Chapter 10

Approximation Methods for
Stationary States

In more complicated situations, an exact solution of the quantum mechanical problem may
not be possible. Under such circumstances one has to rely on approximative methods. For
the calculation of stationary states and energy eigenvalues, these methods are perturbation
theory, variational methods and the WKB-approximation. Perturbation theory can be
applied when the problem to be solved deviates only slightly from an exactly solvable
problem. Variational methods are useful for the calculation of ground state energies, if
one has some qualitative idea about the form of the wave function, and the WKB method
is suited for the almost classical limit.

10.1 Time-Independent Perturbation Theory
(Rayleigh-Schrodinger)

The assumption is that the Hamiltonian H of a system can be written as
H = Hy+H'. (10.1)

Here H, is called the unperturbed Hamiltonian, which can be treated exactly, and H’
denotes the ”small” perturbation. What ”"small” means in the context of operators has
to be seen. In order to characterize an expression, we introduce a parameter A\ and write

H = Hy+ \H' (10.2)
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and set as goal to represent the energy eigenvalues and eigenstates of H as power series
in A. For solving

H|E) = (Hy+AH') |E) = E|E) (10.3)

we start with the ansatz

E = EO ) EO 4...= 3 WEW
v=0
|E) = |E)YO A |E)Y ... = i | EY®)
VZO (10.4)
We rewrite (10.3) as Hy | E) = (E — AH') | E) and subtract E® from both sides
(Hy—E®) |E) = (E-E9)|E) — \H'|E). (10.5)
(From (10.4) follows
E-EO® = fj NEW = ) fj N B (10.6)
v=1 v=0

Inserting (10.4) and (10.6) into (10.5) gives
(Hy—EO) = S X |EYY = XY NECY 7' Y N B . (10.7)
v=0 v=0 v=0

Terms of order 0 in A occur only on the left-hand side of (10.7) and in 0" order follows
with

| E) ~| E)© (10.8)

(Hy—E©) | YO = ¢, (10.9)

which is just the eigenvalue equation for the unperturbed Hamiltonian Hy. The first order
in the perturbation expansion is obtained by equating the coefficients of \!:

(Ho—E9) | E)Y = (BY - H') | B)® =:]9¢). (10.10)

We now consider consequences of (10.9) and (10.10).
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10.1.1 Perturbation of a Non-Degenerate Eigenvalue

According to (10.9), the 0** order approximation | E)(© is eigenstate of Hy. One has
to pick a specific eigenvalue of Hy, from which the exact eigenvalues are supposed to
be obtained, i.e., we pick &, (n fixed) as eigenvalues of Hy, and &, is assumed to be
non-generate, so that the eigenstate | €,) of

Hylen) = €nlen) (10.11)
is uniquely determined up to a phase factor. With
E® =g, (10.12)
one obtaines from (10.9)
| YO = ¢ie g,y . (10.13)

At present we set the phase factor to 1, i.e., @« = 0 and may later change it to make the
calculations easier. Multiplication of (10.10) with (&, | gives

em | (Ho = E®) | )V = (em | 6) - (10.14)
Since Hy is hermitian, we obtain with (10.12)
(em — en){em | B)V = (em | @) . (10.15)
(From this follows that the vector | ¢) has to be perpendicular to | ,),
(en| @) = 0. (10.16)
Inserting the definition of | ¢), (10.10) gives
EY = (g, | H' | &) . (10.17)
(From (10.4) follows that
E©® 4+ \E®

is the first approximation of the eigenvalue E,, which develops from the unperturbed
eigenvalue ¢, through the perturbation H'. Thus we can write

E, = E9 +AEMW 1+ 0()?) (10.18)
and using (10.12) and (10.17) write

E, = (e, | H|en) +0O(N\?). (10.19)
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In words: The first approximation to the energy eigenvalue FE,, is given by the expectation
value of H in the unperturbed eigenstates | £,). To calculate the vector | E)(!) we start
from (10.15), which gives for n # m

m | EYD = m . 10.20
en | BY) = —— (en|9) (10.20)
With (10.10) and (10.13) follows
1
(em | BY) = (em | H' | €a) - (10.21)
€n —Em

This result is valid for all eigenvectors | ,,,) #| €,), whether they belong to the discrete
or continuous spectrum to Hy. Since Hy is hermitian, the vectors | £,,) form a complete
set, and it follows that

1

[ BYD = |en)(en | E)Y + 3

m#n En —Em

| em){em | H' | €n) - (10.22)

Here the sum contains the integral over the continuous spectrum of H, if this exists. As
one can see from the denominator in (10.20), the further away the eigenvalues are from &,
the lesser their contribution becomes (unless the matrix elements {(¢,, | H' | €,) increase
proportional to | £, — &, |).

The first term on the right-hand side of (10.22) is still undetermined. Its value is given
through the normalization (E | E) = 1. From

| B) =|ea) + A E)Y +0(N)

follows
(E|E) = 1+ X|(ea | E)YO +O(E | £n)] + O(V?) . (10.23)

Because of the normalization condition, the term proportional to A must be zero, thus
(e, | E)(Y) must be purely imaginary:

(en | EYY = ia  with a € R (10.24)
and
(en | E) = 1+iad+0(N\?). (10.25)
The last equation is just the Taylor expansion of e’} so that one can write

(en | E) = €*.

202



The phase can be eliminated through redefining the state | E):

|E) — e ™| E) = (1—ia))(le)+ A E)YD)+0(\?)
= |e)+ A (| EYY —ia|e,)) + O(N%) .

Using (10.24) this relation becomes
|B) — e + A (| BYV— | en)(en | BYV) +0(0?) .

This redefinition of | F) eliminates the first unknown term of the right-hand side of
(10.22), and we obtain as result for the first approximation of the eigenstate

B0 = %

m#n

1

m)(Em | H' | €n) - 10.26
8n_gml<€><€\ | €n) ( )

Thus, for the energy eigenstate we obtain from (10.4) in first-order approximation

1
€n — Em

| En) =|en)+ D, | em)em | AH' | €4) + O(N\?) . (10.27)

m#n

This expression can be reformulated in such a way which allows a more easy access to
higher order approximations. We introduce the projection operator

Qu = 1=|en){en | = 3 lem)em|, (10.28)

m#n

i.e., @, projects on the part of the Hilbert space which is orthogonal to | &,). Since @,
and Hy commute, we can write

1 1
En o lenen] = %;n L em){em |
@
En — HO
(10.29)
and express (10.27) as
| En) = (1 + On AH’) | en) + O(N?) (10.30)
En — HO
and (10.26) as
| By = 5& H | &) . (10.31)
n — 440
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We are now equipped to consider the second-order approximation of the energy eigenvalue
E,. Comparing the terms proportional to A\? in (10.7) gives

(Hy— E©) | EY® = E@ | YO 4 (EW — g | BYY | (10.32)

Multiplying from the left with | &,,) and using the same arguments that led to (10.16)
give that the left-hand side of (10.32) had to be zero. According to (10.13) | E)® ~| g,),
then

E® = (g, | (H' = EW) | E)D . (10.33)
;From (10.26) follows that | E)() is orthogonal to | &,), thus
E® = (e, |H'| E)
- §n<en|H'\em>ﬁ<em\Hwen>
% H | ) .

