
Chapter 1

The Nucleon-Nucleon System

1.1 The Lippmann-Schwinger Equation for the Scat-
tering Process

Let us consider two-nucleon scattering and de�ne~k1 and ~k2 to be the individual nucleon
momenta. The relative momentum is then given as

~p=
1
2

(~k1 � ~k2) (1.1)

The momentum eigenstates in the nucleon-nucleon (NN) c.m. systemare then

j ~pi (1.2)

and are chosen to be normalized as

h~p j ~p 0i = � 3(~p � ~p 0) : (1.3)

They are eigenstates to the free Hamiltonian for the relative motion

H0 =
~p 2

m
(1.4)

wherem is the nucleon mass.
Let V be the NN potential, which is assumed to be energy independent.
The Schr•odinger equation for a scattering state 	(+)

~p

(H0 + V) 	 (+)
~p = E 	 (+)

~p (1.5)
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can be cast into an integral equation, the Lippmann-Schwinger equation (LSE):

(H0 � E) 	 (+)
~p = � V 	 (+)

~p (1.6)

j 	 (+)
~p i = j ~pi +

1
E + i� � H0

V j 	 (+)
~p i (1.7)

Let us consider the con�guration space representation. The conjugate variable to ~p is

~x = ~r1 � ~r2 ; (1.8)

and we choosej ~xi to be normalized as

h~x j ~x0i = � 3(~x � ~x0): (1.9)

Then the Fourier transform is given by

h~x j ~pi =
1

(2� )3=2
ei~p�~x : (1.10)

The con�guration space representation of the free propagator

G0 �
1

E + i� � H0
(1.11)

is given as

h~x j
1

E + i� � H0
j ~x 0i =

Z
d~ph~x j ~pi

1
E + i� � p2=m

h~pj ~x 0i

=
1

(2� )3=2

Z
d3p ei~p�~x 1

E + i� � p2=m
e� i~p�~x 0

=
1

(2� )3

Z
d3p ei~p�(~x� ~x0) 1

E + i� � p2=m

=
1

(2� )3
4�

Z 1

0
dp p2j 0(p� )

1
E + i� � p2=m

(1.12)

with � �j ~x � ~x0 j
Standard residue techniques lead to

h~x j G0 j ~x 0i = �
m
4�

ei
p

mE j~x� ~x0j

j ~x � ~x0 j
; (1.13)
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which exhibits the outgoing wave behavior from the source point~x0 to ~x. It results the
con�guration space representation of the LSE

h~x j 	 (+)
~p i � 	 (+)

~p (~x)

=
1

(2� )3=2
ei~p�~x �

m
4�

Z
d3x0 ei

p
mE j~x� ~x0j

j ~x � ~x0 j
V(x0) 	 (+)

~p (~x0) :

(1.14)

Thereby we assumed a local potential

h~x j V j ~x0i = � 3(~x � ~x 0) V(x0) (1.15)

In a well known manner one reads o� the asymptotic form forj ~x j! 1 :

	 (+)
~p (~x) !

1

(2� )
3
2

( ei~p~x +
eipx

x
f (x̂) ) ; (1.16)

with the scattering amplitude f (x̂) depending on the direction ^x of observation

f (x̂) = � m

r
�
2

Z
d3x0 e� ip x̂ �~x0

V(x0) 	 (+)
~p (~x0) : (1.17)

This can be interpreted in terms of a scattered momentum

~p0 � x̂p ; (1.18)

and one introduces a transition amplitude

h~p0 j t j ~pi �
1

(2� )
3
2

Z
d3x0 e� i~p 0~x 0

V(x0) 	 (+)
~p (~x 0)

= h~p0 j V j 	 (+)
~p i :

(1.19)

Apparently t is the result of the scattering process and determines all scattering observ-
ables.
Is there an integral equation directly fort? From (1.24) we read o�

t j ~pi � V j 	 (+)
~p i ; (1.20)

and using (1.7) we �nd

t j ~pi = V j ~pi + V G0 V j 	 (+)
~p i

= V j ~pi + V G0 t j ~pi

(1.21)
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We can strip o� the initial state j ~pi and get the operator relation

t = V + V G0 t (1.22)

which is the LSE for the transition operator. Its simple physical interpretation results by
iterating that equation:

t = V + V G0 ( V + V G0t )

= V + V G0V + V G0V G0V + V G0V G0V G0V + : : :

(1.23)

This is the Born series for scattering onV, a sum of terms of increasing order inV. Each
term consists of a sequence ofV 0s with free propagations in between. This is a general
structure valid for any number of particles.

It is useful to visualize that multiple scattering process in the form

t

where the dashed lines stand for the action ofV and two horizontal lines for the free
propagation G0 between two interactions. Intuitively one can start from that sumof
terms (1.23)

t = V + V G0 V + V G0 V G0 V + : : : (1.24)

and ask the question: can this series be summed up into an integral equation for t ?
Obviously it can:

t = V + V G0 ( V + V G0V + V G0V G0V + : : :) ; (1.25)

and we recovert again on the right hand side and thus get

t = V + V G0 t (1.26)

which is the LSE.
Of course if one starts from Eq. (1.23) in an ad hoc manner one has to know the form of
the free propagatorG0 and therefore one has to make contact to the underlying dynamical
equation, in our case the Schr•odinger equation. Formally howeverthis multiple scattering
series is quite general and also valid for the Bethe-Salpeter equation, whereG0 is di�erent
from the G0 used in our nonrelativistic context.
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1.2 Alternative Derivation of the Lippmann-Schwinger
Equation

A free momentum eigenstate obeys

H0 j ~p i = Ep j ~p i (1.27)

and a scattering state obeys

H j ~p i (+) = Ep j ~p i (+) : (1.28)

Here a scattering state is de�ned via

j ~p i (+) = 
 (+) j ~p i = lim � ! 0 i� G (E + i� ) j ~p i ; (1.29)

where 
 (+) is the M�ller operator, which maps a free statej ~p i onto a scattering state
j ~p i (+) .

