
Chapter 4

3N Scattering

4.1 The Triad of LSE’s

Let us regard a scattering state initiated by the projectile nucleon number 1 hitting a
deuteron composed of nucleons 2 and 3. The product state of a deuteron and a momentum
eigenstate of the third particle is called a channel state

Φ1 ≡ | ϕd(23) > | ~q >1 (4.1)

As above ~q is the Jacobi momentum of particle 1 with respect to the deuteron. The
channel state obeys

(H0 + V1) | Φ1 > = (
p̂ 2

m
+

3
4m

q̂ 2 + V1) | ϕd > | ~q > (4.2)

= (Ed +
3

4m
q2) | Φ1 > ≡ E | Φ1 > (4.3)

The result of the interaction between nucleon number 1 and the constituents of the
deuteron are asymptotically purely outgoing waves in all channels: the same as the initial
channel and two channels, where the free particles are 2 or 3 and the corresponding other
two are bound in the deuteron and then there is the breakup channel, where all three
particles are free. How does one incorporate these boundary conditions? Let us denote
that specific scattering state initiated in channel 1 by Ψ(+)

1 . It obeys

(H0 + V1 + V2 + V3) Ψ(+)
1 = E Ψ(+)

1 (4.4)

We rewrite that equation as

(H0 + V1 − E) Ψ(+)
1 = −(V2 + V3) Ψ(+)

1 (4.5)
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and solve for Ψ(+)
1 in terms of the ”source term” on the right hand side:

Ψ(+)
1 = Φ1 +

1
E + iǫ − H0 − V1

(V2 + V3) Ψ(+)
1 (4.6)

We added the solution to the left hand side alone, the initial channel state Φ1, which
would be the solution without (V2 +V3). Now the second part is the scattered part, which
asymptotically should be purely outgoing. Let us regard the spectral decomposition of
the channel Greensfunction

G1 ≡ 1
E + iǫ − H0 − V1

(4.7)

G1 =
∫

d~q | ~q >
1

E + iǫ − 3
4mq2 − p̂ 2

m − V1

< ~q | (4.8)

=
∫

d~q | ~q > | ϕd >
1

E + iǫ − 3
4mq2 − Ed

< ϕd | < ~q | (4.9)

+
∫

d~q | ~q >
∫

d~p | ~p >(+) 1
E + iǫ − 3

4mq2 − p2

m

(+) < ~p | < ~q |

The first part delivers the searched for deuteron state. Let ~y be the Jacobi vector in
configuration space conjugate to ~q. Then for large y the scattered part should be purely
outgoing in y. In order to show that we regard the configuration space representation:

∫
d~q < ~y | ~q > | ϕd >

1
E + iǫ − 3

4mq2 − Ed
< ϕd | < ~q | ~y ′ > (4.10)

=
1

(2π)3

∫
d~q ei~q· (~y−~y ′) | ϕd >

1
E − Ed + iǫ − 3

4mq2
< ϕd | (4.11)

= − | ϕd >
2m
3

1
2π

ei
√

4m
3 (E−Ed) |~y−~y ′|

| ~y − ~y ′ | < ϕd | (4.12)

as can be inferred from (1.16).
Thus we find indeed for E > Ed, where Ed is the threshold for elastic Nd scattering, that
the scattered part in channel 1 behaves as

−2m
√

2π
ei
√

4m
3 (E−Ed) y

y
< ϕd | < ~q ′ | V2 + V3 | Ψ(+)

1 > (4.13)

with ~q ′ ≡ ŷ q0 and 3
4m q20 ≡ E − Ed. We denoted the initial q-value by q0. At the

same time we read off that the transition amplitude from the initial channel 1 to the final
channel 1 is

U11 ≡ < Φ1 | V2 + V3 | Ψ(+)
1 > (4.14)

(Note Φ1 in the bra vector stands for any final momentum ~q)
How about the other channels? Their behaviour has to result from the second part in
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(3.9). We can avoid the direct investigation and go back to the Schrödinger equation,
written in another form

(H0 + V2 − E) Ψ(+)
1 = −(V3 + V1) Ψ(+)

1 (4.15)

Now there is no solution to the left hand side alone, which is regular at the origin and
purely outgoing. In channel 2 no ingoing wave is allowed. Therefore Ψ(+)