= (en | H'
En 0

(10.34)

For the last relation, the representation given in (10.31) was used. This result can be
summarized as follows:

e The second-order approximation to the energy eigenvalue can be calculated via a
two-step process: Starting from | ,), there is a transition to | £,,) via H', then an

energy denominator ——— is multiplied and finally H' drops back to | &,).

Fig. 10.1 shows this result graphically:

Fig. 10.1 Graphical representation of the second order of the Schrédinger perturbation expan-

sion.
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Fig. 10.1.a illustrates the energy difference as function of the distance of the levels, Fig.
10.1.b is a first step in the direction of a Feynman diagram.

Combining (10.26) and (10.34) gives for the energy eigenvalue E,
En = (en| [Ho FAH 4+ AH % )\H’] lea) + O . (10.35)
n — 410
The results given in (10.30) for the energy eigenstate and in (10.35) for the energy eigen-

value can be considered as the first terms in a power series expansion in \. Without proof,
a guess for its structure is

o0 Qn , 14
E,) = ( AH ) n 10.36
) = 3 (2 ) e (10.36)
and
E, = {(en| lH0+/\H’ Z ( @ AH') ] | €n) - (10.37)
v=0 €n — HO
In both series, powers of the operator
Q'fl !
AH 10.38
p—r (10.38)
and the corresponding matrix elements
m | AH' | e
Em | AH | €n) (10.39)
En — Em

do appear. With the help of (10.38) and (10.39), we are able to determine under which
circumstances a perturbation can be considered small. In order for the power series (10.36)
and (10.37) to be convergent, the matrix elements must be smaller than 1 for all m # n.
The first few terms in the series will be sufficient if

| (em | AH' | £,) << |é&m —é&n | (10.40)

for all m and n, i.e., the off-diagonal elements of H' have to be much smaller than the
energy differences if the perturbation expansion is supposed to converge

10.1.2 Simple Example

Consider the Hamiltonian

P2 2 P2 Z2 2
H=> —(Z+1) % = — - 25 ° (10.41)
2m x| 2m |X|  |X]
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with
P? Ze?
2m | X |

9}
[

H = -

B

(10.42)

The problem (10.41) can be solved exactly, and the solution for the energy eigenvalues is
given by

Lon o 2
E.e = — oz & me (Z+1)". (10.43)
It is illustrative to consider the perturbative treatment as indicated in (10.42). For the
first approximation, one obtains

62

1
Eﬁz = (Enen | — ‘Xz| | Eng) = — 2 Zao*m?c? (10.44)

by calculating explicitly the matrix elements of

1
X1
terms in the perturbation expansion for the energy eigenvalue

Thus one obtains for the first two

0 1 1 1
7(1,2 + ET(Lz = T o (Za)?* me® — = Zao*mc?
1
= ~ 32 o’me® (Z+2)7 .
n

(10.45)
This result disagrees with the exact result (10.43), and the relative deviation is given by

. 2 —
ABne _ Z(Z+2)—(Z+1)* _ L (10.46)
Eny (Z +1)2 (Z+1?)

which shows that the perturbative treatment gets better the higher Z is.

10.1.3 Perturbation of Degenerate Eigenvalues

In practice application, it is often the case that the unperturbed Hamiltonian Hy has a
symmetry, which leads to a degeneracy of the corresponding energy eigenvalues. If the
perturbation H' does not have this symmetry, then applying the perturbation removes the
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original degeneracy. In case of degenerate eigenvalues (10.9) and (10.10) remains valid.
However, from (10.9) only follows that

| E)Y = 3" | ena) ta (10.47)

with coefficients
o = (ena | B)O o = 1,2,3,--- (10.48)
which still have to be determined. As in the non-degenerate case from (10.10) follows

(enald) =0 (10.49)

for all . This leads to a system of equations

Xﬂj (ena | (BY —H"Y | enp)ens | E)Y = 0. (10.50)

Using (10.47), one obtains

Y Hlzas = EY q, (10.51)
B

where
op = (Ena | H' | €ngp) - (10.52)

The matrix (H]z), which is either finite or infinite depending on the degeneracy, is given
by the operator H' restricted to the space R, to e,. The coefficients a, determine a
vector from R.,, and (10.51) states that this vector has to be eigenvector to (H,4). Thus,
to determine the energy eigenvalues Ej, , in first-order perturbation theory, one has to
solve the eigenvalue problem for H = Hy+ AH' in the subspace R, . If the degeneracy is
finite, (10.51) has a non-trivial solution if

det(Hls — 6apEM) = 0. (10.53)

This is a linear equation of degree d,, = dim R, for the eigenvalue E() and has in general
d,, different solutions ES%, “e- ,E,(Ll,zln. If there are d,, different solutions, the degeneracy is
completely removed. However, the degeneracy does not need to be totally removed; part
of it can remain. Especially, all Eg()l will coincide, if H' had the same symmetry as H.
In selected cases, one may be able to find a solution of (10.51) by guessing, i.e., by finding
a basis of R., in which H' is diagonal, i.e., H,5 = 0 for a # 3. In this special case, the
solutions of (10.52) are given by

E(

)
n,o

= H;a = <€n,a | H' ‘ 5n,a> 3 (1054)
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which is a generalization of (10.17). In case the degeneracy of the eigenvalues has been
removed by the perturbation H', all higher approximations can only lead to shifts in the
energy levels E}})l Without proof, the result for the energy eigenvalues E, , up to second
order in A can be obtained by diagonalizing the following effective Hamiltonian:

@n

HY = (enal (H0+)\H’+/\H’
En 0

)\H’) | ens) - (10.55)

Here (), contains the sum over all eigenvectors | €,,) #| €,) of Hp, which makes the
calculation of H, ;’;f quite difficult.

10.2 Brillouin-Wigner Perturbation Theory

The time-independent perturbation theory, according to Rayleigh-Schrodinger, contains
as energy denominators the energy eigenvalues ¢, of the unperturbed Hamiltonian H.
In contrast, the Brillouin-Wigner perturbation series (for stationary states) contains the
exact energy eigenvalues in the energy denominators. We start again from the time-
independent Schrodinger equation (10.3) and choose a specific energy state | E,)

H | En> = En | En) = (HO + )\HI) | En) (1056)

and choose the normalization (¢, | E,) = 1, where | ¢,) is defined (10.12), (10.9). We
write (10.56) in the form

(En - HO) | En) = \H' ‘ En> (1057)

and multiply from the left with | €,) in order to obtain the recursion relation for the
energy eigenvalue:

from which follows

E, = EO 4+ X\e, | H' | E,)
= e, +Ne|H|E,) .
(10.59)

In order to obtain the energy eigenstate | F, ), we multiply (10.57) from the left with | &,,)
and obtain

(em | En— Hy | En) = Mem | H' | Ey) (10.60)
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from which follows
(Ep — E7(12)<5m | En) = Mem | H' | En)
or

(em | En) = 5M|H,|En)-

En —E&m )\<

Furthermore, we expand the full state | E,) into unperturbed states

o

| E,) = Z | €n){€n | En)
n=0
= |en)+ Z | em)(Em | En) -
m#n
Inserting of (10.62) into (10.63) yields
1
| En) = |en) + Z | €m) ﬁ/\<6m|H'|En>.

m#n

Introducing the operator @, from (10.28) gives

Q’Il !