The propagators, or Resolvents, are given by

G0(z) =
1

z � H0
(1.30)

and

G(z) =
1

z � H
: (1.31)

Here G0(z) is the free propagator (Resolvent) andG(z) the full propagator (Resolvent).

Let us consider

G� 1
0 � G� 1 = ( z � H0) � (z � H ) = � H0 + H = V ; (1.32)

where we use thatH = H0 + V.

Multiplying Eq. (1.32) from the left with G0 and from the right with G yields

G0(G� 1
0 � G� 1)G = G � G0 = G0V G (1.33)

or

G = G0 + G0V G : (1.34)

The above relation, Eq. (1.34), is called �rst Resolvent Identity.
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Applying the �rst Resolvent Identity on a momentum eigenstate andmultiplying both
sides of the resulting equation withi� yields

i� G (E + i� ) j ~p i = i� G 0(E + i� ) j ~p i + i� G 0(E + i� )V G(E + i� ) j ~p i

=
i�

E + i� � H0
j ~p i + i� G 0(E + i� )V G(E + i� ) j ~p i

= j ~p i + i� G 0(E + i� )V G(E + i� ) j ~p i :

(1.35)

Taking the limit � ! 0 gives, together with the de�nition Eq. (1.29), the Lippmann-
Schwinger equation for states

j ~p i (+) = j ~p i + G0(E + i� )V j ~p i (+) (1.36)

If we multiply Eq. (1.36) by V and de�ne

V j ~p i (+) = t j ~p i ; (1.37)

we obtain
V j ~p i (+) = V j ~p i + V G0(E + i� )V j ~p i (+) (1.38)

or
t j ~p i = V j ~p i + V G0(E + i� )t j ~p i : (1.39)

Since the operators in Eq. (1.39) are applied on a general statej ~p i , we can consider this
equation as operator equation:

t = V + V G0(E + i� )t : (1.40)

This equation is also called operator Lippmann-Schwinger equation.

A next task is to derive from Eq. (1.36) a relation to the scattering wave function  + (~r).
Let us consider

h~r j ~pi (+) = h~r j ~p i + h~r j G0 V j ~pi (+) (1.41)

which leads to

 (+) (~r) � h ~r j ~p i (+) = h~r j ~p i + h~r j G0 t j ~pi (1.42)

= h~r j ~pi +
Z

d3p0 h~r j ~p0i h~p0 j G0 t j ~pi :

(1.43)

Applying the de�nition of G0 leads to

h~r j ~p i (+) = h~r j ~p i +
Z

d3p0 h~r j ~p0 i
1

E + i� � p02

m

h~p0 j t j ~p i ; (1.44)
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which is the desired equation for the scattering wave function (+) (r ).

Energy conservation leads to an additional constraint for thet-operator. If a momentum
before the scattering event is denoted with~p, and after the scattering event with~p 0, then
energy conservation requires

~p 02

m
=

~p 2

m
) ~p 02 = ~p 2 : (1.45)

This means that we can extract an energy conserving� -function from the matrix element

h~p 0 j T(E) j ~p i = � (Ep0 � Ep) ĥp0 j t(E) j p̂i : (1.46)

The latter relation is sometimes called on-shell condition. The physical meaning is that
the observables ofNN scattering only determine the matrix elements consistent with the
relation (1.46).

1.3 The Lippmann-Schwinger Equation for the Bound
State

Let us assume, thatV supports a bound statej 	 bi at E = Ebh0: Then

(H0 + V) j 	 bi = Eb j 	 bi (1.47)

or
(H0 � Eb) j 	 bi = � V j 	 bi (1.48)

SinceEbh0 there is no regular and square integrable solution to the left hand side alone
and j 	 bi obeys the homogeneous LSE

j 	 bi =
1

Eb � H0
V j 	 bi (1.49)

Using the con�guration space representation Eq. (1.12) forE = Ebh0 we see that (1.21)
guarantees the correct exponential fall-o� behavior of

h~xj	 bi � 	 b(~x) = � m

r
�
2

Z
d3x0e

�
p

mjEbjj ~x� ~x 0j

j~x � ~x 0j
V (x0)	 b(~x0) (1.50)
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1.4 Connection Between Homogeneous and Inhomo-
geneous LSE's

It is of interest and importance to relate the homogeneous equation, valid at the discrete
energyE = Eb

j 	 bi = G0(Eb)V j 	 bi (1.51)

and the inhomogeneous equation, derived forE i 0

t(E) = V + V G0(E)t(E) : (1.52)

The transition operator t(E) can be evaluated also forEh0. What happens forE ! Eb?
We rewrite (1.52)

( 1 � V G0(E) ) t(E) = V (1.53)

t(E) = ( 1 � V G0(E) ) � 1 V (1.54)

Let us expand

t(E) = ( 1 + V G0 + V G0V G0 + : : : ) V

= V ( 1 + G0V + G0V G0V + : : : ) :

(1.55)

If we apply t(E) onto j 	 bi and chooseE = Eb, then we �nd, using Eq. (1.31)

t(Eb) j 	 bi = V ( 1 + 1 + 1 + : : :) j 	 bi ; (1.56)

which is clearly diverging.

