.185) means that the effective Hamiltonian defined by (4.185)
depends on the energy. Generally energy-dependent Hamiltonians lead to complications,
so it is desirable to eliminate the energy dependence. Since the 7" dependence occurs only
in the highest order term, it might seem that it could be removed by replacing it by an
estimate obtained from the solution of the lower order equation, i.e.,

1

T =V
+2m

g-F=V)a-F-V). (4.186)
Note: V = p%/m is assumed.

However, this method will not give a unique answer because 7' is a number and commutes
with @ - (57— V), while V? does not. A better method for obtaining a non-relativistic
”limit” is known as the Foldy-Wouthuysen (FW) transformation (L.L. Foldy and S.A.
Wouthuysen, Phys. Rev. 78, 29 (1950)). Here the idea is to transform the equations
(4.183), (4.181) to a new form in which the off-diagonal elements of the Hamiltonian are
so small that the leading order estimate of the lower components (which does not depend
on T) is sufficient to get the effective Hamiltonian up to order Sz_t»' To do this it is be

sufficient to reduce the off-diagonal elements to order %2. If this is the case, the leading

combination from the lower component would be of order %, and their contribution to

the equation for ¢ would thus be of order 75’1—2.

To prepare for the application of the FW transformation, rewrite (4.181) in terms of Dirac
matrices

T<¢>:(—m+V0+o’2-(ﬁ—‘7)+mﬁ) (i>:H<¢>. (4.187)

X X

The off-diagonal terms are those involving @, and they are of order m. The goal is to
transform the equation in such a way that they are of order m~!. Then, when the equation
is solved, T will not enter into the m™2 terms.

Eq. (4.187) will be transformed using unitary transformations constructed from Dirac

matrices. Since the large off-diagonal terms depend on @ - p; it is sufficient to use a
transformation of the form
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U=U = A48+ =a -7 (4.188)
m
with
)\2p2
A =1 - =5, (4.189)

where ) is a parameter to be determined. Recall, that «;, a; = 285,04, = 0, 6% = 1.
Using the anti-commutation rules of the Dirac matrices, it is easy to show that UUT =
UTU = 1 for any . The fact that U is unitary means that the transformed wave function

(;’i > — U (;’i) (4.190)

has the same norm. Transforming (4.187) gives

T(ii):UHU1<i:>:H’<i:>. (4.191)

The individual contributions to H become

U~m) U™ = —m
0 771 0 A 0~ = = 0 AL 0~ =
uUviu—+ = AVA—I—ﬁE(AVa-p—a-ﬁVA)—i- - a-pVida-p
va-(p-Vyust = —Aa-(p-V)4A
A R
+ ﬂ% [Aa p-=V)ya-p+a-pp-V) A]
12
v (2) dpaw-Tag
m
2
UmBU = mBA? + 2\ Ad@-j7 — m?%. (4.192)
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The off-diagonal terms are those proportional to an odd power of @, and they only need
to be calculated to order m~!. Expanding A from (4.189)

)\2p2
2m?

Al - (4.193)

one finds that the only off-diagonal terms which survive came from the first term on the
RHS of the third equation of (4.192) and the second term on the RHS of the fourth
equation, and that A = 1 is sufficient to get all terms of O(m~!). Collecting all relevant
off-diagonal terms gives

~ 1
Holff—diagonal = —a- (ﬁ_ V) + 2\ a - ﬁ'f‘ O (W) . (4194)

The choice A = % gives
Hl

of f—diagonal

~ GV (4.195)

which is O(m ') by assumption. With these assumptions the coupled equations (4.184)
become

T¢ = H ¢ +37 VY (4.196)
Y =G -V¢ — 2my .

With exception of H] only the largest terms have been retained in (4.197). Neglecting
T'x" in the second equation and inserting into the first equation gives

VG-V V2
T¢ = (H, + 7= 2"2) ¢ = (H, + —) ¢ . 4.197
¢ ( 1t o ) ¢ ( 1t 2m> ¢ ( )
It remains to determine H{; using A\ = 3. Up to O(m™?) one obtains from (4.192)
2 2
~ 0 p 0 0 p 1 > 10 = -
Hil = _WV _VW + mg'pv g-p (4198)
1 . . D Lo . . p4 p2
+ %[U p-V)o-p+d-pd- (- )}—%—%



Here the first three terms on the RHS come from A V° A, the first two in the second
line on the expansion of the contributions from U @ - (5 — V) U~!, and the last is the
combined contribution from U m3 U~!. Using 00 = 0;j + i€;j;0} gives for

G-F-V)3-§ + 395 -(F-V)
= 2 - G- p&-V —&-Vép
— 2p2—ﬁ\7 Vg —ig-(@xV) —ig-(Vxp)
= (F-V)? + p* - V2 — G- (VxV). (4.199)

For V#* = eA* the term o - (6 X ‘7) = ¢d - B, describing a magnetic moment interaction.
The second through fourth term in (4.199) reduce to