En = n
B = e+ 52

(10.61)

(10.62)

(10.63)

(10.64)

(10.65)

Egs. (10.64) or (10.65) for the state | E,), where | E,) appears on the left as well as on
the right-hand side, can be solved by iteration, i.e., inserting | E,) always into the right

side.

1
| Ep) = |en)+A Z |5m>E7<5m|H,|5n>
m#n n —€m
LY ) (e | H o) =
J En_sj J En—f‘:m
m#n
J#N
_|_
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Here the energy denominators contain the exact energy F,. If E, is known, e.g., through
a variational calculation, the Brillouin-Wigner series is a faster converging series than the
Rayleigh-Schrédinger series. Inserting (10.65) into (10.59), one obtains for the energy
eigenvalue

Qn
En = &n n HI { n ! n } .
en + Aen | | €n) + En_HO)\H\E) , (10.67)
or in closed form
o Qn v
E, = ¢, n | NH' (7 )\H’) n 10.68
ntlen MY (5 [ 20) (10.68)

which constitutes the Brillouin-Wigner series for the energy eigenvalue F,,.

10.3 Variational Principle

Define an energy functional as

E[Y] = WA (10.69)

(¥ | )
Then the following theorem holds:

e Each state in which E[¢] is stationary is eigenstate of H, and vice versa. The
stationary value of E[t] is the corresponding eigenvalue of H.

A variation of | 1) means

8) — ¥+ | 5. (10.70)
Then we have for a variation of E[t]:
_ S WIHY)
PEWL = 0T
S H 9) (] H v
1) wleE CWIY)
CGULHIY) | WIHI) el (]
= e T ww - W nte T Y Ty
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(09 | H | 1) (0 [¢) | (| H|Y) (¢ | 6¢)
_ _E ~ B
wiey  Were Y e Y T
_ GulH-BW|Y) | @I H-EW] ) _
(W | ¥) (| ¥)
(10.71)
Choosing | §¢') := i | 0v) and (0¢'| := —i(d% |, we obtain
Oy |H-E]¢)  @|H—-E[Y]|dy)
oF = — =0. 10.72
v 1 B A F) 1o
Adding and subtracting the two conditions (10.71) and (10.72) gives
(0 [H—E[][¢) = 0
(W | H—Ely]|6w) = 0. (10.73)
For arbitrary variations, | §1) follows the condition for being stationary
(H—-E[Y]) [¢) =0, (10.74)

and thus that | ¢) is eigenstate of H with eigenvalue E[t)]. The second condition (¢ |
(H — E[¢)]) = 0 gives the same result, since H = H' and E[¢] real. To show the other
direction, we assume that | ¢) is eigenstate of H with eigenvalue E. Then

E[y] = WY _ g (10.75)

(W [ )
i.e., for | ¢), E[¢] is stationary.

Theorem:

e The energy functional is an upper bound for the ground state energy FEj:

E[)] > Eo . (10.76)
Proof:
Consider
_ _ (Y| H-Ey|v)
E[Y] — Ey = W0 ) (10.77)
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Considering the spectral decomposition of H

H = 3 En|tn){yn| (10.78)
n=0
and inserting this into (10.77) gives
_ — 1 - 2 _
1 o

The variational principle, according to Ritz, consists of choosing a trial wave function
| () as function of one or more parameters p and then a determination of the minimum
of

B(y) = W) | H [ 9(u) (10.80)

(W) [ ¥(p)

The minimum of E(u) is then the upper bound for the ground state energy. A relatively
simple case is a linear dependence of the trial wave function on parameters:

N

[ 9() = D culen), (10.81)

p=1

where {¢,} are known functions and ¢, the parameters to be determined. Setting
dE[1] = 0 means

(0 | H - E[Y]|y) = 0,

where
| 0Y) = XN: 8¢, | u)
with dc, arbitrary. This leads to
(ou | H = E[Y] | ; elen) =0, (10.82)

or equivalently

Z <90M | H | §0u> Cy = EW] Cu - (1083)

v

This is an eigenvalue problem of H in the space of states {¢, }. The lowest eigenvalue is the
upper bound for the ground state energy. If the quantum numbers of {¢,} correspond to
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excited states, then the lowest eigenvalue is the upper bound of the corresponding excited
state of H.

Remarks: Since one has to choose a trial wave function, the variational principle
always gives better results for the energy than for the wave function. Once the energy is
obtained, one can, e.g., use the Brillouin-Wigner perturbation series to improve on the
wave function.

10.4 Applications

10.4.1 The He-Atom

In Section 9.5 we define the Hamiltonian for the He atom as (9.67):
g o_ P? _ 2f2 n P} _ 2f2 + e? _
2me | 71 | 2me | 75 | | 75 — T

Ho(1) + Ha(2) + Vis. (10.84)

In Section 9.5 we concentrated on the energy spectrum as obtained from the Hamiltonian
H = Hol) +H(§2) and considered the consequences of the electrons being identical particles.
The energy eigenvalues of H are given by (9.69)

E® = ¢, + en . (10.85)
If both electrons are in the lowest state (singlet), the wave function is given by
PpO(1,2) = i00(71) ©100(72) x00(1,2) (10.86)

where

63 —Br 1 2
pro(r) = e B = g Zetm. (10.87)

The explicit value of the lowest energy (in 0% order) is

4
B = — (?—;) = —4-13.6eV = —5deV (10.88)
and thus
FO = _108 ¢V . (10.89)
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Next we consider the corrections to E(®) due to the electrostatic interaction e?/ | 7 — 7 |
in a perturbation expansion. With the general definition of the eigenfunctions of H, as
given in (9.77), we obtain for the first-order correction to the energy

Epsiviy, = N Wusm | H P nsur) - (10.90)

Since the perturbation Vi, is spin-independent, this leads to

EnlLJ = €1s+teém + <¢fS,nﬁm | Via | ¢f5,n€m>
Epr, = €15+t + (Sisnon | Viz | 81snm) - (10.91)

Introducing the explicit form (9.76) for the spatial part of the wave function, one obtains
for the correction term in S-states:

AE, 15, = <¢fS,nSO | Vig | ¢iqs,nso> = A+B
AE, 55, = <¢14,5',n50 | Via | ¢i45,nso> = A-B (10.92)

where A is the Coulomb interaction energy

2 / dry dir, P18T)Pns () (10.93)
| 71— 7% |
with the density function
Pus(7) = | bns(7) |? (10.94)

and B is the exchange interaction energy

(10.95)

B /d3r &Bry ¢15(71) ns‘(7j2) 71
1 T2

s(71) ¢15()
| :

Since all integrals are positive, the 1S levels are shifted higher than the 3S; levels with
respect to E©, so that F,: so > FEusg,. Let us explicitly calculate the correction in first
order to the singlet ground state energy using the wave function () (1,2) of (10.86) as
ground state wave function.