More precisely

t(E) = [ ( G� 1
0 � V ) G0 ]� 1V

= G� 1
0

1
E � H0 � V

V

= G� 1
0

1
E � H

V

= G� 1
0 G� 1 V

(1.57)

Inserting the completeness relation

j 	 bih	 b j +
Z

d3p j 	 (+)
~p ih	 (+)

~p j= 1 (1.58)
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to the left of V gives

t(E) = ( E � H0) j 	 bi
1

E � Eb
h	 b j V

+
Z

d~p(E � H0) j 	 (+)
~p i

1
E � ~p2=m

h	 (+)
~p j V

= V j 	 bi
1

E � Eb
h	 b j V

+
Z

d~p V j 	 (+)
~p i

1
E � ~p2=m

h	 (+)
~p j V :

(1.59)

We see explicitly that t(E) has a pole atE = Eb

t(E) ! V j 	 bi
1

E � Eb
h	 b j V for E ! Eb (1.60)

Thus t(E) has a pole at the energy where the homogeneous LSE has a solution, which
is the same as requiring that the homogeneous part of the inhomogeneous LSE has a
solution:

�( E) = V G0(E) �( E) (1.61)

Put
�( E) � V � (E) (1.62)

then
� (E) = G0(E) V � (E) (1.63)

This is identical to (1.38) and thus

� (E) = 	 b at E = Eb (1.64)

This pole in t(E) at the NN bound state will be of decisive importance for describing an
interacting system of 3 or more nucleons.

1.5 Realization in a Partial Wave Representation in
Momentum Space

We introduce the momentum space basis to a �xed orbital angular momentum l and
magnetic quantum numberm

j plmi (1.65)
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These states are de�ned via

h ~p0 j p l mi �
� (p0 � p)

p p0
Ylm (p̂ 0) : (1.66)

They are complete and orthonormal
X

lm

Z
dp p2 j p l mihp l m j = 1 (1.67)

hp l m j p0 l0 m0i =
� (p0 � p)

p p0
� ll 0 � mm 0 (1.68)

Let us consider the LSE fort(E) in this basis

hp0l0m0jt(E)jplmi =

hp0l0m0jV jplmi +
X

l00m00

Z 1

0
dp00p002hp0l0m0jV jp00l00m00i

�
1

E + i� � p002=m
hp00l00m00jt(E)jplmi

(1.69)

We take V to be rotationally invariant:

hp0 l0 m0 j V j p l mi = � ll 0 � mm 0 Vl (p0; p) (1.70)

which leads to an integral equation in one variable:

t l (p0p) = Vl (p0p) +
Z 1

0
dp00p002 Vl (p0p00)

1
E + i� � p002=m

t l (p00p) (1.71)

What is Vl , assumingV(r ) to be given? Introduce states

j rlm i (1.72)

de�ned analogously to (1.59) via

h~x j r l m i �
� (x � r )

xr
Ylm (x̂) (1.73)

Then

h p l m j r l m i =
Z

d~p 0
Z

d~x hp l m j ~p 0i h~p 0 j ~xih~x j r l m i

=
Z

d3p0
Z

d3x
� (p0 � p)

p0p
Y �

lm (p̂0)
1

(2� )(3=2)
e� i~p 0�~x � (x � r )

xr
Ylm (x̂)

=

r
2
�

j l (pr) i l

(1.74)
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Therefore, assuming a local potential:

Vl (p0p) = hp0lm j V j plmi

=
Z 1

0
dr r 2

Z 1

0
dr0r 02 hp0 l m j r 0 l mi

� h r 0 l m j V j r l m ihhr l m j p l mi

=
2
�

Z 1

0
dr r 2

Z 1

0
dr0 r 02 j l (p0r 0)

� (r � r 0)
rr 0

V(r ) j l (pr)

=
2
�

Z 1

0
dr r 2 j l (p0r ) V (r ) j l (pr)

(1.75)

This is one way to determine the momentum space representation ofa local potential.
The LSE for t l can easily be solved by standard methods.
Let us now consider the full space for two nucleons including spin andisospin:

jp(ls)jm (
1
2

1
2

)tm t i �
X

m l

C(lsj; m l m � ml )jplml ij sm � ml i

�
X

�

C(
1
2

1
2

t; �m t � � )j
1
2

� ij
1
2

jmt � m� i (1.76)

Clearly one hass = 0; 1 and t = 0; 1. The antisymmetry (working in isospin formalism)
leads to the well known restriction

(� ) l+ s+ t = � 1 (1.77)

for the allowed quantum numbers. Thust = 1 states are

1S0 ; 3P0 ; 3P1 ; 1D2 ; 3P2 � 3 F2; : : : (1.78)

and t = 0 states are
1P1 ; 3S1 � 3 D1 ; 3D2 ; : : : (1.79)

The hyphen denotes coupled states, wherel is not conserved. A well known mechanism
for that is the tensor force.
For a general NN force, which conserves spin and parity one has

hp0(l0s0)j 0m0t0m0
t jV jp(ls)jmtm t i = � j j 0� mm 0� tt 0� m t m t 0� ss0V sjtm t

ll 0 (p0; p) (1.80)

Because of (1.71) conservation of isospin follows and the indicatedt-dependencies forV
is redundant.
There is a dependence onmt , the charge state of the two nucleons, in case of charge-
independence breaking (CIB) or charge-symmetry breaking (CSB):
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CIB means: np 6= pp=strong forces CSB means:nn 6= pp=strong forces

It is well established that in the state1S0 the np force is di�erent from the nn or pp force.
This is evident in the di�erent scattering lengths:

anp = � 23:48� 0:009fm

app=strong = � 17:36� 0:4fm (recommended value)

(G.A. Miller et al, Phys. Rep. 194 (1990) 1)

ann = � 18:6 � 0:3fm

(extracted from � � + d ! n + n +  ; B. Gabioud et al, Phys. Rev. Lett. 42 (1979) 1508;
O. Schori et al, Phys. Rev. C35 (1987) 2252). That� � absorption experiment has been
redone at Los Alamos and is presently being analyzed.

In addition, nd breakup experiments are being presently performed (W. Tornow,TUNL),
in order to extract ann using modern Faddeev calculations.

In t = 1 states di�erent from 1S0 CIB or CSB is not yet convincingly established, though
small e�ects at least have to be there, simply because of the di�erent pion masses.
We shall drop in the following the possiblemt -dependence in the notation.

