
Chapter 3

The 3N Bound State

3.1 The Faddeev Equations

A safe though not necessarily the only way to arrive at a rigorous solution of the 3N
Schrödinger equation is the Faddeev scheme: L.D. Faddeev, Sov. Phys. JETP 12 (1961)
1014; see also W. Glöckle, The Quantum Mechanical Few-Body Problem, Springer Verlag
1983

In a three-body system there are three different two-body subsystems. The idea is to sum
up first the pair forces in each two-body subsystem to inifite order, and then in a second
step among all three particles. We start with the Schrödinger equation for a three-body
system

(H0 +
3∑

i=1

Vi) Ψ = E Ψ (3.1)

and use the notation

V1 ≡ V23, V2 ≡ V13 · · · etc., (3.2)

To characterize the interactions in the two-body subsystems. H0 is the kinetic energy of
the relative motion for three particles. We rewrite Eq. (3.1) into an integral equation

Ψ =
1

E −H0

∑

i

Vi Ψ (3.3)

(there is no iǫ needed since E < 0 for a bound state)
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Let us iterate this equation many times in order to see the physics:

Ψ = G0

∑

ViΨ = G0

∑

i

ViG0

∑

j

VjG0

∑

k

Vk . . .Ψ (3.4)

Graphically one typical term out of the very many can be

Ψ

We see a sequence of pair forces with free 3N propagations G0 in between. Consecutive
pair forces can be within the same pair or between different pairs. The idea now is to
sum up all forces within each pair to infinite order first. This is achieved according to
Faddeev by decomposing Ψ into 3 components, nowadays called Faddeev components:

Ψ =
∑

ψi (3.5)

with
ψi ≡ G0 Vi Ψ (3.6)

We see that ψi is that part of Ψ which has Vi as the last interaction to the left. Let us
insert that decomposition for Ψ on the right hand side:

ψi = G0 Vi
∑

j

ψj = G0 Vi ψi + G0 Vi
∑

j 6=i

ψj (3.7)

The first term is responsible for a renewed interaction Vi, whereas in the second term the
next interaction is Vj 6= Vi. Bringing the first term to the left side gives

(1 − G0 Vi) ψi = G0 Vi
∑

j 6=i

ψj . (3.8)

Then we invert
ψi = (1 − G0 Vi)

−1 G0 Vi
∑

j 6=i

ψj . (3.9)

What happens in the kernel?

(1 − G0 Vi)
−1 G0 Vi = (1 + G0Vi + G0ViG0Vi + . . .) G0Vi (3.10)

= G0 (Vi + ViG0Vi + ViG0ViG0Vi + . . .)

≡ G0 ti
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We recover the NN t-matrix for the pair ”i”. This ti obviously sums up Vi to infinite
order. As we already know, it obeys the LSE

ti = Vi + ViG0ti (3.11)

or

(1− ViG0)ti = Vi .

Thus we end up with

ψi = G0ti
∑

j 6=i

ψj (3.12)

which is a set of 3 coupled equations, the Faddeev equations. If we iterate that set many
times we find the typical processes

t

tt

t

3

t
1 2

3

1

which is a sequence of t-operations between different pairs and free propagations in be-
tween.

If we choose the case of three identical fermions, then Ψ is totally antisymmetric.

As a consequence ψ1,ψ2, and ψ3 are identical in their functional form, only the particles
are permuted. This is easily shown as follows:

From Eq. (3.6) we have

ψ2 ≡ G0V2Ψ = P12P23G0V1Ψ ≡ P12P23ψ1 (3.13)

where Pij permutes particles i and j. Similarly,

ψ3 ≡ G0V3Ψ = P13P23G0V1Ψ ≡ P13P23ψ1 . (3.14)

Therefore, only one of the Faddeev components is sufficient. Choosing ψ1 and using Eqs.
(3.9) and (3.11), we obtain

ψ1 = G0t1 (P12P23 + P13P23) ψ1 (3.15)
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Let us drop the index 1 and introduce the permutation operator

P ≡ P12P23 + P13P23 (3.16)

then
ψ = G0 t P ψ (3.17)

is the one Faddeev equation for three identical particles. This is of course also valid for
bosons. The total wave function is then given by

Ψ = (1 + P ) ψ (3.18)

In order that Ψ is totally antisymmetric one has to require that the Faddeev component
ψ is antisymmetric in the pair ”1” ≡ (23).