ABug, = [ &' |

|7“1—7“2|

6,2
= ﬂj /d37“1 / dory i) L
™

|7 =T |

(10.96)
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Using

¢
1 & (.
T = Yo (71) Y, 10.97
I ; <r>> 2£+1 m_Z% em(71) Yo (72) ( )
n (10.96), one obtains
6,2 © - L
AE1150 — ﬂ,n-Z 47r)2 / d?”ﬂ‘% / d’/’gT% S e 28(r1+72)

ﬂﬁ 2
= [/ dryr? 20" —/ dror? e
7"1

+ / drr e 2ﬁ”/ drgr — Qﬂ”]
T2

= 3 e2ﬂ = 34eV . (10.98)

Together with (10.89), the energy Ej:g, is given in first-order perturbation theory

Epg, = —108eV + 34eV = —T4eV . (10.99)

This result has to be compared with the experimental value E¢*? = —79¢eV . The fact that
the correction AFE is not small compared to E(®) means that the ansatz for the ground
state wave function was not very good.

Historically the correct prediction of the ground state energy of the He atom was a crucial
proof for the correctness of quantum mechanics and QED (here agreement between theory
and experiment within six or more significant figures).

10.4.2 Zeeman Effect

Historical facts: 1896 Pieter Zeeman discovered that the spectral lines of atoms split up,
when the atoms are brought into a strong magnetic field. 1897 H.A. Lorentz explained this
effect in the framework of classical physics as effect of the Lorentz force on the emitting
electron.

Quantum mechanically, the Lorentz force enters the Hamiltonian via the vector potential

A:

1 S e 2\?
H = (P— ¢ A) LV, (10.100)

2m,



where m, is the electron mass. Using the gauge divA = 0, one obtains from (10.100)

P2 oL 2 .
H = V- S AP+ 1 (10.101)

2m, mMeC 2m,.c2

Due to the gauge divA = 0, P and A commute
(for a vector operator A : [P, A] =2 divA),
thus the canonical binomial formula can be used. For a constant magnetic field E, we

have
A(f)=3 (Bx7),and B=V x 4, and

H = Bxr)-P = — rx P)-B = — L-B. 10.102
2mec ( ) 2mec (7 ) 2mec ( )
This operator describes the interaction of the magnetic moment
eh - -
i = L = —uglL 10.103
A= 1B ( )
with the magnetic field B. The factor
_lelh L e x Compt length (10.104)
Up = om, ¢ 2 charge ompton wave leng .

is called Bohr magneton, with yg = 5.66 - 10*5%. The term quadratic in A,

HY = 272502 A? is neglected due to the small coupling constant if the perturbation H' is
present. For the spin, one has an analogous term (with factor 2). Thus the Hamiltonian
describing an one-electron atom in a magnetic field B (B assumed to be in z-direction)

is given by

H = Hy+ H'
P2 - -
Hy, = L-
0 S +V(r) + W) L-S
e h e h
Ho= G B w28) = LB S) = pB(h )

(10.105)
The eigenstates of Hy (unperturbed states) are characterized by | nf 3 jm;) with —j <

m; < j. The energy E7; has a (2j + 1)-fold degeneracy, e.g., the states pi, 51/2 are
two-fold degenerate, ps/, is four-fold degenerate. If the magnetic field is weak, H' can
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be treated perturbatively. Here we have to consider perturbation theory for degenerate
states. We define the state for fixed j as

. 1
[7) = X Gy | 0l 5 jmy) (10.106)
mj

and omit the quantum number n in the following to simplify the notation. We need to
consider

W % jmy | H | £ % jmby — EJ(-” - =0 (10.107)
according to (10.52). The matrix elements of H' are given as
1 . 1 . 1. 1.
<£§ij|H'|£§Jm9> = MB<£§]mj|J3+S3|£§]m;'>
= B Sy + (€ % jmy | Sy | £ % jmty (10.108)

Here S3 = Tél), i.e., a tensor operator of rank 1 with magnetic quantum number ¢ = 0.
Applying the Wigner-Eckart Theorem gives

1 . 1 . ! 1 . 1 . .. !
(€5 my | Ss| b5 gmy) = (€558l €5 7) Clj0;mym;0) (10.109)

from which follows that m/ = m;. Inserting (10.109) into (10.108) gives for the splitting
of the levels due to the perturbation H'

1 . 1 . m;
<£§]mj|Hl|€§]m;-> = uB dm;m; (mj:t 2£i1>
1
memt. B m; {14+ ——
Omjmi, 1B My ( 26+1)
(10.110)

for j =/+ % For a weak magnetic field, the splitting of the levels is linear and for specific
states, the splitting is smaller than the energy difference between the unperturbed levels.

For the case of a strong magnetic field, the perturbative term H' has the same order
of magnitude as the spin-orbit force. Thus, one can no longer treat H' as perturbation
within the subspace of degenerate energy levels for each j. One has to diagonalize the
Hamiltonian in a larger space. An obvious solution is to consider the superposition of
unperturbed states whose energies are close:

|9y = Y Cim; | ¢ % jmg) . (10.111)

Jjm;
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As example, the states p3/, and p;/; can build the state | ¢) of (10.111). Then one has
instead of (10.107)

> (jmj | H = E | j'm'j) Cym, = 0, (10.112)

o/
m.
J J

where the indices (£ 1) were dropped to simplify the notation. The matrix elements of H

2
are given by

(jmj ‘ H |]Im;> = E](O) (5jj’ 5mjm; —f—[,LB m; 6jj’ 5mjm;, +/,LB (]m] | 53 |jlm;>(10113)

Since S3 corresponds to a tensor operator To(l), applying the Wigner-Eckart theorem gives
(k=1,¢g=0)

(my | 83| §'mb) = C('1jsmi0my) G 1S3 11 4) - (10.114)

From the CG-coefficient follows that

i =17
j = j£1.
(10.115)
We need to calculate the matrix elements of S5, and start from
L. 1 1
| ¢ 3 jmiy = > C(¢ 5 Jyme ms m;) | fmy) | 3 M) . (10.116)
mems
Then
1. 1. 1. r. .,
<£§ jmj|Ss|l 2 jmg) = Z Z c(¢ g 13T s m;) C(¢ o 13T T m;)
mems mzm’s
! 1 ]‘ !
X (bmy | ) (5 ms | Sa | 5 )
1
= Y C( 5 §sme mg my)? my (10.117)

mMems
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| | me=m;— 3 my=m; + 3 |

. 1 l+mj+ % £—m;j+ %
j=L%£ 3 20-+1 2041

—/_ 1 £—mj+ % £+mj+ %
J= 2 20+1 20+1

Table for C(£ § j;memgsmy) for £ > 0.

Thus (10.117) gives for

i— 04 1 () = L (l+mi+ 5 L—my+ 3\ _ omy

2 2 20+ 1 20+ 1 20+ 1
= g 1 ) < > . 1 E—mj+ % _ €+mj—l—% . —my
J = 9 -3 20+ 1 20+ 1 T 2041

(10.118)
The result of (10.118) was explicitly used in (10.110).