PPV o+ VO = [PV + 2[p V] 4 2V p?
G-pV'e-p =5 [pV]d-p+ Vo
= [pV] -7+ i ([FV°] x5) + V. (4.200)
Thus
1 27,0 0,2 1 0 = = _ [p*V°)] io - ([P V°] x p)
Py (p*V° + V°p*) + ) g-pV a-p = oz T e . (4.201)

Here the use of the square brackets means that 7 (or 6) operate only within the brackets.
Replacing p'= —iV, V = eA V% = ep(r) gives

V2 o (- eA)? p* e = e[V e
[T A _Pr o5 7. (V] x 7). (4.202
1t 5 5 +ep a2 om0 + 82 + v (Vo] xp). ( )

Here the term % contains the usual Zeeman effect for spinless particles Assuming
9p

that the potential is spherically symmetric, i.e., ¢ = ¢(r), leads to Vo = £ r 22 and gives
the final effective Hamiltonian of (4.179).

The additional terms in (4.179) are

e p'/8m? = a relativistic mass increase
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o 5V = —87‘;26 B = SZniz 63(r) = Darwin term for an electron in an atom with
a point nucleus.
Because of 6%(r) this term is non-zero only for S-states. Physically it comes from
quantum fluctuations in the position of the electron (Zitterbewegung), which make

the electron sensitive to the average charge density in the vicinity of its average

position.
e ldpz 7 1 (ldp\G. T = in-orbi
® 590 L =755(;3)S-L = spin-orbit term.

The last problem to address is whether there are general guidelines to construct the unitary
operator U (4.188), which removes from (4.187) all operators of type @, which mix the
small component with the large. Transforming the Hamiltonian for a Dirac particle so
that the separation into positive and negative states is diagonal is called the Foldy-
Wouthuysen transformation. It is possible to give the exact form of the transformation
only in a few cases: those in which the Dirac equation can be solved exactly. In general, it
is given iteratively, diagonalizing H to any desired order in % This means that the method
provides a systematic way to evaluate the relativistic corrections to the non-relativistic
Schrodinger equation.

Consider the Dirac equation for a particle in a potential

—

H=mg+V + Vg +a- (p— el (4.203)

where V; is a scalar potentials, and V' = V° + A°

The Hamiltonian is of the form

H = md (ﬂ + D + %) : (4.204)

c2

where the operator D is "even” or diagonal, i.e.,

D = (Cél c(z)2> (4.205)

and €2 is "odd” or anti-diagonal
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Q = ( 0 °‘(’)1> , (4.206)

)

and the d;, w; are 2 x 2 matrices. Given an operator like (4.204), i.e., the sum of a diagonal
and anti-diagonal one, one can find a unitary transformation, e’ (with 7" = —T'), such
that

H = ¢ " He™ (4.207)

is also of the form (4.204), but with the odd term of higher order in £ (%) In the specific
case (4.204), one will get
! 2 ]' ! ]‘ !/
c c
[terating these transformations, one can get the odd term to be of order cin with n as large
as one wishes. Therefore, to a given order, the resulting Hamiltonian will be equivalent
to one where positive and negative energies are separated. This is the Foldy-Wouthuysen

method. To implement this procedure, note that for any operators, F,1" one has the
relation

e Fe' = F + [T, F] + % [T, [T, F] (4.209)
1
+ g [T, [T, [T, F]]] +
— Zon![T’ [T,[-- [T, F]]--]] (4.210)

This can be shown by considering

XN\ O
F\) = M Fe M = - 4.211
(A) = e Fe nz::o nl (am)m (4.211)
which gives, e.g.,
oF  \r AT

On the other hand, for any odd operator O,
8O, B] = =20 (4.213)
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one can apply a transformation like (4.210) with H replacing F', and profit from (4.213)
to choose 1" proportional to 5O, so that the dominating odd term of H gets canceled by
a piece of [T, H]. Let h = (=%5)H, where H is the Dirac Hamiltonian. Then

mc?

1 1
h = 8+ 5D+ -0 (4.214)
C (&
1
D = —(V+ V,p)
m
]_ e
Q- —a (ﬁ—fA)
m C

We then apply the transformation
T = — BQ. (4.215)

As a reminder, (30)" = —(80) for any Hermitean, odd operator O. Thus exp (%) is
unitary.

All the transformations will have the structure (4.215). Using (4.210) the transformed
operator is given as

h' = ¢’ he' = ﬂ+%D+ Yo+ 2 so
c c 2c
1 1 1 1
+ 3 {op 18 82 Bl + 5 55 189, (59, (52, b
1 1 ~
T g P PR [FQRI] + O (7). (4.216)

In order to evaluate the first relativistic corrections, one has to go to order c% in H, i.e.,

one has to be exact to order & in h,h’,h” . . . Because of (4.210) and (4.213) the
commutator [3€2, h] ~ [5€, (] up to higher orders in %, and this term

1 1
— |82 = — -0 4.21
Lo, g = - L (4.217)
will cancel the term (1) © in h.
This (4.216) gives
B — 4+ 2D+ — [50, O] + — [0, DJ (4.218)
B ? 2¢? ’ 2¢3 ’ '
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1
I (2¢)?
1
I (20)*

+ (642, B4

S

+ (642, B4

W

, hl] +

1
31 @op |
, 18,62, h] ] ]] + O(c¢5)

pQ, [BQ, [692, h]]]

We have even x even = even = odd X odd, odd X even = odd, so, the odd term in

(4.219) is O(c3).