1 has to obey
also the homogeneous LSE

Ψ(+)
1 =

1
E + iǫ − H0 − V2

(V3 + V1) Ψ(+)
1 (4.16)

Exactly the same discussion as above leads to the result that the right hand side delivers
a purely outgoing wave in channel 2 with the transition amplitude

U21 ≡ < Φ2 | V3 + V1 | Ψ(+)
1 > (4.17)

Note that
< Φ2 | ≡ < ϕd(31) | 2 < ~q ′ | (4.18)

The third channel behaviour results from the homogeneous LSE

Ψ(+)
1 =

1
E + iǫ − H0 − V3

(V1 + V2) Ψ(+)
1 (4.19)

and we read off the transition amplitude from channel 1 to channel 3 as

U31 ≡ < Φ3 | V1 + V2 | Ψ(+)
1 > (4.20)

Halting for a moment, we see that one and the same state Ψ(+)
1 obeys three LSE ′s, one

inhomogeneous and two homogeneous ones. This leads immediately to the conclusion,
that the inhomogeneous LSE (3.6) alone does not define Ψ(+)

1 uniquely. Namely there are
two more scattering states at the given energy E, Ψ(+)

2 and Ψ(+)
3 , which are initiated in

channels 2 and 3, and they have to fulfill the homogeneous equation related to (3.6):

Ψ(+)
2 = G1 (V2 + V3)Ψ

(+)
2 (4.21)

Ψ(+)
3 = G1 (V2 + V3)Ψ

(+)
3 (4.22)

Thus writing down solely the LSE (3.6) the solution would be

Ψ = Ψ(+)
1 + αΨ(+)

2 + β Ψ(+)
3 (4.23)

with α, β arbitrary. This is a well known defect of the LSE for more than 2 particles:
it does not define the specific scattering state uniquely. In order to define Ψ(+)

1 uniquely
one has to impose additional conditions on top of the inhomogeneous LSE (3.6). It has
been shown in
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W. Glöckle, Nucl. Phys. A141 (1970) 620
that the set

Ψ(+)
1 = Φ1 + G1 (V2 + V3) Ψ(+)

1 (4.24)
Ψ(+)

1 = G2 (V3 + V1) Ψ(+)
1 (4.25)

Ψ(+)
1 = G3 (V1 + V2) Ψ(+)

1 (4.26)

is necessary and sufficient to achieve uniqueness. This set is nowadays often called the
triad of LSE’s. The proof is very simple. The two homogeneous LSE’s (3.25) and (3.26)
rule out any admixture of Ψ(+)

2 and Ψ(+)
3 since Ψ(+)

2 for instance would obey (3.25) with
a driving term Φ2; similarily for Ψ(+)

3 .

At a given energy E there is a fourth type of scattering state, where in the initial state
all three particles are free and hit each other. That state can be shown to always obey
inhomogeneous LSE’s with driving terms, which incorporate two-body scattering states;
see the above Reference. This completes the proof.
That triad is now very convenient. One can derive easily the Alt-Grassberger-Sandhas
(AGS) equations (Alt et al, Nucl. Phys. B2 (1967) 167), the Faddeev equations and any
other structure related to 3N scattering. The triad incorporates all information.

4.2 The AGS-Equations

For scattering not so much the wavefunction but the transition amplitudes are of interest,
which determine the cross sections. Therefore we need integral equations for Ui1, i =
1, 2, 3. They can directly be read off from the triad. Let us strip off the bra vectors and
define

U11Φ1 ≡ (V2 + V3) Ψ(+)
1 (4.27)

Then operating on (3.25) by V2 and on (3.26) by V3 one gets

U11Φ1 = V2 G2 (V3 + V1) Ψ(+)
1

+ V3 G3 (V1 + V2) Ψ(+)
1 (4.28)

Clearly one defines

U21Φ1 ≡ (V3 + V1) Ψ(+)
1 (4.29)

U31Φ1 ≡ (V1 + V2) Ψ(+)
1 (4.30)

and one gets
U11Φ1 = V2G2U21Φ1 + V3G3U31Φ1 (4.31)
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With V1 we act of course onto (3.6) and thus find analogously