Let us consider as explicit example the states p3/; and p;/. The states are given as
o1 1 1 1 1

2 1 1
— =1 =1 — § = —
+\/;|€ , My )|2m 2)

1 2 1 1
ymj=g) = \/;\€=1,me=0>\§ms=§)

1 1 1
S l=1mp=1) |=my==). (10.11

Using the CG-coefficients from the table, one obtains

1 1 1 1 1
— g =f—- — . — 7 = — . = —_-— )2 2
<€2j 14 2m]\53\£2j Z—I—Qm]} 1 (E-I—Q) m;
1 . 1 1 . 1
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The matrix element of H is then given by

(Gmg | H | 5'm5) = Omjmt (Bjm; iy + By i) (10.121)
with
0
Ejmj = EJ( ) +,UB m;
Ejmjym; = pB (jm; | S3 | j'm;) . (10.122)

Thus the eigenvalue problem (10.112) is characterized by the different m,’s:

(Ejm; — E) Cjm; + > Ejm,jrm; Cirm; = 0. (10.123)
jl

For the example p3/2 and p; /3, there are two different values of m;:

em;==+3,j= 3 (j= 3 does not contribute)
emj=+1;j= 3 and j= 1 contribute.

This gives a system of two linear coupled equations to determine E. The determinant of
this system is given by

By + By im; — E Eym; 3m; _ | Eu B _ 0. (10.124)
3ym: Lo Es, +FEs, 3., —F Ey Ey
277071270 2% PRV RN}
This gives a quadratic equation for E:
1 5 5
E = 3 (En + Eyp + \/(Eu — E9)? + 4E12) . (10.125)

where Fi9 = F5 has been taken into consideration.
For a weak magnetic field | Ey, |<<| Ej; — Ey |, i.e., die off-diagonal elements are
small compared to the diagonal ones. Thus, in the case of a weak field:

En
E =
{ Ey
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as seen before. For a very strong magnetic field, H' dominates over the spin-orbit
interaction. Then

0
Ell_EZQ = E(%) + ,U/B m; + E%mj,%mj - E% - /,LB m; — E%mj,%mj

0 0

- E(%) B E%) * E%mj’%mj N E%mj,%mj

~ E%mﬁ%mi o E%mj,%mj
2uB m;

- - 10.126
20 + 1 ( )

Thus we have

2uB \? 2uB \? 1\?
_ 2 2~ L A 2 _ — — 2
V(Bu — Enl + 4EH, \l(2€+1> ™ <2€+ 1) (‘H 2> i

— uB. (10.127)
Therefore, in this limit and for | m; |= 1
1 uB 0 uB
E = 2 (BY + uBmj — "= m; + BEY uBm; + =~ m; £ B)
2(% THEMG T oo e T R RE T g T =
1 1
= 3 (Eg” + E(%O)) + pB(m; £ 7). (10.128)

The term proportional to B is the expectation value of H' = uB(Ls + 2S3) with respect
to the states | £mg): m,); namely pB(m, + 2m,). Those states are eigenstates to Hy if
one neglects the spin-orbit interaction. The first term is the energy Eéi)l. The energy
shifts uB(m; = 1) can be classified according to

[ ome) | 5 m)
mi = 1/2 : [10) |5 )
1 1
1) 15 = 3
mp= -5 o 11-1) |5 )
1 1
10) |5 = 5)- (10.129)
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Explicitly for m; = % we find for the energies:

Ei, = EY + uB =
22 3
Pisgy = —gnb
Esi = EO + uB =
22 5
1
Pisgy = g #P
2
Eii3: = — £ uB
22°272 3
(10.130)
Thus for a strong field B, one has
1
E =g (B + B)) + {“f (10.131)
2 2

One still has to solve the homogeneous equations for the coefficients C;m; in (10.123). In
the limit of a strong field B, one obtains:

1
_ 2 -3
‘T B V23 i
—- V2
— (1/\/5 Cii (10.132)
Thus we finally obtain for the state | 1) of (10.111)
o Cryp(b=1jg=5mi=3)+ § [{=1j= 3m=3))
~ ‘£:1>m£_0>|%ms—%>



(From (10.133) we see that in the presence of a strong magnetic field B the energy levels
are no longer organized according to the total angular momentum J, i.e., according to
(10.110), and levels of different J3 can cross. This effect is called Paschen-Back-Effect.

10.4.3 The H; Molecule

The application of quantum mechanics to problems in molecular physics span a wide
range, especially in quantum chemistry. Here only a very simple application is being
discussed, the Hs molecule. The Schrédinger equation is given as

(__ ' h_M Xi: Vi o+ V) v = Ey, (10.134)

where the first term refers to the kinetic energy of the electrons and the second to the
kinetic energy of the protons. In principle, the H, molecule would be a four-body problem.
However, since both nuclei are much heavier than the electrons, the protonic motion can
be neglected in a first approximation, and the motion of the electrons in the field of the
spatially fixed protons is considered (Born-Oppenheimer approximation).

In this approximation, we make the ansatz (7, R ;) = ug (7) U(R ;) for the total wave
function. Neglecting the kinetic energy of the nucleons, the Schrodinger equation reads

( oo 2 Vi + V(T ﬁﬁ) ug, (7)) = W(R;) ug, (%) . (10.135)

The positions ﬁ of the fixed nucleus are parameters for the ”electronic” Schrodinger
equation (10.135) the eigenvalues W (R;) constitute the electron energies. Inserting this
purely electronic solution back into the full problem gives

—K R L = =
(W 2 Ve, — 5 2 Vit V(”‘ﬂj)) g, (73) v(E;)
J i
h? . .
= (W Y. Vi, + W(Ry) | ug, () v(R))
J
= Eug () o(R))

(10.136)
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The term for the kinetic energy for the protons gives

V3 ug (7) o(fy) = ug () V% u()

—

+ v(R;) Vi, ug, (%) + 2Ve, v(R;) - Vi, ug (7).
(10.137)

If we neglect the parameter dependence of the electronic wave function ug, (7;), then only
the first term on the right-hand side of (10.137) survives. Inserting this result in (10.136)

—

allows to decouple the electronic motion from the nuclear motion, i.e., we obtain for v(R;)

—

—h? S R
( o7 Y Vi + W(Rj)) v(R;) = Ev(R;), (10.138)
when the electron energy W(ﬁ]) is potential energy with respect to the nuclear motion.

We now consider the Schrodinger equation for the electrons, neglecting all but electrostatic
interactions. The choice of coordinates is given in Fig. 10.2.

Fig. 10.2 Radial distances appropriate to the H> molecule.

The Schrodinger equation for the electrons is given by

—h? 1 1 1 1 1 1
{%(VHV%H@Q St - —

hu =

R rio ria m™B T Toa
To reiterate, in the Born-Oppenheimer approximation, the Schrodinger equation for the

electrons can be completely decoupled from the nucleonic part of the problem. If one lets
R — oo in (10.139), one obtains two degenerate solutions

ur (71, 72) = ua(m) up(ry)
ug(r,7) = ua(rh) up(™) , (10.140)
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where u 4, up are eigenstates of hydrogen.