For the explicit calculation, one can use the fact that in our case

{98 =0 ; [D, B =0
to obtain the relations
(69, [5Q, B]] = 482
159, (8, (6, B]]] = 8Q°
(6, (8, (6, [8Q, B]]]] = 168Q°
(6, Q] = 28Q°
(6,69, Q] = 40°
(69, [5Q, [BQ, Q1] = 84"
With these we get
;o 1 A ogge oL e L
b = f+ 53D+ 5500 — o7 60 = = [Q [ D]
L s 1 -5
- @Q —i-@ﬂ[Q,D]—i-O(c )
which we rewrite as
h' = ¢ + éD’ + 6—13(2’ + O(c™)
1 1 1
D' = D + 5592 — @594 - A [Q, [, D]
R O
Q = —39 +2ﬁ[Q,D].
Performing a new transformation
hIl — eTI hl e—T’
r L /
= 2¢3
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(4.220)

(4.221)

(4.222)

(4.223)



we eliminate the term (0—13) Q" in h' and obtain

1
(2¢2)?

h = b o+ % 59, W] + B, (B, W] + ... (4.224)

1 _

We have found that up to terms of order ¢~ the Hamiltonian H of (4.203) is unitarily
related to

H' = mc®h" = mc® 8 + mD' + O(c™?) (4.225)
1 1 1
D' = D + - 40 - — 60 — — [Q, [ D]] .
+ 50 sz P g2 [ [, D]

With the explicit expressions for D, €2, one obtains

1 1
Ot = — (57?72 0(—) 4.226
@+ 0 (4226)
]- e - 2 ]_ e - 2 [ —
2 _ o ~ > - > - - —
@ = m2 {a <p c Aﬂ m2 ( c A> m2c?

and thus we see that H” = Hpy + O(c?), where the Foldy-Wouthuysen Hamiltonian
Hpy is defined as

1

1 1 )\?2 .
Hew = meB+ Vgt o6 (7--A4) - =S 658
2m c

2mc?
1 ) 1 . Lo .
C 8mie? P 8m?2c? @ -7, @ - p V]|
1 -~ g - —
~ gz O d B {d - B Vil (4.227)

The positive energy solutions of the Dirac equation will be represented by wave functions

Ypw = el el Y + O(c?) (4.228)
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with 8 Ypw = tYrw. In this physical subspace 3 can be replaced by unity and one can
use two component wave functions

Vrw = (wg’"' > (4.229)

where 1), ,. is the semi-relativistic wave function correct to order ¢=2.
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4.8 Physical Problems of the Dirac Theory:
Spin Conservation and Zitterbewegung

After having seen the successes of the Dirac theory, we study some ”strange” effects. For
doing this, consider the time dependence of operators in the Heisenberg representation.

For an operator A, which does not explicitly depend on the time ¢, one has (A = 1)
d

— A = i[H A] . 4.230
54 = i[H, 4 (4.230)
Let us consider the time dependence of the operators
[ = 7 X p
— ]_ —
S = - X
2
T (4.231)
for the free Dirac equation, where the Hamiltonian is of the form
ap + pfm . (4.232)
For the orbital angular momentum I_:, one obtains
T [H,L] = (@) [p. L] . (4.233)
dt Y ?
Since p'is a vector:
(L, pe] = i €kom Pm (4.234)
and thus p
yr L =dxgp. (4.235)

The right-hand side of this equation is in general a non-vanishing quantity, and thus the
orbital angular momentum changes over time without any external force. For Dirac this
was an argument that his equation contains an additional angular momentum, namely
the spin. Indeed, one has

d a — = =

—

(@, Z] e + % Bm, 5] . (4.236)

N = DN .
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The standard representation of the matrices leads to the following relations

(@), ()] = 20 epm (@

5.5 = 0. (4.237)
Thus, one obtains
d g T x p (4.238)
I = —Q .
I p,
and the operator . . .
J =1L+ § (4.239)

, % J = 0. Jis interpreted as total angular momentum, the sum

of orbital angular momentum L and spin S. At first glance, the above result is convincing.
However, it leads to the question why the spin should change in a free motion. Before
trying to answer this question, consider the velocity of a Dirac particle:

is time independent, i.e.

= i(@)k [pr.7] (4.240)
The canonical commutation relations lead to
v = a. (4.241)

The velocity is obviously described through the hermitian matrix @, i.e., using ¢ one had
U = ca.
This equation has two problems:

1. For the components of @, one has due to

(@); =1 (4.242)

only the eigenvalues 4+ 1 and — 1. Thus, one can expect for the values of the velocity
components only 4+ c and — ¢, i.e.,

v = tec. (4.243)
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2. Due to
(@), (@) # 0 for k # ¢ (4.244)

different components of ¢ cannot be measured simultaneously.