For instance, using the notation ψi ≡ ψ(1, 23),

P13Ψ = P13 (1 + P12P23 + P13P23) ψ(1, 23) (3.19)

= ψ(3, 21) + P13ψ(2, 31) + P13ψ(3, 12)

= ψ(3, 21) + ψ(2, 13) + ψ(1, 32)

= −ψ(3, 12) − ψ(2, 31) − ψ(1, 23)

= −(1 + P ) ψ(1, 23) = −Ψ

3.2 Momentum Space Representation

Let us first disregard spin and isospin degrees of freedom, in order to see the com-
plexity in pure momentum space alone. It is natural to work with Jacobi momenta

p

q

1

1
12

3

~p1 =
1

2
(~k2 − ~k3) (3.20)

~q1 =
2

3
(~k1 −

1

2
(~k2 + ~k3) ),

which corresponds to ψ1(1, 23). There are three choices corresponding to the three two-
body subsystems:
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2

3

1

p

q
2

2 ~p2 =
1

2
(~k3 − ~k1) (3.21)

~q2 =
2

3
(~k2 −

1

2
(~k3 + ~k1) )

and

2

3

1

q

p

3

3

~p3 =
1

2
(~k1 − ~k2) (3.22)

~q3 =
2

3
(~k3 −

1

2
(~k1 + ~k2) )

One can express ~p2, ~q2 linearly by ~p1 and ~q1, and this is true for all choices of indices. For
instance

~p2(~p1, ~q1) ≡ ~p2 = − 1

2
~p1 − 3

4
~q1 (3.23)

~q2(~p1, ~q1) ≡ ~q2 = ~p1 − 1

2
~q1

and

~p3(~p1, ~q1) ≡ ~p3 = −1

2
~p1 +

3

4
~q1 (3.24)

~q3(~p1, ~q1) ≡ ~q3 = −~p1 − 1

2
~q1

The inverse relations are given by:

~p1 = −1

2
~p2 +

3

4
~q2 (3.25)

~q1 = −~p2 − 1

2
~q2
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and

~p1 = −1

2
~p3 − 3

4
~q3 (3.26)

~q1 = ~p3 − 1

2
~q3

All remaining relation can be obtained by suitable permutations.

Now we introduce states
| ~pi ~qi > ≡ | ~pi > | ~qi > (3.27)

which are assumed to be normalized as in chapter 1:

〈~p′i ~q′i | ~pi ~qi〉 = δ(~p′i − ~pi)δ(~q
′
i − ~qi) (3.28)

One and the same state of relative motion can be presented in three ways:

| ~p1 ~q1 >1 = | ~p2 ~q2 >2 = | ~p3 ~q3 >3 (3.29)

where ~p2, ~q2 or ~p3, ~q3 are given by (2.32-2.33) and (2.34-2.35), respectively. We also
added subscripts to unambiguously fix the meaning of the momentum quantum numbers.
The index 1 means, that ~p1 is the relative momentum in the subsystem (23) and ~q1 the
relative momentum of particle 1 with respect to that subsystem, and correspondingly for
the subscripts 2 and 3. That subscript notation is very convenient if one has to permute
particles. Consider

P12P23 | ~p~q 〉1 . (3.30)

The momentum quantum numbers will not change, but the particles will be cyclically
permuted and the result can be written

P12P23 | ~p~q 〉1 = P12P23(1, 23) = (2, 31) = | ~p, ~q 〉2 . (3.31)

In the ket | 〉1 the momentum ~p describes the pair (23) and in the ket | 〉2 the pair (31),
etc.

Let us now consider the momentum space representation of the Faddeev equation

ψ = G0 t P ψ (3.32)

One has

< ~p ~q | ψ > = < ~p ~q | G0 t P | ψ > (3.33)

=

∫

d3p′′ d3q′′
∫

d3p′ d3q′ < ~p ~q | G0 t | ~p ′ ~q ′ >

× < ~p ′ ~q ′ | P | ~p ′′ ~q ′′ >< ~p ′′ ~q ′′ | ψ >
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Let us first consider G0 ≡ 1
E−H0

. The momenta in a three-body system are given by ~ki,

and the total momentum is ~K =
∑

i
~ki. Thus

H0 =
∑

i

k2i
2m

=
K2

2M
+

p2ℓ
2µℓ

+
q2ℓ
2Mℓ

(3.34)

with ℓ = 1, 2, 3. In Eq. (3.34)

M = 3m ; Mℓ =
2

3
m ; µℓ =

1

2
m , (3.35)

where m is the mass of a single particle (e.g., the nuclear mass).

A complete set of states in a three-particle Hilbertspace is given by
∫

d3k1

∫

d3k2

∫

d3k3 | ~k1 ~k2 ~k3〉 〈~k3 ~k2 ~k1 | = 1 . (3.36)

A change of basis to Jacobi momenta is given by

〈~k1~k2~k3 | ~pk ~qkK〉 = δ

(

~pk −
1

2
(~kℓ − ~km)

)

δ

(

~qk −
2

3

[

~kk −
1

2
(~kℓ + ~km)

])

(3.37)

δ( ~K − ~kk − ~kℓ − ~km) ,

where (kℓm) are cyclic permutations of (123).