In this most general basis, the LSE fort is represented as

hp0(l0s0)jt jt(E)jp(ls)jt i = hp0(l0s)jt jV jp(ls)jt i

+
X

l00

Z 1

0
dp002 p002hp0 (l0s)jt jV jp00(l00s)jt i

�
1

E + i� � p002=m
hp00(l00s)jt jt(E)jp(ls)jt i (1.81)

or

tsj
l0l (p

0; p) = V sj
l0l (p0p) +

X

l00

Z 1

0
dp00p002V sj

l0l00(pp00)
1

E + i� � p002=m
tsj
l00l (p

00p) (1.82)

Sinces is at most 1 and parity is conserved

l = l0 or l = l0 � 2 (1.83)

Thus one has either a single equation or two coupled equations. A prominent example
for the coupled case is

3S1 � 3 D1 (1.84)

acting in the deuteron.
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1.6 NN Phase-Shifts

The t-matrix generated by the coupled or uncoupledLSE is unitary. Let us choose a
matrix notation

t � tsj
l0l (p

0p) etc. (1.85)

Then
t = V + V G0 t = V + t G0 V (1.86)

The adjoint of that is
ty = V + V G0

� ty (1.87)

sinceV y = V: This is valid on physical grounds. Subtraction yields

t � ty = V G0t � V G�
0ty

= V G0(t � ty) + V(G0 � G�
0)ty

(1 � V G0)( t � ty) = V(G0 � G�
0) ty

t � ty = (1 � V G0)� 1V(G0 � G�
0 ) ty

= t ( G0 � G�
0 ) ty

(1.88)

Now
G0 =

1
E + i� � H0

1 (1.89)

thus
G0 � G�

0 = � 2�i � (E � H0) 1 (1.90)

and we get, back in explicit notation

t l0l (p0p) � t �
ll 0(pp0) =

Z 1

0
dp00p002

X

l00

t l0l00(p0p00)( � 2�i ) � (E �
p002

m
) t �

ll 00(pp00)

= � 2�i m

p
mE
2

X

l00

t l0l00(p0
p

mE ) t �
ll 00(p

p
mE)

(1.91)

Let us choose the on-the-energy shell valuesp = p0 =
p

mE :

t l0l (pp) � t �
ll 0(pp) = � �imp

X

l00

t l0l00(pp)t �
ll 00(pp) (1.92)

Back in matrix notation this is

t � ty = � �imp t t y (1.93)
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Now we introduce aS-matrix
S = 1 � i�mp t (1.94)

and �nd

S Sy = (1 � i�mp t ) (1 + i�mp t y)

= 1 � i�mp (t � ty � i�mp t t y) = 1 (1.95)

Thus S is unitary and can be parameterized in the coupled case by 3 parameters:

S =

 
cos2� e2i � 1 isin 2� ei (� 1+ � 2 )

isin 2� ei (� 1 + � 2 ) cos2� e2i � 2

!

(1.96)

which is the "Stapp" or "bar"-phase shift parameterization
(H.P. Stapp et al, Phys. Rev. 105 (1957) 302).
In the uncoupled caseS is simply

S = e2i� (1.97)

with � real.

The well known NN phase-shift parameters by the Nijmegen group
(V.G.J. Stoks et al, Phys. Rev C48 (1993) 792)
can be viewed on-line at

http://nn-online.sci.kun.nl/

and by George Washington University INS Data Analysis Center (R. A. Arndt et al,
Phys. Rev. D45 (1992) 3995)

http://http://gwdac.phys.gwu.edu/

which also links several other partial wave analysis for e.g. pion-nucleon scattering or
photoproduction.

1.7 Deuteron Properties

The homogeneous LSE Eq. (1.51) is now projected onto the basis given in Eq. (1.73).
Thus for

	 l (p) � h p (ls) j t j 	 bi (1.98)
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with l = 0; 2, s = j = 1, t = 0 one gets the set of two coupled equations

	 l (p) =
1

Eb � p2

m

X

l0=0 ;2

Z 1

0
dp0 p02 Vll 0(pp0) 	 l0(p0) (1.99)

This can be solved numerically by standard techniques. Realistic forces are adjusted to
reproduce various measurable quantities:

� Eb = � 2:2246 MeV

� Q = 0:2859fm 2 (there are theoretical uncertainties in the description of that ex-
perimental value caused by MEC)

� As = 0.8883 fm� 1=2 (asymptotic normalization constant for thes-wave component)

� � = AD =As = 0:02564 (asymptoticd=s ratio)

The deuterond-state probability

pd �

R1
0 	 2

2(p) p2dp
R1

0 	 2
0(p) p2 dp +

R1
0 	 2

2(p) p2 dp
(1.100)

is not a measurable quantity, but strongly correlated to nuclear binding energies, as we
shall see later. In general, the smallerpd the larger the triton and � -particle binding
energies.
Let us now consider the single nucleon momentum distribution

n(k) �
1
2

1
3

X

m

h	 b m j
2X

i =1

� (~k � ~kcm
i ) j 	 b mi (1.101)

=
1
3

X

m

h	 b m j � (~k � ~kcm
1 ) j 	 b mi (1.102)

We have
~p =

1
2

(~kcm
1 � ~kcm

2 ) = ~kcm
1 (1.103)

and thus

n(k) =
1
3

X

m

Z
d3p h	 b m j ~pi � (~k � ~p) h~pj 	 bmi : (1.104)

One has

h~kj	 bmi =
X

l

Z 1

0
dp p2h~kjp(ls)jm i 	 l (p)

=
X

l

X

m l

C(lsj; m l ; m � ml )Ylm l (k̂)jsm � ml i 	 l (k) (1.105)
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and therefore

n(k) =
1
3

X

m

X

ll 0

X

m l

C(l0 s j; m l m � ml ) (1.106)

� C(l s j; m l m � ml ) Y �
l0m l

(k̂) Ylm l (k̂)

� 	 l0(k) 	 l (k)

Now, with â being de�ned asâ � 2a + 1 we have

C(l s j; m l m � ml ) = ( � )s+ m� m l

s
ĵ

l̂
C(j s l ; � m; m � ml ) (1.107)