Next one has to consider the spin states of the two electrons and consider eigenfunctions
to the total spin S = § + 5. Combining a symmetric spin wave function with an
antisymmetric spatial wave function and vice versa gives

us—0(1,2) [uq (71, 75) + u2(72,71)] Xs=o(1,2)
us=1(1,2) = [ui(f1,72) — ua(72, )] xs=1(1,2) . (10.141)

These states (10.141) built from the asymptotic wave functions can be taken as the starting
point for a variational determination of the energy W(R). A variational calculation gives

{ulh|u
(wlu)

where the right-hand side is an upper bound for the electron energy. For the norm, we
obtain:

W(r) < (10.142)

(u|u) = (ug £ug | u+ug)
= 1+ <’U,1 | u2) + <U2 | U1> + 1
2 £ 2(ur | us) . (10.143)

The overlap (uy | ug) only vanishes for R — oc.

(u|h|luy = (ugtug|h|u £ uy)
= (ui|h|ug) + (ur|h|ug) £ (ug|h|u) + (ua|h|ug).

(10.144)
Since h is symmetric in (1) and (2): (uy | b | u1) = (ug | b | ug)
and since h hermitian: (uy | b | ug) = (ua | b | uy).
Thus one obtaines for (10.142)
w(r) < \lhlm) £ o lh]u) (10.145)

o 1 + <’U,1"U,2>

For the eigenstates of hydrogen, the integrals can be calculated analytically, and one
obtained qualitatively the following behavior for W (R):
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W(R), S=1

\_/ "
W(R), S=0
Fig. 10.3 Qualitative behavior of the energy W(R).

Ws—1 and Ws_, differ by the so-called exchange integral (u; | h | us), which originates
from the antisymmetrization of the states. This is a purely quantum mechanical effect
and does not have a classical analogon. The lowering of the energy for the S = 0 state
gives the molecular binding. The probability

‘ US:()(’Fl,FQ) ‘2 = ‘ ’U/I(Fl,FQ) -+ UQ(FQ,T_"l) |2 (10146)

is large if both electrons are located between the protons, there u; = uy. The Hs molecule
exists only for S = 0, not for S = 1.

We can now incorporate the motion of the two protons into the solution for S =o.
Starting from (10.138) and introducing relative coordinates, we obtain

<% V3 + W(R)) v(R) = Ev(R), (10.147)

where M = M/2 is the reduced proton mass. Writing

v(R) = = &R) Y, (R) ; L=0,1,2,--- (10.148)

1
R
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the radial equation reads

{ S i + WO} e®) = Fem).

(10.149)

Here W (R) is an effective potential containing the angular momentum barrier. In order
to further calculate the problem in an approximate fashion, one expands W (R) around
the minimum:

R°L(L +1)

W'(R) = W'(R) — T =0 (10.150)

which gives a value Ry for the equilibrium distance between the two protons. Then one
expands W (R) around Ry:

W) = Wr + EZFL gy o

B> L(L+1) N (R — Ry)?
2M R} 2

Q

W(RO) -+ KO )

(10.151)

where the last term corresponds to a harmonic oscillator potential. In this approximation,
the total energy E of the molecule is given by

A L(L+1) K 1
_ — - 10.152
o + h M(n+2)+ (10.152)

E = W(Ry) +

and consists of

e the electron energy W(Ry) at the equilibrium point Ry

e the vibrational energy fiw (n + 1)

2 _
e the rotational energy h—ZLA%L—};l—), here M R2: moment of inertia.
0

If one wants to be more precise, one has to consider that a rotation stretches the molecule,
and thus Ry increases with L and thus K changes. Thus rotation and vibration influence
each other. Considering the symmetry of the proton wave function (10.148), we obtain
when interchanging (1) and (2):
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—R or

R —
R — -R
b,p — m—0, p+7
Vi, (-R) — (=1)" Vi, (R) .

(10.153)

From this follows that if the protons are in a S = 0 state, L has to be even; if the protons
are in a S = 1 state, L has to be odd. There exists two types of rotational bands:

e S =1 states have three magnetic states

e S = ( states have one magnetic state.

This has consequences for the specific heat of hydrogen gas (see thermodynamics and
statistics).

10.5 Time-Dependent Perturbation Theory

Let the perturbation be given by the time-dependent potential V'(¢). Thus, the Hamilto-
nian will be time dependent

H=H(t)=Hy+ V() (10.154)
and one needs to find solutions to H(t) given as

L OY(t)
ih =5 = = Hy(t) . (10.155)

Since Hj is time independent, the solutions are stationary,

Hopn = Enpn . (10.156)

In the interaction picture, the time dependence of a wave function is given as

() = oM (1) (10.157)
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and thus (10.155) gives

i+ dlﬁét(t) _ GOt Y () e iHOUR () (10.158)

The solution ¢,, to Hy form a complete set of eigenvectors, and (t) can be expanded in
that basis:

Yi(t) = Calt) ¢n (10.159)

where the time dependence is now contained in the coefficients C,,(¢). Inserting (10.159)
into (10.158) and projecting on ¢, leads to an equation for the coefficients

dC, (1)
dt

ih = BN < 0,V > e EmR Ot (10.160)

which becomes in integral form

1t . ,
Cu(t) = Culte) + — [ dt' > eEn=Emi/h <« o [V (1) pm > Cn(t) (10.161)

ih to m
with the boundary condition
Ch(to) = Opr - (10.162)

Here the choice is made such that at ¢ = t; only the start r is occupied. It is also
reasonable to assume that the perturbation V'(¢) is switched on at ¢t = .

The lowest order perturbation theory one obtains

1 . ,
Ca(t) = bur + = | dt’ En=E/h o 1V (1) > . (10.163)
0

The transition probability at a time ¢ to a state n is then

(enlp()? = | Cu(t)]” = |Ca(®)? . (10.164)

Let
V(t) Oe™t + Of e+t (10.165)
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and
wr = (B — E,) /1 . (10.166)
Thus the integral in (10.163) becomes

¢ () 2sin (wpy + w) (%Q)

dtl ei((Unr:tw)tl — ei(wn"'iw 10.167
to (Wnr £ w) ( )
Thus, for n # r
Cnp = A (i) 5 @+ @) () o)
(t _ = (wnr+w)( =3 < o, >
C, (1)) — e o T ¢nlOlg

) sin (wy, — w) (e

+ ez(wm*w)(#) ( )( 2 ) < 80n|0+|90r > ‘2
(Wnr — w
.9 t—1

4 | sin® (wnr +w) (TO)
= — < n O T > >

= { o =) | < ¢nlOler > |

s1n? (Wpy — W) %
+ 2( ) | < ¢nlOTfpr > 7

(Wnr — w)
. t—t ; _ i=tg
+ 2Re [e™(tto) sin (Wnr +w) (TO) s (Wnr w)( 20)
Whr +w Wpr — W
< (Pn|0|§0'r > < §0n|OT|Q0r >)} (10168)

This expression shows that the transition probability oscillates over time! Consider T =

(t;—to) — o00. Then one needs to consider expressions like sin? QT/Q2.