U21Φ1 = V3G3U31 + V1Φ1 + V1G1U11Φ1 (4.32)
U31Φ1 = V2G2U21 + V1Φ1 + V1G1U11Φ1 (4.33)

This is a set of 3 coupled equations, which can be written compactly

Ui1 = δi1 G−1
0 Φ1 +

∑

j 6=i

Vj Gj Uj1 (4.34)

(Note G−1
0 Φ1 = (E − H0)Φ1 = V1Φ1 and δi1 ≡ 1 − δi1)

They are called the AGS-equations.
In reality the 3 nucleons are indistinguishable and we have to antisymmetrise. The three
channels 1,2, and 3 are indistinguishable!
The antisymmetric scattering state initiated in a channel with two fragments (a deuteron
and a nucleon) is

Ψ(+)
a ≡ Ψ(+)

1 + Ψ(+)
2 + Ψ(+)

3 (4.35)

Let us assume that Ψ(+)
1 is antisymmetric in particles 2 and 3 (this is guaranteed by

antisymmetrising the initial deuteron), Ψ(+)
2 in particles 31 and Ψ(+)

3 in 12. Moreover
obviously

Ψ(+)
2 = P12P23Ψ

(+)
1 (4.36)

Ψ(+)
3 = P13P23Ψ

(+)
1 (4.37)

Therefore we can write
Ψ(+)

a = (1 + P ) Ψ(+)
1 (4.38)

and the proof for antisymmetry is identical to the one displayed for (2.21).
Now we can write down the transition amplitude for Ψ(+)

a into the final channel 1, for
instance

U1 Φ1 ≡ (V2 + V3) Ψ(+)
α =

3∑

j=1

U1j Φj (4.39)

and in general
Ui Φ1 =

∑

j

Uij Φj (4.40)

The AGS-set (3.34) can of course be formulated for any of the three inital states

UijΦj = δijG−1
0 Φj +

∑

k 6=i

VkGkUkjΦj (4.41)
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Then it follows

UiΦ1 =
∑

j

Uij Φj =
∑

j

δij G−1
0 Φj

+
∑

k 6=i

VkGkUkΦ1 (4.42)

=
∑

j

δijG−1
0 Φj +

∑

k 6=i

tkG0UkΦ1 (4.43)

As is also obvious from the definition (3.40) one has

U2Φ1 = P12P23U1Φ1 (4.44)
U3Φ1 = P13P23U1Φ1 (4.45)

As a consequence only one operator is sufficient and we might put

U ≡ U1 (4.46)

which then obeys the single equation

U = P G−1
0 Φ1 + P tG0U (4.47)

That equation has been and still is the starting point for numerous calculations employing
t-operators of finite rank

t →
∑

| gm > τmn < gn | (4.48)

We shall not follows that path, since nowadays one can solve 3N scattering processes
without relying on finite rank expressions.
Once U is given the elastic scattering amplitude is

< Φ′ | U | Φ > ≡ < ϕd | < ~q ′ | U | ϕd > | q0 > (4.49)

It remains to determine the transition operator into the full breakup channel. That is the
free channel, without interaction, and the channel state is

| Φ0 > ≡ | ~p > | ~q > (4.50)

which obeys

H0 | Φ0 > = (
p̂ 2

m
+

3
4m

q̂ 2) | ~p~q > (4.51)

= (
p̂ 2

m
+

3
4m

q̂ 2) | Φ0 > ≡ E | Φ0 > (4.52)

An obvious guess for the transition amplitude is

< Φ0 | V1 + V2 + V3 | Ψ(+)
1 > (4.53)
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If we strip off < Φ0 | and denote the operator as

U0 ≡ (V1 + V2 + V3) | Ψ(+)
a > (4.54)

we get from (3.54) and the triad (3.24-3.26)

U0 ≡ (V1 + V2 + V3) (Ψ(+)
1 + Ψ(+)

2 + Ψ(+)
3 ) (4.55)

= V1Φ1 + V1G1U11 + V2G2U21 + V3G3U31

+ V1G1U12 + V2Φ2 + V2G2U22 + V3G3U32

+ V3G3U31 + V3G3U32 + V3Φ3 + V3G3U33 (4.56)