Using the above relation we �nd

n(k) =
1
3

X

m l

X

ll 0

Y �
l0m l

(k̂) Ylm l (k̂) (1.108)

� 	 l0(k) 	 l (k)
X

m

s
ĵ

l̂

s
ĵ

l̂ 0

� C(j s l; � m; m � ml ) C(j s l 0; � m; m � ml )

=
1
3

X

m l

X

l

Y �
lm l

(k̂) Ylm l (k̂)
ĵ

l̂
	 2

l (k) (1.109)

=
ĵ
3

1
4�

X

l

	 2
l (k) =

1
4�

X

l=0 ;2

	 2
l (k) (1.110)

This is displayed for several realistic NN forces in the next �gure, where di�erent short
range behavior of NN forces is reected fork >� 1fm � 1:
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There is hope to measure these quantities in electron scattering ondeuterons.

Of interest is also the NN correlation function, the probability to �nd 2 nucleons at a
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distancer :

C(r ) �
1
3

X

m

h	 bmj� (~r � ~x)j	 b mi

=
1
3

X

m

h	 bmj~rih~rj	 b mi

=
1

4�

X

l=0 ;2

	 2
l (r ) (1.111)

The connection between con�guration and momentum space is givenby

	 l (r ) =

r
2
�

Z 1

0
dp p2j l (pr)	 l (p) (1.112)

The l = 0 and 2 parts of C(r ) together with their sum are displayed below. We see
di�erences at short distances, depending on the strengths of the short range repulsions,
as shown in the next �gure
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1.8 Nuclear Forces

The determination of the nuclear force is a longstanding and still unsolved basic problem.
The whole issue on how to set up a framework for deriving a nuclear force is not touched
here. Simply a list of so called "realistic" NN forces is given:

� Paris potential (dispersion theoretical background) by M. Lacombe et al, Phys. Rev.
C21 (1980) 861

� Nijmegen 78 potential (one-boson-exchange background) by M.M. Nagels et al,
Phys. Rev. D17 (1978) 768

� AV14 potential (one-pion tail, otherwise phenomenological) by R. B.Wiringa et al,
Phys. Rev. C29 (1984) 1207

� Bonn potential (meson exchange potential (multiple meson), based on time-ordered
perturbation theory by R. Machleidt, K. Holinde, Ch. Elster, Phys.Rep. 149 (1987)
1 and R. Machleidt, Adv. Nucl. Phys. 19 (1989) 189

All those potential have � 2=Ndata � 2 with respect to the Nijmegen data base.

Most recent NN potential, howeverall phenomenological with about 30-50 parameters �t
the Nijmegen data base with a� 2=Ndata � 1 and are

� Nijmegen I (includesr 2-term)

� Nijmegen II (local)

� Reid 93 (local) by V.G.J. Stoks et al, Phys. Rev. C49 (1994) 2950

� AV18 (updated AV14, local, as operators de�ned) by R.B. Wiringa etal, Phys. Rev.
C51 (1995) 38

� CD-Bonn (nonlocal) by R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C53,
(1996), R1483.

They come in charge-dependent versions and describe the NN dataup to 350 MeV per-
fectly well with � 2=Ndata � 1

This is the �rst time that one has a set of "realistic" nearly phase-equivalent NN forces.
They cover a certain range of properties, a NN force can have:
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� local versus nonlocal

� soft or hard core

What is still missing in that family are potentials with dynamical nonlocalities at very
short distancesr � 0:8fm , say, resulting from the overlap regions of extended nucleons.
They might be good for surprises.

1.9 Construction of the NN Potential From Invari-
ance Requirements

We want to investigate to what extent the form of the potentialVNN (1; 2) acting between
two nucleons is determined by the requirement that the Hamiltonian describing the sys-
tem be invariant under various symmetry transformations. This analysis will be made
considering the two nucleons as identical particles, i.e., disregardingthe di�erence of the
mass and charge between the neutron and proton. The Hamiltonianhas then the form

H =
1

2m
(p2

1 + p2
2) + VNN (1; 2) ; (1.113)

m being the nucleon mass.

Regarding the symmetry properties ofH , we shall assume �rst of all invariance under the
restricted Galilei group. Then we shall assume invariance under thediscrete transforma-
tions of space reection, time invariance and permutation of the two nucleons. Finally,
we shall assume invariance under the isospin transformations of the groupSM (2).

The operators we have at our disposal to build up the potential arethe coordinates~r1; ~r2,
the momenta ~p1; ~p2, the spin vector operators~� (1) ; ~� (2) and the isospin vector operators
~� (1) ; ~� (2) . Going to the two nucleon c.m. frame gives

~r = ~r2 � ~r1

~R =
1
2

(~r1 + ~r2)

~p = ~p2 � ~p1

~P = ~p2 + ~p1 : (1.114)

1. Assume that the potential operator is hermitian

VNN = V y
NN : (1.115)
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2. Using time-translation invariance, which makesVNN not explicitly dependent on
the time t, gives

VNN � VNN (~r; ~R; ~p; ~P ; ~� (1) ; ~� (2) ; ~� (1) ; ~� (2) ) : (1.116)

Let us now discuss the implications of the assumed invariance on the dependencies
of VNN on the indicated variables.