Thus a different complete set of states is given by
∫

d3pℓ d
3qℓ d

3K | ~pℓ ~qℓ ~K〉 〈 ~K ~qℓ ~pℓ | = 1 . (3.38)

If the total momentum of the three-body system is conserved, i.e., K2 = 0, we obtain for
the non-relativistic kinetic energy

H0 =
p2ℓ
m

+
q2ℓ

4
3
m

=
p2ℓ
m

+
3

4m
q2ℓ , (3.39)

where ℓ = 1, 2, 3. It follows that

< ~p ~q | G0 t | ~p ′ ~q ′ > =
1

E − p2

m
− 3

4m
q2

< ~p ~q | t | ~p ′ ~q ′ > (3.40)

The t-operator is driven by V which acts only on the states | ~p > in the two-body
subsystem, thus

〈~p ~q | V | ~p′ ~q′〉 = δ(~q − ~q′) 〈~p ~q | V | ~p ′ ~q ′〉 (3.41)
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The third noninteracting particle described by ~q is often called the spectator particle. Let
us now consider the LSE for t(E):

〈~p ~q | t(E) | ~p ′ ~q ′〉 = 〈~p ~q | V | ~p ′ ~q ′〉 + < ~p ~q | V G0t(E) | ~p ′ ~q ′〉 (3.42)

= δ(~q − ~q ′) 〈~p | V | ~p ′〉

+

∫

d3p ′′ d3~q ′′〈~p ~q | V | ~p ′′ ~q ′′〉 1

E + iǫ − p ′′2

m
− 3

4m
q′′2

〈~p ′′~q ′′ | t(E) | ~p ′~q ′〉
= δ(~q − ~q ′) 〈(~p | V | ~p ′〉

+

∫

d3p′′ 〈~p | V | ~p ′′〉 1

E + iǫ − p′′2

m
− 3

4m
q′′2

〈~p ′′~q ′ | t(E) | ~p ′~q ′〉

The solution is

< ~p ~q | t(E) | ~p ′ ~q ′ > = δ(~q − ~q ′) < ~p | t̂(E − 3

4m
q2) | ~p ′ > (3.43)

where t̂ is the true two-nucleon t-operator at the subsystem energy E − 3
4m
q2. This is

called a complete off-the-energy shell t-matrix, since its two-body subsystem energy is
independent of the initial and final momenta ~p ′ and ~p, respectively. For on-the-energy
shell NN scattering one has | ~p | = | ~p ′ |=

√
m · two-body energy. This off-shell t̂-matrix

obeys the LSE

< ~p | t̂(z) | ~p ′ > = < ~p | V | ~p ′ > (3.44)

+

∫

d3p′′ < ~p | V | ~p ′′ >
1

z − ~p ′′2

m

< ~p ′′ | t̂(E) | ~p ′ >

where z = E− 3
4m
~q 2. Since for bound states E < 0, z ranges from E towards increasingly

negative energies for increasing q-values.

Now back to the Faddeev equation

〈~q ~p | ψ〉 =

∫

d3p′
∫

d3p′′ d3q′′
1

E − p2

m
− 3

4m
q2

(3.45)

〈~p | t̂(E − 3

4m
q2) | ~p ′〉〈~p ′~q | P | ~p ′′ ~q ′′〉〈~p ′′~q ′′ | ψ〉

We face now the central feature of the three-body system, the transitions between different
two-body subsystems generated by the permutation operator P = P12P23 + P13P23.

Let us first consider

P12P23 | ~p~q 〉1 = P12P23(1, 23) = (2, 31) = | ~p~q 〉2 (3.46)

P13P23 | ~p~q 〉1 = P13P23(1, 23) = (3, 12) = | ~p~q 〉3
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The state | ~p~q〉2 is of type | 〉2. Since the operators have to be evaluated in the same
type of basis vectors, one has to consider ~q1(~p2, ~q2) and ~p1(~p2, ~q2) in order to evaluate the
matrix elements. Using Eqs. (3.25), we obtain

| ~p~q 〉2 = |
(

− 1

2
~p +

3

4
~q

) (

−~p − 1

2
~q

)

〉 (3.47)

in coordinates of type 1. Similarly, we obtain

| ~p~q 〉3 = |
(

− 1

2
~p − 3

4
~q

)(

~p − 1

2
~q

)

〉 . (3.48)

Now we are prepared to evaluate the matrix element

〈~p ′~q | P | ~p ′′~q ′′〉 = 1〈~p ′~q | P | ~p ′′~q ′′〉1 (3.49)

= 1〈~p ′~q ~p ′′~q ′′〉2 + 1〈~p ′~q | ~p ′′~q ′′〉3

= 〈~p ′~q |
(

− 1

2
~p ′′ +

3

4
~q ′′

)

;

(

−~p ′′ − 1

2
~q ′′

)

〉

+〈~p ′~q |
(

− 1

2
p′′ − 3

4
q′′
)

;

(

~p ′′ − 1

2
~q ′′

)

〉

= δ

(

~p ′ +
1

2
~p ′′ − 3

4
~q ′′

)

δ

(

~q + ~p ′′ +
1

2
~q ′′

)

+δ

(

~p ′ +
1

2
~p ′′ +

3

4
~q ′′

)

δ

(

~q − ~p ′′ +
1

2
~q ′′

)

The two δ-functions eliminate two of the integrations in Eq. (3.32). Eliminating the ~p ′′-
dependence in the δ function gives for the matrix elements of the permutation operator

〈~p ′~q | P | ~p ′′~q ′′〉 = δ

(

~p ′ − 1

2
~q − ~q ′′

)

δ

(

~q + ~p ′′ +
1

2
~q ′′

)

(3.50)

+ δ

(

~p ′ +
1

2
~q + ~q ′′

)