=
∑

ViΦi + V1G1

3∑

j=1

U1j + V2G2

∑

j

U2j

+ V3G3

∑

j

U3j (4.57)

= G−1
0

∑
Φj +

∑

i

ViGiUi (4.58)

= G−1
0 (1 + P ) Φ1 + (1 + P ) t1G0U1 (4.59)

= G−1
0 (1 + P ) Φ + (1 + P ) tG0U (4.60)

(In the last equation we dropped again the index 1).
Since U0 is applied from the left by Φ0 the first term does not contribute on the energy-
shell and one can define a breakup operator as

U0 ≡ (1 + P ) tG0U (4.61)

The verification of that guess, (3.53) is done by looking into the last possible from of the
Schrödinger equation

(H0 − E) Ψ(+)
1 = −(V1 + V2 + V3) Ψ(+)

1 (4.62)

Again there is no state, regular at the origin and purely outgoing in the breakup channel
to the left had side alone. As a consequence we get again a homogeneous equation

Ψ(+)
1 =

1
E + iǫ − H0

∑

i

ViΨ
(+)
1 (4.63)

= G0

∑
ViΨ

(+)
1 (4.64)

The configuration space representation of G0 is known and its derivation is deferred to the
Appendix. (See also L.S. Rodberg, R.M. Thaler, Introduction to the Quantum Theory of
Scattering, page 123)

< ~x ~y | G0 | ~x ′~y ′ > =
i

(4π)2
(
4
3

)
3
2

m2E
X2

H(1)
2 (X

√
mE) (4.65)
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where H(1)
2 is a Hankel function and

X =
√

(~x − ~x ′)2 +
4
3

(~y − ~y ′)2) (4.66)

Let us now investigate its asymptotic form. For | ~x ′ | and | ~y ′ | fixed we regard the limites
| ~x ′ | → ∞, | ~y ′ |→ ∞ :

X =
√

~x 2 +
4
3

~y 2 − 2~x~x ′ − 4
3

2~y~y ′ + ~x ′2 +
4
3

~y ′ 2 (4.67)

The introduction of polar coordinates is now very natural

x = ρ cos α (4.68)

y =
√

3
4

ρ sin α (4.69)

then
~x 2 +

4
3

~y 2 = ρ2 (4.70)

and

X = ρ

√

1 − 2~x · ~x ′

ρ2
− 4

3
2~y · ~y ′

ρ2
− ρ ′ 2

ρ2
(4.71)

= ρ − ~x · ~x ′

ρ
− 4

3
~y · ~y ′

ρ
− 1

2
ρ ′ 2

ρ2
(4.72)

= ρ − cos αx̂ · x̂ ′ − 4
3

sin α ŷ · ŷ ′ + O(
1
ρ

) (4.73)

Further one has

H(1)
2 (z) →

√
2
π

e−i 3π
4

eiz
√

z
for z → ∞ (4.74)

Thus we find

< ~x ~y | G0 | ~x ′ ~y ′ > → i
(4π)3

(
4
3

)
3
2

√
2
π

(4.75)

m2 E
(mE)1/4 e−i 3π

4
ei

√
mEρ

ρ5/2 e−i~p~x ′
e−i~q~y ′

with

~p ≡
√

mE x̂ cos α (4.76)

~q ≡
√

mE
√

4
3

ŷ sin α (4.77)
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We see that the way x and y go to infinity and as it is given by α carries directly over to
the momenta | ~p ′ | and | ~q ′ | in the two relative motions. The total available energy E
is distributed over the two relative motions according to that choice of α. In other words
that continnous distribution of the energy is controlled by 0 ≤ α ≤ π/2. Inserting (3.75)
into (3.64) one finds the asymptotic form in the breakup channel

Ψ(+)
1 (~x, ~y) → i

(4π)2
(
4
3

)3/2

√
2
π

m2E
(mE)1/4 e−i 3π

4
ei

√
mEρ

ρ5/2 (4.78)

× (2π)3 < ~p ~q |
∑

Vi | Ψ(+)
1 >

from which we read off the transition amplitude

< ~p ~q |
∑

Vi | Ψ(+)
1 > (4.79)

The fully antisymmetric state Ψ(+)
a obeys the same homogeneous LSE and thus the

breakup amplitude is indeed (3.54).
Now we ended up with two equations for the transition operator for elastic scattering U ,
and the operator for the breakup operator, U0, both appropriate for identical nucleons.
They are