3. Consider the invariance for rotations in charge space, which determines the depen-
dence ofVNN on the isospin vectors~� (1) and ~� (2) . The unitary operator representing
a rotation in charge space is given by

UI (w) = ei ~I � ~w ; (1.117)

where~I is the total isospin and~w = ~n w. The required invariance is expressed by

Uy
I VNN UI = VNN (1.118)

with arbitrary ~n and w. (1.118) will be satis�ed if VNN is a scalar in isospin space.
In order to construct all possible scalars from~� (1) and ~� (2) , it is remarked that any
polynomial expression in~� (i ) can be reduced to a linear expression by using

[� (i )
j ; � (i )

k ] = i" jk` � (i )
`

(� (i )
j )2 = 1 ;

(1.119)

so that, e.g.,

(~� (1) � ~� (2) )2 = 3 � 2(~� (1) � ~� (2) ) : (1.120)

Hence, the most general expression that has to be considered is linear, both in ~� (1)

and ~� (2) . The only scalar quantity obtained in this way is~� (1) � ~� (2) . It follows that
VNN is a function only of this quantity as regards its dependence on the isospin
variables of the two particles:

VNN � VNN (~r; ~R; ~p; ~P ; ~� (1) ; ~� (2) ; [~� (1) � ~� (2) ]) : (1.121)

Expanding VNN in a power series of~� (1) �~� (2) and expressing (~� (1) �~� (2) )n with (1.120)
in terms of ~� (1) � ~� (2) and the identity operator in isospin space, one obtains

VNN = V1(~r; ~R; ~p; ~P ; ~� (1) ; ~� (2) ) + ( ~� (1) � ~� (2) ) V2(~r; ~R; ~p; ~P ; ~� (1) ; ~� (2) ) : (1.122)

We can now limit ourselves to study the implications of invariance an each term
Vi separately, since all other symmetry transformations commute with the isospin
operators. For convenience we drop the indexi from now on.
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4. Invariance under space translations is expressed by

Uy
a V Ua = V (1.123)

with Ua = exp
�

i
~

~P � ~a
�

. We get

Uy
a V (~r; ~R; ~p; ~P ; ~� (1) ; ~� (2) ) Ua

= V(Uy
a ~r Ua; Uy

a
~R Ua; Uy

a ~p Ua; Uy
a

~P Ua; Uy
a ~� (1) Ua; Uy

a ~� (2) Ua)

= V(~r; ~R � ~a; ~p;~P ; ~� (1) ; ~� (2) ) :

(1.124)

The condition (1.123) then implies thatV does not depend on~R:

V(~r; ~p; ~P ; ~� (1) ; ~� (2) ) : (1.125)

5. Invariance under proper Galilei transformations is expressed by

Uy
G V UG = V (1.126)

with

UG � exp
�

i
~

~P � ~v0t
�

exp
�

�
i
~

m ~R � ~v0

�
(1.127)

with ~v0 being the c.m. velocity. It follows that

Uy
G V UG = V(~r; ~p; Uy

G
~P UG; ~� (1) ; ~� (2) )

= V(~r; ~p; ~P � ~v0m; ~� (1) ; ~� (2) ) :

(1.128)

The condition (1.126) then implies thatV is independent of~P:

V = V(~r; ~p; ~� (1) ; ~� (2) ) : (1.129)

6. Invariance under space reections implies in the normal way that

V(~r; ~p; ~� (1) ; ~� (2) ) = V(� ~r; � ~p; ~� (1) ; ~� (2) ) : (1.130)

7. Invariance under the permutation of the two nucleons gives

V(~r; ~p; ~� (1) ; ~� (2) ) = V(� ~r; � ~p; ~� (2) ; ~� (1) ) : (1.131)

Invariance under the combined transformations (6) and (7) gives

V(~r; ~p; ~� (1) ; ~� (2) ) = V(~r; ~p; ~� (2) ; ~� (1) ) : (1.132)
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8. Invariance under time reversal means

V(~r; ~p; ~� (1) ; ~� (2) ) = V � (~r; � ~p;� ~� (1) ; � ~� (2) )

= V(~r; � ~p;� ~� (1) ; � ~� (2) )

(1.133)

SinceV is assumed to be hermitian.

9. Invariance under spatial rotations is expressed by

Uy
R V UR = V (1.134)

with UR = exp
�

i
~

~J � ~n w
�

, with ~J being the total angular momentum of the

system, ~J = ~L + ~S. Requiring rotational invariance means that

V(~r; ~p; ~� (1) ; ~� (2) ) = V(R~r; R~p; R~� (1) ; R~� 2)) ; (1.135)

whereR~a gives the rotated of the vector~a.

Let us �rst take into account the dependence ofV on the spin variables. Here the proce-
dure is not so straightforward as it was for the isospin, since spin, position and momentum
vectors can be combined to build rotational invariant quantities. Using spin identi�es sim-
ilar to (1.120), one can show thatV can be expressed as

V = V� + ~� (1) ~V (1)
� + ~� (2) ~V (2)

� + V (~r; ~p; ~� (1) ; ~� (2) ) : (1.136)

V is linear in both ~� (1) and ~� (2) but contains only bilinear combinations of these two
operators. From rotation and space-reection invariance,V� and V must be scalars,~V (1)

�

and ~V (2)
� pseudovectors. Combination of space reection and particle exchange [(6) and

(7)] implies that

V� + ~� (1) � ~V (1)
� + ~� (2) � ~V (2)

� + V (~r; ~p; ~� (1) ; ~� (2) )

= V� + ~� (2) � ~V (1)
� + ~� (1) � ~V (2)

� + V (~r; ~p; ~� (2) ; ~� (1) ) :

(1.137)

Taking the average of these two expressions forV , one gets

V = V� + ~S � ~V� + V (~r; ~p; ~� (1) ; ~� (2) ) (1.138)

where ~S = ~
2(~� (1) + ~� (2) ); ~V� = 1

~(~V (1)
� ; ~� (2) ), and V now being symmetric under the

exchange of the spin operators. The vector we can use to construct ~V� are ~r; ~p and
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~L = ~r � ~p, but only ~L is a pseudovector. Thus,~V� must then be~L� (scalar quantity).
Then (1.138) reads

V = V� (~r; ~p) + ~S � ~L V� (~r; ~p) + V (~r; ~p; ~� (1) ; ~� (2) ) : (1.139)