δ

(

~q − ~p ′′ +
1

2
~q ′′

)

Now the Faddeev equation can be explicitly written as

〈~p~q | ψ〉 =
1

E − p2

m
− 3

4m
q2

∫

d3~q ′′

×
{

〈~p | t̂
(

E − 3

4m
q2
)

| − 1

2
~q − ~q ′′〉 〈~q +

1

2
~q ′′; ~q ′′ | ψ〉

+ 〈~p | t̂
(

E − 3

4m
q2
)

| 1

2
~q + ~q ′′〉 〈− ~q ′ − 1

2
~q ′′; ~q ′′ | ψ〉

}

.(3.51)
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We see that the permutation operator screws up the arguments of the t̂ and ψ amplitudes.
The Faddeev equation is a three-dimentional integral equation for six variables, apparently
not a trivial task. However, with modern computers and computational tools, it is possible
to solve Eq. (3.51), as has been demonstrated recently for the bosonic case by Elster,
Schadow, Nogga, Glöckle (to be published in Few Body Systems).

3.3 The Faddeev Equation in Momentum Space and

Partial Wave Projected

In the application to nuclear physics one makes use of the short range nature of the nuclear
forces, which leads to the fact, that t̂ acts mainly in s-waves (including the d-wave part
induced by the tensor force). Thus a partial wave representation is used in almost all
practical applications 1.

The NN subsystem basis
| p(ls)jm tmt > (3.52)

is now enriched by the motion of the third particle with respect to that subsystem as
described by

| q (λ
1

2
) JM

1

2
ν > (3.53)

where λ is the orbital angular momentum and J the total angular momentum of that
third particle. One then couples j and J to the total conserved angular momentum J
and t with 1/2 to the total isospin T . This leads to the basis states

| pq (ls) j (λ
1

2
) J JM (t

1

2
)T MT > (3.54)

≡
∑

µ

C(jJ J , µ M − µ)
∑

n

C(t
1

2
T, ν MT − ν)

| p (ls) jµ tν > | q (λ
1

2
) J M − µ

1

2
MT − ν >

For convenience we abbreviate all the discrete quantum numbers by α and write | pqα >.
That basis is complete:

∑

α

∫ ∞

0

dp p2
∫ ∞

0

dq q2 | pqα >< pqα | = 1 (3.55)

1We follow the presentation described in detail in W. Glöckle, The Quantum-Mechanical Few-Body
Problem, Springer Verlag 1983 and W. Glöckle, Nucl. Phys. A381 (1982) 343.
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If we require l + s + t = odd, | pqα > is antisymmetric in the two-body subsystem and
thus suitable to expand the Faddeev component ψ:

| ψ > =
∑

α

∫ ∞

0

dp p2
∫ ∞

0

dq q2 | pqα >< pqα | ψ > (3.56)

The derivation of presenting the Faddeev equation in the basis of Eq. (3.55) is briefly
sketched below.

< p q α | ψ > = < p q α | G0tP | ψ > (3.57)

=
1

E − p2

m
− 3

4m
q2

< p q α | tP | ψ >

=
∑

α′

∫

dp′ p′2
∫

dq′ q′2 < pqα|t|p′q′α′ >< p′q′α′|P |ψ > (3.58)

The t-matrix is diagonal in the quantum numbers of the spectator particle

< p q α | t(E) | p′ q′ α′ > =
δ(q − q′)

qq′
δλλ′δJJ ′ t̂sjtll′ (p, p

′, E − 3

4m
q2) (3.59)

Let α′ be equal α except for a possible change of l to l′ in case of coupled two-body
channels. Then

< p q α|ψ > =
1

E − p2

m
− 3

4m
q2

∑

l′

∫ ∞

0

dp′ p′2 t̂sjtll′ (p, p
′, E − 3

4m
q2) (3.60)

× < p′ q α | P | ψ >

=
1

E − p2

m
− 3

4m
q2

∑

l′

∫ ∞

0

dp′ p′2 t̂sjtll′ (p, p
′, E − 3

4m
q2) (3.61)

∑

α′′

∫ ∞

0

dp′′ p′′2
∫ ∞

0

dq′′ q′′2 < p′qα|P |p′′q′′α′′ >< p′′q′′α′′|ψ >

Again the evaluation of the permutation operator is at the very heart of the 3-body
problem. The result is

< p q α | P | p′ q′ α′ > =

∫ −1

−1

dx Gαα′(q q′ x)
δ(p− π1)

πl+2
1

δ(p′ − π2)

πl′+2
2

(3.62)

with

π1 =

√

1

4
q2 + q′ 2 + qq′x (3.63)

π2 =

√

q2 +
1

4
q′ 2 + qq′x (3.64)
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and Gαα′(qq′x) a purely geometrical quantity. We end up with

< p q α | ψ > =
1

E − p2

m
− 3

4m
q2

∑

l′

∑

α′′

∫ ∞

0

dq′′ q′′ 2 (3.65)

×
∫ 1

−1

dx
t̂sjtll′ (p, π1, E − 3

4m
q2)

πl′

1

Gαα′′(q, q′′, x)
< π2 q

′′ α′′ | ψ >
πl′′

2

This is a set of an infinite number of coupled equations for amplitudes in two variables.
If one assumes that the NN t-matrix acts only in very few partial waves, say s-waves
only, then the number of coupled equations is correspondingly small. Let us regard the
so called five channel case:

α l s j λ J
∣
∣J π = 1/2+

1 0 0 0 0 1/2
2 0 1 1 0 1/2
3 2 1 1 0 1/2
4 0 1 1 2 3/2
5 2 1 1 2 3/2

We see that in the two-body subsystem the NN forces act only in the states 1S0 and
3S0 −3 S1. This restriction gives already most of the triton binding energy.