U = P G−1
0 + P t G0U (4.80)

U0 = (1 + P ) t G0U (4.81)

Instead of solving for U one can also introduce

T ≡ t G0 U (4.82)

and read off from (3.80)
T = tP + tP G0T (4.83)

This is another possible equation to be solved and then

U = P G−1
0 + P T (4.84)

U0 = (1 + P ) T (4.85)

It is that equation (3.83) which we solve and which is much superior to the AGS form, if
one uses general t-operators (not finite rank ones). The argument will be given below.
As a final remark we want to visualise the physical content of (3.83). The operator
equation has to be applied onto the channel state Φ ≡ Φ1, thus

T | Φ > = tP | Φ > + tP G0T | Φ > (4.86)

Let us iterate that equation

T | Φ > = tP | Φ > + tP G0tP | Φ >
+ tP G0tP G0tP | Φ > + . . . (4.87)
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Graphically this is:

We recognise the very transparent physical mechanism. The projectile nucleon interacts
first with the two constituents of the deuteron in first order in t, then there are rescattering
processes in second order in t, third order in t, etc. For T the last t-operator to the left acts
always within a specific pair (All the circles to the left are within the same pair!). This is
a infinite number of processes (the multiple scattering series). The remaining processes,
where the final t acts within the other two pairs is provided by PT in Eq (3.85).

4.3 Observables

The derivation of the elastic angular distribution, of the 5-fold differential breakup cross
section and of the great manifold of spin observables is straight-forward, though quite
complex. We defer all that to the Appendix and give now only the results.
Let us define the elastic amplitude

Mm′
dm′

N mdmN (~q ′, ~q0) = −2m
3

(2π)3 < Φ′ | U | Φ > (4.88)

then the differential cross section is
dσ
dq̂ ′ = | Mm′

dm′
N mdmN |2 (4.89)
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Of course one has to average over initial and sum over final spin magnetic quantum
numbers in addition. The breakup cross section is more complex:

d5σ
dk̂1dk̂2dS

=
(2π)4 |< Φ0 | U0 | Φ >|2 m2 k2

1 k2
2√

k2
1 (2 k2 − k̂2 · (~klab − ~k1) )2 + k2

2 (2k1 − k̂1 · (~klab − ~k2) )2

2m
3q0

(4.90)

Here ~k1 and ~k2 are the lab momenta of two of the final three nucleons, ~klab is the projectile
momentum and q0 given as above. A new feature is the arclength S of the kinematical
locus. This is defined as follows. Energy and momentum conservation in the lab system
read

Elab + Ed =
∑

i

~ki
2

2m
(4.91)

~klab =
∑

i

~ki (4.92)

By eleminating ~k3 it follows (Elab = ~k2
lab/2m)

Elab + Ed =
k2
1

2m
+

k2
2

2m
+

(~klab − ~k1 − ~k2)2

2m
(4.93)

or
~k2

2 − ~k2 · (~klab − ~k1) + ~k1
2 − ~k1 · ~klab − mEd = 0 (4.94)

This defines an ellipse in the k1 − k2 plane. Depending on the external parameter ~klab,
the momentum k1 and the directions k̂1 and k̂2, either the whole ellipse lies in the first
quadrant, only part of it or there are no physical solutions at all. The points lying on
that ellipse or on the corresponding curve in the E1 − E2 plane comprise the so called
kinematically allowed curve. The physically accessible events have to lie on that curve.
All possibilities are displayed:
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The arclength S is then defined as

dS =
√

dE2
1 + dE2

2 (4.95)

and S is worked out by numerical integration up to a constant. The choice of that constant
is a matter of convention (choice of location S = 0).
Without further explanation I want to give now just a few examples for spin observables
(For a derivation see the Appendix).
The nucleon analysing power Ay

Ay =
T r(MσyM †)
T r(MM †)

(4.96)

The deuteron tensor analysing power T20

T20 =
1√
2

T r(M (3SzSz − 2I) M †)
T r(MM †)

(4.97)

with

Sz =




1 0 0
0 0 0
0 0 −1





The nucleon to nucleon spin-transfer coefficient Ky′

y

Ky′

y =
T r(MσyM †σy)

T r(MM †)
(4.98)

There are just examples to illustrate the type of evaluation. Corresponding quantities can
be defined in the breakup process, if the elastic amplitude M is replaced by the breakup
amplitude.