Schrodinger interpreted the result of (4.243) through the so-called ”Zitterbewegung.” In
order to reach the point (ctp; a,0,0) starting from (0;0,0,0) an electron has to move
alternately with 4+ ¢ and — ¢, as indicated in Fig. 11.1.

(ctz-a0,0)

} X 1
0 a

Figure 11.1 Tllustration of the Zitterbewegung in a

space-time diagram.

The following considerations show that with this concept, one can overcome the above
discussed conceptual difficulties.

An electron with a fixed energy p® > 0 and momentum § is described as an eigenstate
of the Hamiltonian. Its velocity has because of

[H, @ # 0 (4.245)

no sharp eigenvalue. Using the explicit representation of the spinor (4.129) we can calcu-
late the expectation value of a.

(@) = (@)
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n. (4.246)

Here oy (G-9) + (G-P) or = (oxoe + 00or) pe = 2pi was used. With nfn = 1 and
(4.128) follows

<U> = B = Uclassical . (4247)
Po

As far as the expectation value is concerned, we obtain the usual physical result. Similarly,
this holds for the somewhat unexpected results (4.235) and (4.238). We obtain for the
expectation values

d - -
(1) = ut () (@ x P) u(p)
= ul du x p
= B X D
Po
= 0 (4.248)
thus . .
dL " dS
—) = = (—). 4.24
() () (1.249)

The change of L and S is thus caused by the Zitterbewegung. In general, the above
calculations can be carried out for arbitrary wave packages with positive energies:

Y(ZT) = — / d*p [e_iﬁf > @) wp)] - (4.250)

One obtains:

Po

=% [ lw@ P L (4.251)
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and correspondingly

dL dL .
() = [ et @ S e@) = 0 (4.252)
and -
ds, -
() = 0. (4.253)

It is important that in (4.250) only positive energies occur. If one allows negative energies,
one encounters again the problems described in (4.65), (4.66) and (4.70).
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4.9 Complications with Negative Energies, the Klein

Paradox

Since the negative energy solutions proved to be the formal reason for the Zitterbewegung,

we have to study them in more detail.

First we rewrite the two spinors u” and u® of a solution of the system of equations (4.104)

for

Y

in the form

with nfp = 1. Thus, we have

From this one finds for the expectation value

I
(=@ =

(4.254)

(4.255)

(4.256)

(4.257)

(4.258)

Due to p® < 0, the expectation values of the velocity and the momentum have opposite
directions, which contains further problems. The real danger of the negative energies is
illustrated in Fig. 12.1: The allowed energy eigenvalues, E > mc? and E < —mc? are

separated by an energy gap of width 2mc?.
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Figure 12.1 The energy spectrum of the free Dirac equation.

Under suitable conditions an electron could jump from level A with p° > 0 to level
B with p° < 0, e.g., by emitting a photon with energy E, > 2mc?. For satisfying
momentum conservation, a nucleon or nucleus could take the recoil momentum. Since
the spectrum is not bounded from below, Fectron — —00 and matter in our usual
understanding could not exit.

The problem with negative energies shall be demonstrated at a specific example, the so-
called Klein paradox. Here the problems with the negative energies occur with respect
to the potential V5, which increases by an amount larger than 2mc? within a finite space
region. The situation is illustrated in Fig. 12.2.
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Figure 12.2 Potential difference and tunneling through the energy gap.

For the potential, one has

V =20 in region [
V = Vy > 2mc®  in region III (4.259)

In the intermediate region II, V' is supposed to increase linearly. If there is a particle in
region I with energy £ = ¢p° and
Vo + me> > E > Vo — meé?, (4.260)
it can not enter the region III, since its energy would be in the forbidden region. Its spinor
decays exponentially. For smaller particle energies,
Vo — mé2 > E > mdc? (4.261)

region II is allowed, i.e., oscillating solutions are expected. For the explicit calculation,
we consider a potential with a jump of the site Vj at z = 0 (Fig. 12.3).
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Figure 12.3 Potential jump for the explicit illustration of the Klein
paradox.

In region I we have the free Dirac equation, while in region II a potential Vj = e¢py
acts on the particle. We consider only one dimension and a fixed energy £, thus we have
(h=c=1):

Region I : [VOE + iv? 82 - m] P(x) = 0
Z
Region 1I : lvU(E - Vo) + i? % — m] Y(x) = 0. (4.262)

The solution of (4.262) in region I contains an incoming plane wave (moving to the right)
and the term containing a reflected wave going to the left.

wf(z) = d)m + wrefl
= a eipz Uy + b e_ipz U9 (4263)

with p =|p'|= +VE? — m2.
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According to (4.124), we can write for a spin + 1 in z-direction

1 1
Uy 8 ;o Uy = ,Op : (4.264)
E+m E+m
0 0

In region II, one has an outgoing wave to the right, which has to fulfill (4.262). We make
the ansatz