SinceV� and V� are scalars, they can only be functions ofr 2; p2; L2; ~r � ~p and ~p � ~r. Since
the operators~r � ~pand ~p �~r are non-hermitian, it is convenient to consider their hermitian
combinations (~r � ~p+ ~p� ~r) and i (~r � ~p� ~p� ~r). The latter is a constant and can be dropped.
The former can only appear quadratically inV� and V� due to time-reversal invariance.
With

(~p� ~r + ~r � ~p)2 = 2( r 2p2 + p2r 2) � 4L2 + 3~2 ; (1.140)

we get

V = V� (r 2; p2; L2) + ~S � ~L V� (r 2; p2; L2) + V (~r; ~p; ~� (1) ; ~� (2) ) : (1.141)

From the requirements onV follows that it can only contains terms of the type

~� (1) � ~� (2) ; (~� (1) � ~r)(~� (2) � ~r); (~� (1) � ~p)(~� (2) � ~p);

(~� (1) � ~L)(~� (2) � ~L) + ( ~� (2) � ~L)(~� (1) � ~L);

(~� (1) � ~p)(~� (2) � ~r) + ( ~� (2) � ~r)(~� (1) � ~p) + 1 $ 2 : (1.142)

The last expression changes sign under time reversal and must be replaced by

[(~� (1) � ~p)(~� (2)~r) + ( ~� (2) � ~r)(~� (1) � ~p) + 1 $ 2](~p� ~r + ~r � ~p) : (1.143)

It can be shown that (1.142) is de facto a function of the other quantities appearing in
(1.141) and thus not independent. We have, therefore, forV

V = ( ~� (1) � ~� (2) ) V (I )
 (r 2; p2; L2)

+ ( ~� (1) � ~� (2) ) V (II )
 (r 2; p2; L2)

+ ( ~� (1) � ~p)(~� (2) � ~p) V (III )
 (r 2; p2; L2)

+ [( ~� (1) � ~L)(~� (2) � ~L) + ( ~� (2) � ~L)(~� (1) � ~L)] V (IV )
 (r 2; p2; L2)

(1.144)

as most general form ofV compliant with all symmetry requirements.

Concluding, the most general, velocity-dependent, non-relativistic NN potential has the
form (1.122) with Vi given by

Vi = V c
i (r 2; p2; L2) + ~� (1) � ~� (2) V �

i (r 2; p2; L2)

+ S12 V T
i (r 2; p2; L2) + ~S � ~L V LS

i (r 2; p2; L2)

+ [( ~� (1) � ~L)(~� (2) � ~L) + ( ~� (2) � ~L)(~� (1) � ~L)] V �L
i (r 2; p2; L2) ;

(1.145)
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whereS12 is the tensor force operator

S12 =
3
r 2

(~� (1) � ~r)(~� (2) � ~r) � (~� (1) � ~� (2) ) : (1.146)

Remark : As shown in the Appendix of S. Okubo and R.E. Marshak,Ann. Phys. 4,
166 (1958), the potential of (1.145) gives anS-matrix that on-shell is identical to the
one obtained from a potential in which the termV �p is dropped. Therefore, if one is
only interested in NN scattering, it can be neglected. The same cannot be said for the
bound states or for the o�-shellS-matrix. Often the term V �L , is also neglected. Some
arguments are given in Machleidt, Holinde, Elster,Phys. Rep.149, 1 (1987).

1.10 Simple Introduction to One Boson-Exchange Po-
tential (OBEP)

The basic idea of OBE models is to represent theNN interaction as superposition of
tree-diagrams (born terms) which represent the exchange of single mesons, namely scalar
(s), pseudoscalar (ps), vector (v) bosons (J p = 0+ ; 0� ; 1� , respectively), with masses
up to 1 GeV between two nucleons. Mesons with masses larger than 1GeV would only
give very short-ranged exchange contributions and contribute ina region where the OBE
model is no longer valid.

The couplings for the various mesons are given in terms of their interaction Lagrangian
densities by

L NN ps = gps
� i 5  � ps (1.147)

L NN s = gs
�  � s (1.148)

L NN v = gv
�  �  � �

v +
f v

4m
� � �v  (@� � v

v � @v � �
v ) (1.149)

for pseudoscalar (�; � ), scalar (�; � ) and vector mesons (�; ! ), respectively. m is the
nuclear mass, the nucleon and� � the meson �eld operators. For isospinT = 1 means
� � is to be replaced by~� � ~� � , with � i being the usual Pauli matrices. Furthermore,
� �� = i

2 [ � ;  � ], where  � are the usual Dirac-matrices (see, e.g., Bjorken-Drell). The
coupling constantsg� (� = s; ps; v) and f v and the meson massesm� are at least partially
determined from high-energy experiments or symmetry relations.The Lagrangian density
for vector mesons contains Dirac (gv) as well as Pauli coupling (f v). An OBE-potential
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V(~q 0; ~q) is obtained through the superposition of exchange contributionsof the di�erent
mesons

V(~q 0; ~q) =
X

� = s;ps;v

V� (~q 0; ~q) (1.150)

with

V� (~q 0; ~q) =
r

m
Eq0

r
m
Eq

�u (� ~q 0) � (2)
� u(� ~q) P � �u(~q 0) � (1)

� u(~q) : (1.151)

The factors
q

m
Eq0

q
m
Eq are the so-called minimal relativity factors, which take into con-

sideration the relativistic unitarity condition (see K. Erkelenz, Phys. Rep. 13C, 191
(1974)). They certainly contribute to the nonlocality ofV(~q 0; q). (Their e�ect has been
studied in a simple model in Ch. Elster, E.E. Evans, H. Kamada, W. Gl•ockle, Few-Body
Systems21, 25 (1996).