How does one solve that coupled set? Apparently the skew arguments in ψ under the
integral require an interpolation. We use Spline interpolation
(W. Glöckle et al, Z. Phys. A 305 (1982) 217) of the form:

f(x) ≃
∑

k

Sk(x) f(xk) (3.66)

where Sk(x) are given Spline elements and {xn} a suitable set of grid points. Also the
t̂-matrix has to be interpolated. Finally the q′′-integration can be discretized by Gaussian
quadrature, for instance. Thus choosing two sets of grid points in p and q, we are lead to

ψα(pk ql) =
1

E − p2
k

m
− 3

4m
q2l

(3.67)

×
∑

l′

∑

α′′

∑

n

ωn q
2
n

∫ 1

−1

dx
∑

i

tsjtll′ (pk, pi, E − 3

4m
q2l )

× Si(π1)

πl′

1

Gαα′′(ql, qm, x)
∑

m

Sm(π2) ψα′′(pm qn)

≡
∑

mn

∑

α′′

Kαα′′ (kl,mn) ψα′′(pmqn) (3.68)
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What is the dimension N of the kernel?

N = Np Nq Nα (3.69)

Typical numbers are Np = 34
Nq = 20

It is easy to count the number of discrete α′s assuming that t̂ acts up to

jmax = 1, 2, 3, 4, etc. (3.70)

It results in

jmax Nα

1 5
2 18
3 26
4 34
5 42

For realistic calculations in the 3N system 34 channels are required and thus N ∼ 25000

This leads to a sizable matrix K and iteration techniques with simple matrix multiplica-
tions are required. We use a Lanczo’s type technique, which is very fast and economic.

3.4 Theoretical Triton Properties

We display now triton binding energies for various NN forces allowing the NN forces to
act only up to different total two-body angular momenta jmax.

jmax

Potential 1 2 3 4 5
Paris 7.30 7.38 7.44 7.46 7.46
Nijm78 7.49 7.54 7.62 7.63 -

Nijm II(np) 7.65 7.75 - 7.89 -
AV14 7.45 7.58 7.67 7.68 -
Bonn B 8.17 8.10 8.13 8.14 8.14
Ruhrpot 7.59 7.56 7.62 7.64 -
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Obviously jmax = 4 is sufficient in relation to the discrepancy to the experimental value
of -8.48 MeV.
The most modern NN forces distinguish between np and nn forces, which can be incorpo-
rated into the Faddeev equations and using the isospin formalism. It can easily be shown
that it is sufficient to choose in the state 1S0 the effective t-matrix

teff =
2

3
tt=1
nn +

1

3
tt=1
np (3.71)

For a derivation see
H. Witala et al, Phys. Rev. C43 (1991) 1619

There is a tiny admixture of T = 3/2 states, which can be neglected for present day
purposes. See the same reference.

We display now the theoretical 3H binding energies using CIB in the state 1S0 (the teff
of Eq. (3.71) for the most recent NN forces.

Potential E3H (jmax = 4)
Nijm93 (cd) 7.66
Nijm I (cd) 7.73
Njm II (cd) 7.64
AV18 (cd) 7.65
Bonn (cd) 8.00

While the purely local potentials Nijm II, Nijm 93 and AV18 yield essentially the same
binding energies, the weakly nonlocal force Nijm I has about 100 keV more and the highly
nonlocal one, CD Bonn, about 350 keV. The reason for the stronger attraction resulting
from nonlocalities has not yet been clearly worked out and in any case nonlocalities deserve
more attention in the future.
Right now one ends up with 500 to 800 keV underbinding out of 8.48 MeV. This is
significant, but a nuclear binding energy is a difference of two big numbers, the negative
potential energy and the positive kinetic energy. The potential energy ranges between
−45 MeV to −55 MeV in the triton, depending on the NN force, thus the missing binding
energy is of the order of 1% of the potential energy. In other words a change of the
potential energy in the Hamiltonian of the order of 1 % would be sufficient to cure that
binding energy defect. We shall come back below to typical contributions of present day
three-nucleon forces.

A comparison of the momentum distribution n(k) for the deuteron and 3H : gives
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One recognizes a shift of strength to higher components in 3H in comparison to the
deuteron. Of interest is also the NN correlation function C(r) to find two nucleons at a
certain distance r. This is compared for the deuteron and 3H :
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Both C ′s are normalized in the same manner: 4π
∫∞

0
dr r2C(r) = 1. The fact that the

maximum around 1 fm is higher for 3H than for the deuteron is mainly a consequence of
the fact that the separation energy in 3H is larger and thus C(r) drops faster for large
r′s. Interesting however is the fact that both C ′s are very close to each other for r ≤ 1
fm. The strong short range repulsion of the NN force dominates totally and the presence
or absence of a third particle does not matter.