4.4 Momentum Space Representations

This is a very tough problem, which we shall present now. For the actual solution and
realisation we refer to the literature.
H. Witala et al, Few Body Systems 3 (1988) 123
The task is to solve

T | Φ > = tP | Φ > + tP G0T | Φ > (4.99)
We project onto the basis | pqα > and insert the decomposition of the identity two times

< pqα | T | Φ > = < pqα | tP | Φ >

+
∑ ∫ ∑ ∫

< pqα | t | p′q′α′ >< p′q′α′ | P | p′′q′′α′′ >

× < p′′q′′α′′ | G0T | Φ > (4.100)
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As already discussed in chapt II one has

< pqα | t(E) | p′q′α′ >=
δ(q − q′)

qq′ δλλ δJJ ′ tsjt
ll′ (pp′, E − 3

4m
q2) (4.101)

< pqα | P | p′q′α′ > =
∫ 1

−1

dx Gαα′ (q q′ x)
δ(p − π1)

πl+2
1

δ(p′ − π2)
πl′+2
2

(4.102)

With

π1 =
√

q′2 +
1
4

q2 + qq′x (4.103)

π2 =
√

q2 +
1
4

q′2 + qq′x (4.104)

This inserted into (3.100) yields

< pqα | T | Φ > = < pqα | tP | Φ >

+
∑

l′

∑

α′′

∫ ∞

0

dq′′ q′′ 2
∫ 1

−1

dx
t̂sjt
ll′ (p, π1, E − 3

4mq2)
πl′
1

(4.105)

Gαα′′
1

E + iǫ − q2

m − q′′ 2

m − qq′′x
m

< π2q′′α′′ | T | Φ >
πl′′
2

The driving term turns out to be

< pqα | tP | Φ > =
∑

l′

∫ 1

−1

dx t̂sjt
ll′ (p, π1, E − 3

4m
q2)

∑

α′′

δα′′αd Gαα′′(q, q0, x)
ϕl′′(π2)

πl′′
2

CmdmN
α′′ (4.106)

and

CmdmN
α =

√
λ̂
4π

C(λ
1
2

J, 0 mN ) C(1 J J , md mN ) (4.107)

The set αd are the quantum numbers which in the two nucleon subsystem are the ones of
the deuteron (l = 0, 2, s = j = 1, t = 0).
We see the driving term is a simple quadrature and poses no problem. The handling of
the integral kernel, however, requires hard work. Let us regard the x-integration. The
x-dependence is in π1, π2, G, and in the denominator, which is the free 3N propagator.
Clearly the π1- and π2-dependence requires again (Spline) interpolation. The difficult
part is the free propagator. For certain q and q′′ the denominator can vanish. This leads
to logarithmic singularities, as sketched now. The x-integral is of the type

∫ 1

−1

dx f(x)
1

E + iǫ − q2

m − q′′2

m − qq′′x
m

= − m
qq′′

∫ 1

−1

dx f(x)
1

x − x0 − iǫ
(4.108)
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with
x0 =

m
qq′′ (E − q2

m
− q′′ 2

m
) (4.109)

Let us choose q, q′′ such that −1 ≤ x0 ≤ 1, then the integral can be treated us
∫ 1

−1

dx f(x)
1

x − x0 − iǫ
= f(x0)

∫ 1

−1

dx
1

x − x0 − iǫ

+
∫ 1

−1

dx
f(x) − f(x0)

x − x0
(4.110)

The second term is regularised and harmless. The first one can be integrated with the
result

f(x0)
[
ln | qq′′ + q2 + q′′ 2 − mE

qq′′ − q2 − q′′2 + mE
|

+ iπΘ (1 − | mE − q2 − q′′ 2

qq′′ | )
]

(4.111)

The logarithm gets singular along two lines in the qq′′-plane:

In the interior of that moon shape area the imaginary part is present.
It is the main task to handle that logarithmic singularity accurately. Its location moves
with the value of q on the left hand side of the integral equation, which requires again an
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interpolation.
In addition to the logarithmic singularity the NN t-matrix also provides a pole at
E − 3