V11(2) = Yout

= d P uy (4.265)
with p' = |p']| = —i-\/(E — V)2 —m? and
1
0
uy = p, . (4.266)
FEo—Vo+m
0

Since the Dirac equation is of first order with respect to z, ¥(z) itself, i.e., each of the
four components, has to be continuous at z = 0

¢r(0) = ¥11(0) (4.267)

or

a + b = d (1. component)

/

E—l—Lm (a—0b) = 7 50 g d (3. component)
/
)
(a—b) = Z m
p E — Vo + m
with . ©
ro= L rm (4.269)

Without loosing generality, the coefficients a, b, d can be chosen real. Multiplying the first
two equations yields
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a> — vV = rd*. (4.270)

Since in the energy region under consideration r < 0, one has

a? < b, (4.271)

Thus the incoming wave is weaker than the reflected one. This is the Klein paradox:
Upon reflection on the potential well V; > E + mc? probability is produced.

The formal reason for this physically unreasonable result becomes clear when considering
the probability currents of the three waves. In all cases the spin contribution of

T - o 1 _
= — H — e 4.272
= e O 0 (0 ) (4.272)
vanishes, and one obtains

m z

I (4.273)

. I - d
Jrefl = % wrefl % wrefl
= —b2 £ 17,2 U2
m

2p
SR . — 4.274
E +m ( )

The last part follows because tsus = 1 ug.

e

, 1 d
Jout = % wout % d)out
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/
= dZ%ﬂgu?,
2P i 2
m E — Vo + m
2p
= d° . 4.275
E+m -V, ( )

In (4.275) the current is oriented opposite to the momentum due to the negative numerator
(cp. 4.258). From (4.273) and (4.274) follows

2p
- - 2 2
in re - - b0°) ——
Jin + Jre = (a ) 5
P2 Y E +m 2p
p E+m — Vo E +m
2p'
= 4.276
E4+m — V'’ ( )
i.e., one has
jin + jrefl = jout . (4277)
Furthermore, one has with ¢ = 2 and - — from (4.268) and (4.269) that
Jin _ d* P E +m
jout B a'2pE+m_Vb
d2
= ? T
2 2
- (1 + 7“) :
4r
= —. 4.278
(1 + r)? ( )
In addition, one obtains
.re b2 1 — 2
Lrepc] _ 0 ( 7”) , (4.279)
Jin a 1 +r

Due to r < 0 this means that incoming and outgoing current have opposite direction,
and the reflected current is larger than the incoming.

In summary:

When tunneling through the energy gap in the region of a potential step V; > 2mc?,
one has anomalies in the probability currents.
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4.10 Interpretation of the Negative Energies

The difficulties shown in the last chapter are removed if one considers the Dirac sea.

Here Dirac applies the Pauli-principle, where every quantum state can only be occupied

with one electron. For each momentum p = | p' |, there exist only four electrons,
namely two with the same sign for the energy, one with spin + % and one with spin — %

According to Dirac the states with the negative energies is completely filled. Thus, one
has an "underworld,” the Dirac sea with the following properties:

total energy : —oo
total charge : —oo
total momentum : 0
total angular momentum : 0 . (4.280)

Total momentum and angular momentum vanish, since for each electron with momentum
+p and spin + % within the sea there exists one with —p and spin F % As far as
the first two singular properties are concerned, they are not observable: One does not
measure absolute energies, but rather energy differences. The infinite charge is uniformly
distributed in space, and thus leads to fields which are experimentally not measurable.

On the one hand, the interpretation of the Dirac sea can be combined with physical
(observable) reality. On the other hand, it has the advantage that it forbids the transition
to negative energies, since all states with £ < 0 are already occupied. Taken alone, the
theory of Dirac sea would not have had a breakthrough. However, one can explain new
phenomena.

It should be possible to lift an electron out of the Dirac sea via a high energy y-particle.
Then there would be a hole in the Dirac sea. If the original electron in the sea had the
properties

momentum D
energy : E = —\/p%2 + m?
charge e = —|e] (4.281)

then one obtains the hole (the infinite portions are not observables):
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momentum : —p

energy : /p? 4+ m
charge : |e] . (4.282)

The energy is due to —oo — E = —oo + /p'? + m and the charge due to —co — e =
—o00 + | e |. One obtains a state with positive energy and positive charge. Since the
direction of momentum changed, the negative sign of (4.258) is compensated and velocity
and momentum have again the same orientation. Thus the "hole” represents the anti-
particle to the electron e~ with the mass m, and a positive charge + | e |, namely the
positron e*. According to the preceding consideration, it should be created with a high
energy ~y-particle. To fulfill momentum conservation one needs, e.g., the nucleus of an
atom, the reaction

v + nucleus — e~ + et + nucleus* (4.283)

should produce an ete™ pair, and the recoil momentum is absorbed by the nucleus.
Anderson and Blackett proved in 1932 the existence of the positron experimentally. The
high energy y-rays were those from cosmic radiation.

In addition, Dirac’s theory allows that an existing hole can be filled with an electron with
positive energy. To fulfill momentum conservation, at least two v have to produced in the
reaction

et + e — 7+ 7. (4.284)

This process is experimentally well established.