For the norm, one obtains

/00 40 sin? QT _ %/00 de sianT2

- 02 2
00 in2
- T/ R (10.169)
—0o0 T
and thus
. sin? QT )
711—{20 g = 711—{20 7T §(Q) . (10.170)
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Thus for ¢ — oo, one obtains

)P = (t=10) 75 | < palOlgr > [ 6(umn + )
+ (= t0) 33 | < @nlOMlgr > |7 ey — )
+ oscillating interference terms . (10.171)
The d-functions lead to the conditions
W w0 = %(EH—E,) +w=0 (10.172)
or
E, =E, +hw. (10.173)

This describes the energy loss iw to the external field V (¢) under de-excitation E, — E,,.

From the second d-function, one obtains

1
W =W = = (E,—E)—w=0 (10.174)

or
E,=E, + hw , (10.175)

which describes the energy gain fiw from the external field V (¢) under excitation £, — E,,.
The transition probability for large times grows linearly in ¢ for the energy gain or loss.

The transition probabilities per unit time are given for the energy loss as

2
Wy = % | < ¢u|Olgr > 2 6(E, — E, — hw) (10.176)
and for the energy gain as
2
Wy = % | < a0t o, |? (B, — B, — hw) . (10.177)

These expressions only make sense when one integrates over the J-functions. This means
either V'(¢t) is a superposition of different w, or the states are in the continuum. The
oscillating terms do not contribute to those integrations.

As special case, let V' be time independent, i.e., w = 0. Then

_27r

wn = ==| <@nlVig: > [* 6(E, — Ey) - (10.178)

This expression for w,, is ”Fermi’s Golden Rule” for the transition probability per unit
time. Notice that this expression is only in lowest order in V.
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10.5.1 Atomic Transitions

Atomic transitions are the absorption and emission of electromagnetic radiation by atoms

(molecules).

Consider the interaction for one electron in an electromagentic field:

Vi) = - Aw)-p— . B .

mc 2me

(Here we work in Coulomb Gauge, i.e., div A= 0).

The free radion is described by

&
|
I

Because of div A =0 : AyLk, i.e., one has transverse polarization

B = VxA=—(kxAy)sin (k- #— wt)
E = -Y Aysin(k - & — wt) = —k Aysin (k-7 — wt) .
c
Then
I > L eh L - o -
V() = —— cos (k-7 —wt) Ay - P+ Ime (k x Ag) sin(k & — wt)
€ —ik-% 2 — ho > iwt € ikxZ ~
- — A 2 ax K - —
2mce <+2Z_0>< )e 2me 0 <

Thus, the absorption rate for electromagnetic radiation is given by

(10.179)

(10.180)

(10.181)



The induced emission rate is exactly the same since

| <nlO'lr > > = | < ¢:|Olpn >* . (10.184)

Consider the Dipole approximation.

Transition matrix element:

L Hi .
My, = e < @ple®™® A - <"+ EZ o X k) lor > . (10.185)

Consider A, - k= 0, e.g., Ao =k and k = 3. Then

. hi
M, =e < p,le** (p—l— EZ ayk> lor > . (10.186)

The typical site of an atom is about R ~ 1078 = em 1A. The wavelength of the emitted
or absorbed light is A ~ 107° ¢m. Thus, A >> R and we consider the so-called long
wavelength apporoximation

27

R
= == =21 — ~107%.
A k—>kR 7r/\ 0

Then e** — 1.

The spin matrix element is small with respect to the monetum matrix element (rough
estimate):

A
< s > hK 2mR
onl5 T0|pr |~ A (10.187)
< Qnlpz|or >

| AR S

In the case that the momentum matrix element vanishes, the spin matrix element is, of
course, important, together with terms in the expansion of the exponential function.

Consider the momentum matrix element

M = e < pn|ps|er > (10.188)
with
Pe = = [Hoa] .
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Then
me
M = T <(pn|[HOax”(pr >
ime
= T (En - Er) < ¢n|X|QOT >

= im Wy < Pple-zlp, >, (10.189)

where e - x is the electric dipole operator. As a fact, dipole transitions are the most
common transitions in atoms.

10.5.2 Selection Rules

Selection rules are conditions with respect to quantum numbers of operators as well as
states, which force certain matrix elements to vanish.

Consider dipole transitions between eigenfunctions of hydrogen, |¢ >= |[nfjm >. The
dipole operator X is a vector operator, i.e., a tensor operator of rank 1.

1
Ti=x = —— (x+i
1 1 \/5 ( y)
Tol = .Z'():Z
1
T, = 2_, = (10.190)

7 (z —1y)

As tensor operator Z fulfills all relations for tensor operators, and thus the matrix elements
are of the type

< nljm|z,|n'l'i'm' >= C(15'7; pm'm) < nljlzn'l'j") . (10.191)
Considering the Glebsch-Gordan coefficient, one obtains
Aj = 001 (=44 =7+1)
Am = 0,1 (m=m'+pu).
Considering the parity of the states gives:
Plntim > = (=1 |nljm >
Pz, = —z,P. (10.192)
Thus
< nljmlz,|n'l'j'm' > = < nljm|P?z,|n'l'j'm' >
= — < nljm|Pz,P|n't'j'm" >

(=) < nljmlz,|n'l5'm >
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From which follows that (—1)¢*#t1 = 1 for the transition. Due to the odd parity of the
dipole operator, transitions can only occur between states with different parity, A¢ = £1.

3s 3p 3d
N ‘/Zp /
. /

The direct transition 3d — 1s is suppressed.

10.6 Time Dependence of Quantum Mechanical Sys-
tems

Time evolution operator (unitary)
Ut) = er At (10.193)

Consider a system which has no external forces, and which is prepared in a state [ >.
We are interested in the time dependence of the expectation values of observables,

<A> (t)=< Al > (t) . (10.194)

In principle, the operators and the state vectors may be time dependent. i.e., [¢(t) > and
A(t). Thus, the expectation value could be

<A> () =< )|AW@)|Y(t) > .
Consider the two extremes, namely in one case, the time dependence is completely de-

termined by the time dependence of the state vectors (Schrédinger picture), and in the
other case, the time dependence in only contained in the operators (Heisenberg picture).

10.6.1 Heisenberg and Schrodinger Picture

The assumptions for the Schrodinger picture are that the time dependence is carried
by the state vectors, and the operators are time independent:

<A > (1) =< s (t)[As|p(s)(E) > (10.195)
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where A; is time independent. The time evolution of |¢s(¢) > is given by

[¥s(t) >= u(t)[15(0) > . (10.196)

Obviously, the operators of the Schrodinger picture fulfill

d

YA, =0.
dt

Time translation leads to the Operator Schrédinger equation

ih d% U(t) = HU(t) . (10.197)

Applying this on |1),(O) > gives the Schrédinger equation
d
ih = ls(t) >= ]ty (1) > (10.198)

which is closely related to the differential equation used in the wave mechanics, but is
more general since

e the Hamiltonian H is not yet specified.

e It is valid for general Hilbert space vectors.

Reformulating (10.195) leads to
<A>(t) = <s(t)|Asly(s)(t) >
= <G (O)UTH(E) Ay U(t)[1hs(0) > -

Define a time-dependent operator
Ap(t) = U '(t) A, U(1) (10.199)
and a time-independent state vector

Y > = [s(0) > . (10.200)

Then the expectation value becomes
<A> () =<vulAu®t)|lvs >,
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which describes the time dependence of the expectation value of A with time-dependent
state vectors and time-dependent operators. This defines the Heisenberg picture.