4mq2 = Ed, the deuteron pole. Further there is a strong variation of t in the state
1S0 near E − 3

4mq2 ≈ 0, because there is a nearby virtual state pole in the second sheet.
Once the kernel has been discretised one faces a quite sizeable algebraic problem with
about 60.000 unknowns for each conserved total 3-body angular momentum and parity.
We use the Pade method to sum up the multiple scattering series, which is generated
by iterating the set of coupled equations. Apparently all that requires great care and
experience- and a supercomputer. This task has been solved and numerical results are
available for any type of NN force to an accuracy of about 1 %,which is highly sufficient
in view of the much larger errors in present day numerical data for 3N scattering.
A challenge for the future is the solution of (3.99) without partial wave expansion, which
is of very high interest at high energies of 150 Mev and above.

4.5 Selected Results and Open Problems

We use the most modern NN forces, Nijm I, Nijm II, Nijm93, AV18 and the Bonn B (Bonn
B will be replaced by the updated CD Bonn, which has the same small χ2/Ndata ∼ 1 like
Nijm I, II, and AV18). This is the first time, that one has a set of realistic NN potentials
with such a perfect description of NN data up to 350 MeV. Out of the very many analysed
data we provide only illustrative examples:
The total nd cross section
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Elastic Scattering
The differential cross section
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At the highest energy there are problems, which presumably indicate the onset of rela-
tivistic effects.
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Spin Observables
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One needs high precision data at larger energies!
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The analysing power Ay is perfectly well described at high energies and poses a serious
puzzle at low energies
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The Breakup Process
The total breakup cross section

The data are old and should be updated. There are no data at higher energies. For
kinematically complete experiments there are many cases of perfect agreement and many
cases of signigicant disagreement. The problem is, that no well established data basis
exists up to now. Measurements are usually done just by one group.
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A few examples for good agreement.

110



A few examples for bad disagreement

Interestingly a remeasurement presently beeing analysed at TUNL at 13.0 MeV does not
confirm the data from Erlangen, shown above, which were in strong disagreement, but
confirm now the theory.
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Spin observables in the breakup process
There are even less numerous data, but some of them show striking disagreement and
clearly call for a remeasurement.
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The very best would be a complete (4π) measurement of all breakup cross sections over
the full phase-space. This would test the potential energy in the 3N Hamiltonian in the
most optimal manner.

4.6 Inclusion of Three-Nucleon Forces

The study of the properties and strengths of 3NF ′s is a timely subject nowadays. Meson
theory as well as numerical tools are available to attack that question seriously. Three-
nucleon scattering with the very many configurations and spin-observables is an ideal
laboratory to search for signatures of the new dynamical ingredient in the 3N Hamiltonian.
Its inclusion requires an extension of the Faddeev equations.
It might be instructive to derive that extension in a more intuitive manner, than using
the LSE’s (see D. Hüber et al, Few-Body System 14 (1993) 171). Regard the Neumann
series for scattering of a nucleon from a deuteron leading to the final state of three free
particles:
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The diagrams have to be read from right to left. The half circle to the right denotes
the initial deuteron, the horizontal lines freely propagating nucleons, the wavy line a pair
interaction and the cirle together with the vertical line the action of a 3NF.
In that infinite sequence of processes the first interactions read from the right are either
the 2N interactions V2 ≡ V13, V1 ≡ V23 or the 3NF V4 ≡ V123. The interaction V3 ≡ V12

is clearly forbidden as a first ineteraction, since it is fully taken into account in the
incoming deuteron, which is assumed to be composed of particles 1 and 2. Among the
second interactions, read from the right, the interaction V3 acts, of course.
Obviously that infinite series can be decomposed into four subseries

U03 | Φ3 > = (T1 + T2 + T3 + T4) | Φ3 > (4.112)

where all processes contributing to Ti end with the interaction Vi on the left. Thus, for
instance,

T1 = V1 + V1G0T1 + V1G0 (T2 + T3 + T4) (4.113)

Summing up V1 to infinite order into the 2-body t-operator t1 we get

T1 = t1 + t1G0

4∑

j=1,j 6=1

Tj (4.114)

and similarly

T2 = t2 + t2G0

4∑

j=1,j 6=2

Tj (4.115)