One can also consider state dependent correlation functions, which describe the probability
to find two nucleons at a certain distance r under the additional condition to be in a certain
state (ls)j. The stronger ones are displayed and compared to the ones of the deuteron:

Since two nucleons in 3H can also occupy the state 1S0 the probabilities in the 3S1 and
3D1 states are reduced in relation to the deuteron, but otherwise they look quite similar.
Correlation functions in p and d-states are much smaller, by far more than a factor 10.

Finally one can ask, which are the most probable sites for the three nucleons in 3H. The
result is:
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The most probable sites

of protons and neutrons in 3H for the Paris (dashed) and the

Bonn B (solid) potentials. Distances are given in fm for Bonn B

and Paris (in parenthesis).

We see a nearly equilateral triangle with the pair distances between the identical neutrons
slightly larger than between the proton and the neutrons. The pair distances are about
1 fm and depend somewhat on the NN force as shown by the two examples. If one goes
away from that most probable sites the probabilities drop quickly.
This picture of the 3H wave function shows granularity: the nucleons are rather well
separated.

3.5 Inclusion of Three-Nucleon Forces

There is a quite rich literature on the interesting issue of three-nucleon forces, see for
example

• M.R. Robilotta, Few-Body Systems, Suppl. 2 (1987) 35

• B.H.J. McKellar, Lecture Notes in Physics 260 (1986) 7

• S.A. Coon, Few-Body Systems, Suppl. 1 (1986) 92

• P.U. Sauer et al, Europhysics News 15 (1984) 5

• R.B. Wiringa, Phys. Rev. C43 (1991) 1585
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• D. Plümper et al, Phys. Rev. C49 (1994) 2370

• and more recently in the context of chiral perturbation theory U. van Kolck, Phys.
Rev. C 49 (1994) 2932

Here these physical questions should not be discussed. They are of course intimately con-
nected to the NN force problem itself, which we also did not treat. Instead we concentrate
on the technical challenge, how to incorporate a given 3NF into the Faddeev scheme and
its numerical realization. One of possible 3NF mechanisms, which has the longest range
and should exist, is the π − π exchange:

1 2 3 2 3 1 3 1 2

V

V V V4 4 4

4

(2) (3) (1)

i

V4
(i)

where the blob indicates the complete off- the mass-shell π − N scattering amplitude
minus the forward propagating nucleon part of the fermion propagator:

That intermediate state with a nucleon inserted into any of the 3 processes above leads
for instance to
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1 2 3

which is just a sequence of pair interactions with a free 3N propagator in between:
V12 G0 V23. That is already included in the Schödinger equation with NN forces only.
Therefore that term in the expressions V4 has to be subtracted from the full π−N ampli-
tude. One often mentioned contribution to the π −N amplitude, which does not include
the nucleon propagator, is

∆

with an intermediate ∆ (excited nucleon). This leads to the Fujuta-Miyazwa force

1 2 3 2 3 1 3 1 2
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J. Fujita et al, Prog. Theor. Phys. 17 (1957) 360
Low energy theorems and current algebra considerations lead to additional contributions
(see Ref. above) to the π − N amplitude. It results an often used 3NF model, the
Tucson-Melbourne 3NF with π − π exchange:

V
(1)
4 =

1

(2π)6
g2πNN

4m2

F 2
πNN(

~Q 2)

~Q 2 +m2
π

F 2
πNN(

~Q′ 2)

~Q′ 2 +m2
π

~σ2 · ~Q ~σ3 · ~Q ′ (3.72)

{

~τ2 · ~τ3 [a + b ~Q~Q ′ + c ( ~Q 2 + ~Q′2 ) ]

+ ~τ3 × ~τ2 · ~τ1 ~σ1 · ( ~Q× ~Q ′) d
}

The superscript (1) indicates the process in the diagram above, where nucleon 1 is in the
middle. The remaining two pieces result from cyclical and anticyclical permutations

V4 = V
(1)
4 + P12P23V

(1)
4 P13P23 + P13P23V

(1)
4 P12P23 (3.73)

Further, FπNN ( ~Q) is a strong formfactor, ~Q and ~Q′ pion momenta and a, b, c, d constants
provided by theory and adjustment to experiment (see Ref above).