The meson propagators are usually given by

P � = (( ~q 0 � ~q )2 + m2
� )� 1 (1.152)

and the vertex functions for the meson-nucleon vertices �(i )
� (i = 1; 2) are given by

� (i )
s = gs (1.153)

� (i )
ps = gps i  5 (1.154)

� (i )
v (direct) = ( gv + f v) � (1.155)

� (i )
v (gradient) = �

f v

2m
(~q 0+ ~q )� : (1.156)

In order to take into account the �nite extension of the nucleon and to be able to solve
the dynamical equations, the coupling constants get modi�ed with form factors. This is
essentially achieved by replacing

g� �! g� F� (~q 0; ~q) (1.157)

whereF� (~q 0; ~q) can be, e.g., of dipole type

F� [(~q 0; ~q )2] =
�

� 2
� � m2

�

� 2
� + ( ~q 0 � ~q )2

� n �

: (1.158)
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The exponentn� is usually taken asn� = 1; � � is the cuto� parameter and usually of the
order 1� 2 GeV. The positive energy Dirac spinors are given by

u(i )(~q ) =

r
Eq + m

2m

�
1

~� �~q
Eq+ m

�
j i i (1.159)

where j i i denote the Pauli spinors
�

1
0

�
and

�
0
1

�
. Inserting (1.159), (1.153), (1.152)

into (1.151) gives for the scalar contribution of the potential (Pauli spinors are omitted):

Vs(~q 0; ~q ) = � g2
s

r
m
E 0

q

r
m
Eq

(E 0
q + m)(Eq + m)

4m2

1
(~q 0 � ~q )2 + m2

s

�
�

1 �
~q 0 � ~q+ i~� 2 � (~q0 � ~q )
(E 0

q + m)(Eq + m)

� �
1 �

~q 0 � ~q+ i~� 1 � (~q 0 � ~q )
(E 0

q + m)(Eq + m)

�
:(1.160)

This expression has, due to the~q and Eq dependencies, a strong nonlocality. In order to
arrive at expressions, which can be transformed to coordinate space, one changes variables
to

~k = ~q 0 � ~q

~p =
1
2

(~q0+ ~q )

(1.161)

and in addition has to introduce the following approximations:

1. On-shell approximation: E 0
q = Eq

2. Expansion ofE in powers of q2

m2 :

E =
�

1
2

(~q 0+ ~q )2 + m2

� 1
2

= m +
1

4m
(q02 + q2) + � � �

= m +
p2

2m
+

k2

8m
+ � � �

(1.162)

3. Keeping only the lowest order inp2 and k2.
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With these approximations, the scalar potential becomes

V c
s (~k; ~p) = �

g2
s

k2 + m2
s

�
1 �

p2

2m2
+

k2

8m2
�

i
2m2

~S � (~k � ~p)
�

(1.163)

where ~S = 1
2 (~� 1 + ~� 2).

This expression still contains nonlocalities due to~p 2 as well as (~k � ~p) terms. The latter
leads to the angular momentum operator~L = � i~r � ~r in r -space, whereas the former
provides r 2 terms. After a Fourier transform, the coordinate space expression of the
scalar potential is given by

V c
s (r ) = �

g2
s

4�
ms

��
1 �

1
4

� ms
m

� 2
�

Y(msr )

+
1

4m2

�
r 2 Y(msr ) + Y(msr ) r 2

�
+

1
2

Z1(msr ) ~L � ~S
�

(1.164)

whereY(x) = e� x=x and Z1(x) =
�

m �
m

� 2
(1=x + 1=x2) Y(x).

The treatment of the Schr•odinger equation with a momentum dependent potential is given
by O. Rojo, L.M. Simmons,Phys. Rev. 125, 273 (1962). The expressions for the other
potential terms shall only be given here:

V c
ps(~k ; ~p ) = �

g2
ps

4m2

(~� 1 � ~k)(~� 2 � ~k)
k2 + m2

ps
(1.165)

V c
v (~k; ~p ) =

1
k2 + m2

v

�
g2

v

�
1 +

3p2

2m2
�

k2

8m2
+

3i
2m2

~S � (~k � ~p)

� (~� 1 � ~� 2)
k2

4m2
+

1
4m2

(~� 1 � ~k)(~� 2 � ~k)
�

+
gvf v

2m

�
�

k2

m
+

4i
m

~S � (~k � ~p) � ~� 1 � ~� 2
k2

m
+

1
m

(~� 1 � ~k)(~� 2 � ~k)
�

+
f 2

v

4m2

h
� ~� 1 � ~� 2 k2 + ( ~� 1 � ~k)(~� 2 � ~k)

i �
:

(1.166)

The structure of the expression (1.160) already suggests that one would prefer to work
with OBE potentials in momentum space. Even the already approximated expressions
(1.163), (1.165), (1.166) are still complicated functions of the momenta, though they
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can be Fourier transformed analytically to coordinate space. The correspondingr -space
expressions to (1.165) and (1.166) are

V c
ps(r ) =

1
12

g2
ps

4�
mps

� � mps

m

� 2
Y(mpsr ) ~� 1 � ~� 2 + Z(mpsr ) S12

�
(1.167)

V c
v (r ) =

g2
v

4�
mv

��
1 +

1
2

� mv

m

� 2
�

Y(mvr ) �
3

4m2
[r 2 Y(mvr ) + Y(mvr )r 2]

+
1
6

� mv

m

� 2
Y(mvr ) ~� 1 � ~� 2 �

3
2

Z1(mvr ) ~L � ~S �
1
12

Z(mvr ) S12

�

+
1
2

gvf v

4�
mv

� � mv

m

� 2
Y(mvr ) +

2
3

� mv

m

� 2
Y(mvr ) ~� 1 � ~� 2

� 4Z1(mvr ) ~L � ~S �
1
3

Z(mvr ) S12

�

+
f 2

v

4�
mv

�
1
6

� mv

m

� 2
Y(mvr ) ~� 1 � ~� 2 �

1
12

Z(mvr ) S12

�
: (1.168)

Here the tensor operatorS12 is given by (1.146) and
Z(x) = ( m� =m)2(1 + 3=x + 3=x2)Y(x).

Details on OBE potentials are given in the references quoted in Section 1.8.
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