With Dirac’s theory of the negative energy sea, the original Dirac equation describing a
one-electron system turned into a system of infinitely many particles. This transition
had to be made to remove physical contradictions from the relativistic wave equation.
Thus, one can expect a relativistic quantum theory will always have to deal with many-
body systems, where creation and annihilation processes will play an important role. In
these processes, the equivalence of energy and mass, £ = mc?, manifests itself in a very
concrete fashion.

A consequent mathematical treatment of the Dirac sea is only possible with tools that
allow to describe infinitely many particles and the Pauli-principle in an orderly fashion.
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This is the case for the so-called ” Second Quantization,” in which the Dirac spinors became
operators, which fulfill commutation relations. Within such a formulation, the infinities
can be treated in a theoretically satisfactory way.

Here only the spinors for the hole states shall be given. A hole state with the positive (!)
energy p° and momentum g is created by removal of an electron with negative (!) energy
—p° and momentum —5 from the sea, i.e.,

a hole state with + p is created from an electron with —p . (4.285)

Thus it appears natural to describe a hole with

v(p) = u(-p) . (4.286)

Instead of (4.96), (p — m) u(p) = 0 we obtain

(» + m)v(p) = 0. (4.287)

The solution can be read off (4.256) as

o = N (p(?%:m 77) . (4.288)

If we want to consider the space-time dependence of the spinor, we have to set because
of (4.285)

Uhote(x) = P v(p) . (4.289)

Only with this exponential factor the Dirac equation

(i@ — m) Ynoe(r) = 0 (4.290)

is fulfilled together with (4.287). However, the time factor in (4.289),
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o0 it —i(=E)t (4.291)

shows that the negative energy states are not yet completely eliminated.
This is only possible if one interprets the Dirac spinor as field operator. Here only the basic

idea shall be presented. The expansion (4.250) is extended to incorporate the solutions
with negative energies and becomes

P(z) = W ; / d*p e ax(5) ur() + ™ b3() oA(P)] (4.292)

where a,(p) is considered as annihilation operator for an electron with g, A and b5(p) —
bf\(ﬁ) as creation operator for a positron with p; A\. Thus, charges and signs of energies
are properly taken care of.
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4.11 Particle Anti-Particle Conjugation

In the Hole theory every electron, represented by 1(z), is associated with a positron state,
which shall be described here by a spinor ¢¢(z). The transition ¢(x) — °(z) is called
Particle Anti-Particle Conjugation and is associated with a transformation in the
Hilbert space of the particles.

We want to construct this transformation C, especially construct ¢¢(z) from 1 (x). ¢*(x)
describes a particle with charge + | e |. ¥ (x) fulfills

[y#(i0" —eA,) —m] P(z) = 0. (4.293)
Thus ¢¢(z) should obey

[V4(i0, + eA,) —m] ¥(z) = 0. (4.204)

Starting from (4.293) the change of sign can be achieved in the following way:

According to (4.74) we have for the conjugate spinor

- =
D[P0, +eAy) +m] =0, (4.295)
i.e., when introducing transposed spinors and matrices
[V (i0u+e Ay) + m| ¢7 = 0. (4.296)

Comparing with (4.294), we see that the mass term has to change sign. To achieve this
we need to find a matrix C' with the property

Cyt 0Tt = At (4.297)

Such a matrix exists. From the commutation relations (4.20) follows

(") = 29" 1. (4.298)
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One can easily show that

C = (—i) " = (—i) ( 0 ‘62> (4.299)
has the desired properties. In addition, one has

C = -C!'=-C = -0". (4.300)

Thus (4.296) can be rewritten as

Ct ey O (i, e A +m| CPT (4.301)

Together with (4.297) and after multiplication with —C' from the left, one obtains

V" (0, + e Ay) — m] Cyt = 0. (4.302)

Thus, one has

Ye(z) = Cyl(x) . (4.303)

As example, let us take ¢(x) from (4.302),

Ghote(r) = €7 v(p) (4.304)

i.e., we consider the case of the absence of an electron with negative energy or the presence
of a hole state with positive energy. One has

Upositron (L) = Vpoe(2)
= Ci/jiifoze(x)
= Cy° Dhote ()
= O ()
= e P y°(p) (4.305)
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The time exponent, =" = /£t jndeed corresponds to a positive energy E. Further-
more, one can show that the spinor v¢(p) fulfills the equation

(B — m) v’ = 0, (4.306)

where p® > 0. Thus, v¢(p) has to coincide with u(p) from (4.129)

v(p) = u(p) . (4.307)

Thus, the wave function of a free positron is, according to (4.305), identical with the one
of a free electron. In a field-free environment, there is no distinction between electron and
positron.

4.12 Relativistic Covariance of the Dirac Equation

pretty lengthy — to be added at some later time.

4.13 Observables in the Dirac Theory

The observables in the Dirac theory must be hermitian operators. In addition to operators
similar to the nonrelativistic theory, these must be objects, which are constructed from -
matrices. This means, quantities of the form 1)Ov, where the operator O is a combination
of y-matrices or their products and is a fundamental observable for all field theories.
Generically they are called currents (in analogy to the Dirac current y#1)).