The expression for V
(1)
4 can easily be transformed into configuration space

V
(1)
4 = (

gπNNmπ

2m
)2

1

(4π)2

[

~τ2 · ~τ3
(

(3.74)

~σ2 · ~∇2 ~σ3 · ~∇3

{
(a− 2m2

πc) Z1(x12) Z1(x13)

+ c [Z0(x12) Z1(x13) + Z1(x12)Z0(x13) ]

+ b~∇2 · ~∇3Z1(x12)Z1(x13)
})

+ ~τ3 × ~τ2 · ~τ1 ~σ2 · ~∇2 ~σ3 · ~∇3 ~σ1 · ~∇2 ×∇3Z1(x12)Z1(x13) d
]

where

Zn(xij) =
4π

mπ

∫
d ~Q

(2π)3
ei (~xi−~xj)· ~Q

F 2
πNN(

~Q)

( ~Q 2 +m2
π)

n
(3.75)

If we disregard the spin- and isospin dependencies and consider only the a-term, we just
encounter a product of two regularized Yukawa interactions for the nucleons 12 and 13,
which is clearly a 3NF. The full force however is more complex and includes more terms
and spin- and isospin dependencies.

The Tucson-Melbourne π − π exchange model has been enriched (see Ref. above) by the
π−ρ and ρ−ρ exchanges, which because of the spin 1 of the ρ-meson includes new types
of spin-dependencies.

How does one incorporate such a force into the Faddeev equation?
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Let us start again from the Schrödinger equation

(H0 +
∑

Vi +
∑

V
(i)
4 ) Ψ = E Ψ (3.76)

where we assumed a decomposition of the 3NF V4 into 3 pieces. On physical grounds
(identity of the nucleons) V

(i)
4 has to be symmetrical under exchange of the nucleons jk

with j 6= i 6= k, like the NN force Vi ≡ Vjk. Thus it appears natural to join Vi and V
(i)
4

and we can follow the derivation of the Faddeev equation given above:

Ψ = G0

∑

i

(Vi + V
(i)
4 ) Ψ ≡

∑

i

ψi (3.77)

and
ψi = G0(Vi + V

(i)
4 )Ψ = G0(Vi + V

(i)
4 )

∑

j

ψj (3.78)

Proceeding similar to the derivation of the Faddeev equation without 3NF:

(1−G0Vi)ψi = G0Vi
∑

j 6=i

ψj + G0V
(i)
4

∑

j

ψj , (3.79)

from which follows

ψi = (1−G0Vi)
−1G0Vi

∑

j 6=i

ψj + (1−G0Vi)
−1G0V

(i)
4

∑

j

ψj (3.80)

A consequence of the LSE for ti is that

(1 − G0 Vi)
−1 = 1 + G0 ti (3.81)

thus
ψi = G0ti

∑

j 6=i

ψj + (1 + G0ti) G0 V
(i)
4

∑

j

ψj (3.82)

For identical particles again one amplitude, say ψ ≡ ψ, is sufficient and we get dropping
the index 1,

ψ = G0tPψ + (1 + G0t) G0V
(1)
4 (1 + P ) ψ (3.83)

The partial wave representation of the additional term is highly nontrivial due to V
(1)
4 ,

and we refer to

• W. Glöckle, Lecture Notes in Physics 273 (1987) 3

• S. A. Coon et al, Phys. Rev C23 (1981) 1790
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for a thorough layout.

In addition the permutation operator P standing between V
(1)
4 and ψ is better treated

in a different manner than in the first term. Looking back to Eq. (3.50) one sees that
the two δ-functions can be put into a form, that the momenta to the right can be fixed
in terms of the momenta to the left. A partial wave representation in that form is also
required if one evaluates the total state Ψ. Its realization can be found in

• D. Hüber et al, Few-Body Systems 16, 165 (1994)

• D.Hüber, H.Witala, A.Nogga, W.Glöckle, and H.Kamada, Few-Body Systems 22,
107 (1997).

Eq. (3.83) has been solved in

• A. Stadler et al, Phys. Rev. C44, 2319 (1991).

Here are some results from that article:
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We see an uncomfortably strong dependence on the cut-off parameter in the πNN form-
factor, chosen as

FπNN ( ~Q
2) =

(
Λ2 − m2

π

Λ2 + ~Q 2

)

(3.84)

In addition one can include the π − ρ and ρ− ρ exchange 3NF’s and finds (A. Stadler et
al, Phys. Rev. C 51 (1995) 2896):

no 3NF ππ ππ + πρ ππ + πρ+ ρρ
RSC -7.229 -8.904 -8.438 -8.439
Paris -7.381 -9.060 -8.486 -8.486

Nijm 78 -7.537 -9.347 -8.692 -8.692
OBEPQ -8.315 -11.056 -9.639 -9.636

These results are based on ‘recommended’ values for cut-off parameters of various strong
meson-nucleon form factors. There remains still, even including π−ρ in addition to π−π,
an uncomfortably large cut-off dependence. Nevertheless the numbers indicate, that this
sort of 3NF’s have a good chance to provide the right amount of binding energy. The
overbinding in the case of the OBEPQ-potential, however, also tells, that consistency of
NN and 3NF’s is absolutely necessary. This is still an unsettled question and much more
theoretical work is needed.