T3 = t3G0

4∑

j=1,j 6=3

Tj (4.116)

T4 = t4 + t4G0

4∑

j=1,j 6=4

Tj (4.117)

All the operators Ti have to be applied to

| Φ3 > ≡ | φd(12) > | ~q0 > (4.118)

where | φd(12) > is the deuteron state composed of particles 1 and 2 and | ~q0 > is the
momentum eigenstate of particle 3 in the system of total momentum zero.
For identical particles the scattering state initiated in the nd channel has to be properly
symmetrized. One defines the symmetrised break-up operator by

Us
0 | Φ1 > ≡

3∑

j=1

U0i | Φi > (4.119)
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where U0i | Φi > is the break-up amplitude corresponding to the initial free particle i.
One obtains

Us
0 | Φ1 > =

4∑

j=1

(T (1)
j | Φ1 > + | T (2)

j | Φ2 > + | T (3)
j | Φ3 >) (4.120)

Us
0 | Φ1 > ≡

4∑

j=1

T (S)
j | Φ1 > (4.121)

Because of the identity of the particles one has

T (s)
2 = P12 P23 T (s)

1 (4.122)
T (s)
3 = P13 P23 T (s)

1 (4.123)

Thus

T (s)
1 = T (1)

1 Φ1 + T (2)
1 Φ2 + T (3)

1 Φ3 (4.124)
= t1G0 (T (1)

2 + T (1)
3 + T (1)

4 ) Φ1

+ t1Φ2 + t1G0 (T (2)
2 + T (2)

3 + T (2)
4 ) Φ2

+ t1Φ3 + t1G0 (T (3)
2 + T (3)

3 + T (3)
4 ) Φ3 (4.125)

= tP Φ + tG0 (P T (s)
1 + T (s)

4 ) (4.126)

T (s)
4 = T (1)

4 Φ1 + T (2)
4 Φ2 + T (3)

4 Φ3 (4.127)
= t4 (1 + P ) Φ + t4G0 (1 + P ) T (s)

1 (4.128)

Let us drop the superscript (s) and the index 1. Then the two coupled equations are

T = tP + tG0 (P T + T4) (4.129)
T4 = t4 (1 + P ) + t4G0 (1 + + P ) T (4.130)

which leads to the breakup operator

U0 ≡ (1 + P ) T + T4 (4.131)

A similar diagrammatic consideration (see above Reference) leads to the operator for
elastic scattering

U = P T + T4 + P G−1
0 (4.132)

I shall skip the technicalities to solve that set and refer to the above reference.
What is now the effect of 3NF’s on 3N scattering observables? We got first experiences
with the Tucson-Melbourne 3NF (π − π + π − ρ + ρ − ρ)
S.A. Coon et al, Phys. Rev. C48 (1993) 2559
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H. Witala et al, Phys. Rev. C in press
The results are very diversified, depending on energy, observable and scattering angle. Up
to now we studied two energies, 3 and 14 MeV. There are elastic scattering observables,
where effects are totally negligible:

dσ
dΩ

, T20, T21, T22. (4.133)

There are observables, where effects are large at 3 MeV and negligible at 14 MeV :
Cxx, Kz′z′

y .
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There are observables, where effects are visible at both energies: Ky′

y , Ay

These are only examples.
The very low energies appear to be most promising. Since pd scattering can be measured
more accurately than nd scattering, it should be preferred, which however requires the
inclusion of the pp Coulomb force in theory. The Pisa group is able to do that very
accurately:
A. Kievsky et al, Nucl. Phys A 577 (1994) 511
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In the breakup process 3NF effects at the two energies turned out to be small. One inter-
esting effect is in the peak height of the FSI peak plotted as a function of the production
angle of the two nucleons interacting in the final state and leaving the ineraction region
with equal momenta, one finds the following:

There is a ”magic” production angle, where the effect of the 3NF is absent. At the same
angle also the different NN force predictions coincide. This is therefore the angle, at which
an experiment for the extraction of the nn scattering length αnn should be performed.
The 3N breakup deserves more attention experimentally. It is the best testground for the
3N Hamiltonian.
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