Important is that there exists only a finite, well defined number, namely 16, which are
linearly independent.

Theorem from y-matriz algebra:
The products of n y-matrices O,, = y*1y#2 - - - v#» are only linearly independent for n = 4.
The reason is that for n > 4 at least 2 matrices in the product are equal, which reduces

the dimension by n — 2 due to (y#1)% = %1.

Counsider the cases n = 1..4:
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Il:O, OU =1

which gives as current 1.

This is the only Lorentz invariant quantity, i.e. it does neither change under proper
Lorentz transformations nor under reflections. It was used for the Lorentz invariant
normalization for the spinors. In field theory this quantity plays a fundamental role in
the form of the mass term majp.

The number of independent matrices is 1.

n=1; O, =~*

This case contains the four y-matrices and gives the four-vector j# = 1y*4), which behaves
under reflection as a polar vector.

The number of independent matrices is 4.

v

n=2; Oy = "y

Only the antisymmetric piece is unequal to the unit matrix. This leads to ©o”1), which
is a tensor of rank 2.

The number of independent matrices is 6.

n=3; O3 = 7#7"7"

. C o . 4 .
Here one has to choose three different indices from 0,1,2,3. For this 3 | = 4 options
exist. The corresponding vy-matrices can be represented by the product ~>y*.
For a Lorentz transformation one has

ST ysyHS = det(A) Alysyh. (4.308)

The current jj = 1y*y5¢ is an axial current and plays together with j# an important
role in the theory of weak interactions.

The number of independent matrices is 4
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n=4; Oy = 7"7"y""

Here all 4 y-matrices must be different. Thus, only the matrix 7° is a candidate. To
determine its transformation properties write

- Zﬁgul/pafyuf)//’yp/yg (4309)

75

For the transformed matrix S™17°S one has to apply S~'y#S = A#y” on each matrix.
Due to the totally antisymmetric tensor €,,,, this gives the determinant of A:

S195S = det(A)y . (4.310)

Thus, under proper Lorentz transformations 7% is invariant. However under reflections it
changes sign (due to det(A)). This means that j° = 1751 transforms as pseudoscalar.

The number of independent matrices is 1.

In Summary: in total one has 1 + 4 + 6 + 4 + 1 = 16 independent matrices. Each
element of the Dirac algebra cane by represented by 3! c4v4, where ¢4 are constants.

4.14 Chirality

The invariance of ® under proper Lorentz transformation s has important mathematical
and physical consequences. Since 7° is a hermitian 4x4 matrix, it has 4 orthogonal
eigenvectors, and because of (7°)? = 1, they belong to the eigenvalues +1.

Introduce the following spinors:

Vr(x) = %(1 +79°)¢(2) (4.311)
vule) = 5= 7)), (4.312)
Because of (7°)? =1 one has
Vr(x) = Yr(2) (4.313)
Vp(z) = —ip(x) (4.314)
and
Vr(x) +¥r(z) = Y(2). (4.315)
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The spinors i (z) and v (z) can be linked with a ‘screw-direction’, and thus are called
chiral spinors. The eigenvalues 41 are called chiralities of the spinors. Under reflection,
the chiralities change

-1 1
P§(1 ++°)P = 5(1 — ), (4.316)

under proper Lorentz transformations, the chiralities remain. For massless particles this
concept is especially important:

Consider the helicity S - 7/|7] is equal to the chirality 7°, and

5 =427 = /0a. (4.317)
Consider the free Dirac equation
Ypuua(p) = (4.318)
For m = 0 this leads to
7 - Pur(p) = 7" Bux(p) (4.319)
and thus to .
ur(p) = "7 - ﬁux(p)- (4.320)
Applying 7° leads to
Sun(p) = 50ﬁ-£up:i-£up:)\u D), 4.321
7 ux(p) 777|ﬁ1,\() Iﬁl'\() A(p) ( )

which shows explicitly the equality of chirality and helicity for massless particles.
For particles with m # 0 one has

i’)’“@muwR = ’ITM/)L
iV'Outy, = mig, (4.322)

i.e. the mass term couples the two chiralities.

4.15 The Weyl Equation — The Neutrino

In 1930 Pauli postulated the existence of the neutrino in order to ® guarantee the energy
and momentum conservation for the weak interaction, which at the time seemed to be
violated in (-decay experiments. Since the energy of the neutrino could not be determined
the interaction of this postulated particle with mater must be extremely small, e.g. it
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must not have an electric charge, mass and magnetic moment must be vanishingly small
or Zero.

Neutrinos are seen in the reactions

p+e + v

n + e’ (4.323)
From angular momentum considerations in 3-decay it was deduced that the neutrino must
be spin-1/2 particle. Precise experimental analyses showed that the spin of the neutrino
v is antiparallel and the of the anti-neutrino v is parallel to its momentum direction. This
si the basic phenomenon of parity violation: If parity was conserved, neutrinos as well as
anti-neutrinos must exist in nature with both spin directions.