Another approach should be mentioned here, where the nucleons in the triton are allowed
to be part time in the excited state of a ∆. Thus the 3H state is of the form

|Ψ >= |NNN > +|NN∆ > +|N∆∆ > +|∆∆∆ > . (3.85)

Insertion into the Schrödinger equation yields a coupled set of equations for the 4 compo-
nents, which are driven by various transition potentials between nucleons and ∆′s. The
most complete investigation is carried out by

• A. Picklsimer et al, Phys. Rev. C46, 1178 (1992) and References therein,

• Ch. Hajduk et al, Nucl. Phys. A405 (1983) 581; Nucl. Phys. A405 (1983) 605
(earlier and less complete work on the topic)

The main message is, that the attraction delivered by the ∆-mediated 3NF
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is essentially canceled by additional repulsive parts and one ends up close to the NN force
picture only. Also the | ∆ ∆ ∆ > part turned out to be very small, while the | ∆ ∆ N >
part is not.
What is needed is insight into consistency between NN and 3NF’s, what is known up to
now are first trials only.

3.6 Appendix: The Permutation Group

Permutation: Interchange of 2 items in a group.

Example: Take 3 items: G1, G2, G3

⇒ 3! = 6 possible permutations of the ordering of these items:

e: G1G2G3 → G1G2G3 (no change)
p: G1G2G3 → G2G3G1 (first to end → everything else 1 up)
q: G1G2G3 → G3G1G2 (last to front)
r: G1G2G3 → G1G3G2 (first alone, interchange 2 and 3)
s: G1G2G3 → G3G2G1 (interchange 1 and 3)
t: G1G2G3 → G2G1G3 (interchange 1 and 2)

This group is called permutation group or the symmetric group S3. The general
permutation group is SN and has N ! elements.

Standard representation of S3:

e ≡
(
G1 G2 G3

G1 G2 G3

)

p ≡
(
G1 G2 G3

G2 G3 G1

)

q ≡
(
G1 G2 G3

G3 G1 G2

)
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r ≡
(
G1 G2 G3

G1 G3 G2

)

s ≡
(
G1 G2 G3

G3 G2 G1

)

t ≡
(
G1 G2 G3

G2 G1 G3

)

Note: The ordering of the items in e.g., the first row is unimportant as long as the type
of permutation is preserved, i.e., and interchanges element 2 and 3, leaves one alone →

r =

(
G1 G2 G3

G1 G3 G2

)

and r =

(
G2 G1 G3

G2 G3 G1

)

Consider ‘multiplication’ of permutations:

p · r =
(
G1 G2 G3

G2 G3 G1

)

·
(
G2 G3 G1

G2 G1 G3

)

=

(
G1 G2 G3

G2 G1 G3

)

= t

⇒ set of 6 elements in S3 is NOT independent.

p · p =
(
G1 G2 G3

G2 G3 G1

)

·
(
G2 G3 G1

G3 G1 G2

) (
G1 G2 G3

G3 G1 G2

)

= q

p · p · r = q · r =
(
G1 G2 G3

G3 G1 G2

)

·
(
G3 G1 G2

G3 G2 G1

)

= s

⇒ S3 has 3 independent elements: e.g., e, p, r.

Check which subsection forms subgroup:

e, p, q = p2 form subgroup of S3.

Consider following permutations:

P12P23 ≡







1 2 3
1 3 2

2 3 1







⇒ P12P23 =

(
1 2 3
2 3 1

)

≡ p
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P13P23 ≡







1 2 3
1 3 2

3 1 2







⇒ P13P23 =

(
1 2 3
3 1 2

)

Application:

Consider a 3-particle wave function

ψ = ψ1 + ψ2 + ψ3 =
∑

i

ψi

with Faddeev components

ψ1 ≡ ψ(1, 23)

ψ2 ≡ ψ(2, 31) = pψ(1, 23) = P12P23ψ(1, 23) (3.86)

= P12P23ψ1

ψ3 ≡ ψ(3, 12) = qψ(1, 23) = P13P23ψ1

⇒ ψ = ψ1 + ψ2 + ψ3 = (1 + P12P23 + P13P23)ψ1 (3.87)

= (1 + P )ψ1

with
P = P12P23 + P13P23
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Faddeev components fulfill:

ψi = G0Viψ = G0Vi(ψ1 + ψ2 + ψ3)

⇒ ψ1 = G0V1ψ

ψ2 = G0V2ψ = P12P23 G0V1ψ = P12P23ψ1

here
V2 ≡ V13 = P12P23V23

ψ3 = G0V3ψ = P13P23 G0V1ψ = P13P23ψ1

here
V3 ≡ V12 = p13P23V23

with
(1−G0V1)

−1G0V1 = t1

we get

⇒ ψ1 = G0V1(ψ1 + ψ2 + ψ3) = (1−G0V1)
−1G0V1

︸ ︷︷ ︸

t1

(ψ3 + ψ3) (3.88)

= G0t1(ψ2 + ψ3)

= G0t1(P12P23 + P13P23)ψ1

ψ1 = G0t1 Pψ1

Show antisymmetry:

P13ψ = P13(1 + P12P23 + P13P23)ψ(1, 23) (3.89)

= P13 ψ(1, 23) + P13 ψ(2, 31) + P13 ψ(3, 12)

= ψ(3, 21) + ψ(2, 13) + ψ(1, 32)

= −ψ(3, 12)− ψ(2, 31)− ψ(1, 23) =

= −(1 + P ) ψ(1, 23)

= = −ψ
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