In 1929 Hermann Weyl proposed a two-component equation to describe a massless spin-
1/2 particle (H. Weyl, Z. Physik, 56, 330 (1929)). However, the Weyl equation violates
parity and thus was rejected at the time. After the parity violation of the weak interaction
was experimentally established in 1957, Landau, Salam and Lee and Young took Weyl’s
equation and regarded it as the basic equation of motion for the neutrino.

First, consider the Dirac equation for a massless particle

ZM =da-pi(z) (4.324)

ot
This equation does not longer contain the matrix 3 = 7%, and the anti-commutation
relations oy, a; = 20;; can be satisfied by the Pauli matrices. The appearance of = »°
as set of the anti-commuting matrices requires the construction of 4x4 matrices and four-
component spinors to describe spin-1/2 particles. Thus, if spin-1/2 particles are massless,
this reason is no longer present, and the particle can be described by a two component

amplitude ¢(*)(z)

(+)
iagt = &-poP

(+) .
agt = —&-V o, (4.325)

where o; are the Pauli matrices. The plane wave solutions of the Weyl equation are given
by

1 .
¢(1) = F——=e"""uM(p), (4.326)
\2E(2m)3
where p = (po,p) = (E,p). The wave functions are normalized such that the norm

remains invariant under Lorentz transformations. The two-component spinor u(*)(p)
fulfills
pout™ (p) = 7§ (p) (4.327)
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This equation is of particular interest, since it relates a solution with a specific sign of py
to the projection of the spin along the direction of motion.

-

Applying the helicity operator A = ‘TJ‘? to (4.327) gives

(5 — P*)uP(p) =0 (4.328)

which states that nonvanishing solutions u*)(p) only exist if py = +|p].

In the common representation of the Pauli matrices, and with the z-axis in p’ direction,
the solution of (4.327) is given by

ut) = ( (1) > : (4.329)

describing a right-handed massless particle with spin into the direction of motion, i.e.

%qu)EUS(é):Jr(é), (4.330)

We see that for positive energy states (py = +|p]), the spin is directed along the direction
of motion, i.e. we have positive helicity. States with py = —|p] have negative helicity.

Thus, if the neutrino is supposed to be a left-handed (negative helicity) particle, one needs
to start with the equation

i% =& -p o (2). (4.331)

Replacing & with —& in (4.325) also results in a realization of the commutation relations
a;, 0 = 26;;, thus (4.331) and (4.325) are two equally possible equations for massless
Dirac particles.

With the ansatz
qﬁ(*)(x) = 7e*ipxu(*)(p), (4.332)

one finds
pou' ) (p) = =5 - jul ) (p) (4.333)

W) — ( (1) ) _ (4.334)

Defining a four-vector o = (1, ), the Weyl equation for the neutrino can be written in a
more compact way

with

0, Vo) =0 (4.335)
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In order to better understand the connection of the two-component solution with the four
component one, we solve for the Dirac equation and choose the chiral representation
of the Dirac matrices, which is given by applying the transformation

U= % (1 +757%0) (4.336)

to the standard Dirac matrices. (As an aside, the standard representation of the Dirac
matrices are ® particularly useful when considering the nonrelativistic limit.) In the chiral
representation we obtain

och 0 —1
5ch 1 0
Pt = (0 _1> (4.337)

and thus
- (o 0
a= ( 0 o ) ) (4.338)

In this representation the Dirac equation together with a two-component wave function

U(r) = ( ¢ > (4.339)

o)
becomes
ad{;_(t_) — iz -V ¢ —m o). (4.340)

The upper and lower components of W(x) are only coupled through the mass term. In
the limit m — 0 one obtains two uncoupled two-component equations as in (4.325).

Using the chiral representation of s, it is easily seen that

o ( ¢i)+) > (4.341)

for m — 0 corresponds to right handed neutrinos, since

YU = ), (4.342)
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Analogously one obtains for

0

(-) —

o) — ( 5 > (4.343)
for m — 0 and

W) = @), (4.344)
i.e. () describes left handed neutrinos. Therefore, we can introduce projection operators

1
P = 3 (1+7;) (4.345)

<
x
I
|
=
_I_
=
=)

1
v = 5 (1 —=)¥. (4.346)

The above shows that the two-component Weyl theory is equivalent to a four-component
Dirac representation. However, in the framework of the Weyl equation, the distinction
between particles and anti-particles is superfluous. The two possible states of the neutrino
are only characterized by parallel and antiparallel orientation of the spin with respect to
the momentum.

Next, we want to convince ourselves that the two-component theory is not invariant under
parity transformations. Under space inversion one has p— —p, ¢ — &, i.e. p'is a polar
vector, & is an axial vector, and thus & - p'is a pseudoscalar under inversion. Using (4.342)
and (4.344) one has

Ty O = 9 gE), (4.347)

The left hand side is a pseudoscalar density, while the right hand side is a scalar density.
Thus, helicity eigenstates are not parity eigenstates.
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