More precisely, in the Heisenberg picture one starts with states and operators that coincide
at t = 0 with the quantities [1,(0) > and A, of the Schrédinger picture and defines for
arbitrary times ¢

|¢H > = |¢s 0) >
Ap(t) = U (t) AU(®) . (10.201)

Because of U(t = 0),1 the operators and states coincide at ¢ = 0 in both pictures. For
the Heisenberg picture, one requires

d
— >=0.
Consider the operators

Ag(t) =U(t) Agu(t) = U'(t) AgU(2)

and
in & U(t) = HU(t)
dt N
and
L d
—ih — U'(t)=U"(t)H , where H=H' .
Then
ih L anw = an (Lute) avm+avte) a, (Lou
at T dt ’ > \dt

~UT(t)H AU(t) +ul(t) A, HU(t)
—~HU'= A, U+U" A,UH
—HAy(t)+ Ag(t)H = [Ag(t), 1]

where [U, H] = 0 was used.

Thus, for the operators of the Heisenberg picture follows the equation of motion

d 1
& Au(t) = + [H, Ay(0) (10202)

which fulfills the same role as the Schrodinger equation (10.198).
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10.6.2 Time Evolution of One-Body Systems

Counsider a Hamiltonian of the form

1
2m

H(P,Q)= -— P+ V(Q).

In the Schrodinger picture, the operators ﬁs and st are constant, and thus the Hamil-
tonian is constant with respect to time. The operators Ps; and ()s obey the canonical
commutation

- h
[Psa QS] = ; 1.
The entire time dependence is carried by the state vectors as
() >= ™ PPN |4 (0) >

The evaluation of the operator exponential function is non-trivial, even for the free motion

P‘,Z

(1) >= et 7 |1, (0) > . (10.203)

In the Heisenberg picture, the state vectors are time independent, [y >, but the opera-
tors Pg(t) and Qy(t) are time dependent. Thus, the Hamiltonian
1 =
H— o P (t) +v (Qu(t))
is time dependent. Though the operator Py and Qg depend in a non-trivial way out,
they must fulfill a commutation relation for all times ¢

[Pu(t), Qu(t)] = ? 1.

They all fulfill equations of motion

d 1

i Py(t) = 7 [H(Py, Qu), P ()]
d 1

2 Q) = 1 [H,Qu()].

As shown in Chapter 5, the commutator of an operator with H can be identified with the
derivative of H with respect to the conjugate of this operator. Thus,

d OH

7 Qu(t) = aP,

d oOH

P = —55- (10.204)



These equations are formally identical with the canonical Hamiltonian differential equa-
tions of classical mechanics, however, the contain operators instead of functions. These
operator valued equations can be turned into equations with c-numbers, if one considers
expectations values with the time-dependent Heisenberg state vectors

& < UulQuln) = <vul oo lou >
d Pyt = on 10.205
%<¢H| w(t)|vr > = —<1/1H8Q—H|1/)H>- (10.205)

These equations (10.205) are the essence of the Ehrenfest Theorem which states that
the expectation values of space and momentum fulfill the canonical differential equations
of classical mechanics.

Reminder:

0 0
— H e — H .
<6PH >7é 8<PH>< >

10.6.3 One-Dimensional Particle Motion

Consider the free Hamiltonian
P2
HO = — .
2m
In the Heisenberg picture, one obtains for the monentum

% Py(t) = % [Ho, Pu(t)] = 0,

thus
Py(t) = Py(O)=P . (10.206)
As in classical mechanics, the momentum is conserved
0OH P
m

d )
7 Qu(t) = 7 [Ho, Qu(t)] = P,

Thus, the operator differential equation for @)y has the solution (as in classical mechanics)
P
Qu(t) =Qu(0)+ —1t. (10.207)
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For the commutators, one gets

[P, Qu(t)] = [P, Qu(0)] = ? 1 (10.208)
(Qu(t), Qu(0)] = [g t,Qu(0)] = mi t1 (10.209)

Thus, the operator Qg for different times do not commute. The value of the commutator
increases linearly with ¢!

Calculate the Free Motion in the Heisenberg Picture
Since the operator @y (t) depends on t, the eigenvectors will also be time dependent. Let
|z,t) be eigenvector of Qg ().
Then

Qu(t) |z,t >=x |z, t > .

Here t considered as parameter of the state |x,t >. Applying (10.207) leads to

(QH(O) + g t) |z, t >=x |z, t > . (10.210)

Up to now, the properties of Py(t) have not yet been used. Remember that for each ¢
the Heisenberg picture implies that there is a specific coordinate representation for each
t. One has to fix one choice, and it is logical to fix values at t = 0.

Then, the eigenvalues are
> = |z, t=0>
with
QuO)|z' > = |z,t=0> .

With respect to this basis at t = 0, one obtains from (10.210)

t h d
'+ — = — | <dzpt>=z <2|z,t> . (10.211)
m i dx’'
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Thus, we obtain a wave function
Vpi(2') = < 2’|z, t >

which is a function of 2’ and depends parameterically on =z and ¢t. Since P is time
independent, it can be applied to all coordinate representations and acts as differential
operator

' h d '
P1/’x,t($)= ; @1/1“@),

and thus (10.211) turns into an ordinary differential equation of first order

—wmt( ) d)zt( )

i m(z —x)
ht
which has the solution

Pps(z') = A e @) (10.212)
where the constant A can be fixed by considering ¢t = 0,

VYpi=o(z') =< 2'|z,t =0 >=< 2|z >=0(z — 2) .

In fact, (10.212) is singular for ¢ = 0. Instead of determining the limit ¢ — 0, one can
start from (10.211), which becomes for ¢t = 0

(@' = 2) Yup=0(z') = 0
with the general solution v, —o(z') = ad(x — 2’). The constant a must be fixed as a =1

because of the normalization.

Consider (10.212) for the limit t — 0:

lim A dr et 31 @) —q
t—0

with y = /52 (z — 2') follows

/Oo dr e g —(z—a')? _ 9 2_ht /oo dy e*in —9 Q_ht \/7
—o0 m 0 m 2

and thus A = ,/2’7?;;75. With this, the time-dependent wave function becomes

ma

Vou(a') =< &, Ola,t >= /o= e e (02 (10.213)
Generalizing from ¢ = 0 to an arbitrary ¢’ gives
mi i Ty 2
< x',t'|x,t >= m P ey (&) ) (10.214)
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Free Motion in the Schrodinger Picture

In the Schrédinger picture |z,t >, is the state, which is obtained from the time evolution

2

lz,t >=e 8 Tl |zt =0>=¢" g Hot | > (10.215)

of the eigenstates |r > of the operator Qs = Qy(O). The state |z,t >, obeys the

Schréodinger equation

L d
th 7 |z, t >s= Hoplx,t >, .

In the coordinate representation follows

0
iha <zt >= — — — <2'lz,t >,

where 2’ and ¢ are the variables, and z a fixed parameter. Define a wave function
Vi (2',t) := < 2’|z, t >4, for which the full Schrédinger equation takes the form

L Oy (alyt) B P ,
ih ot N 2m Oz Va(7',1)

with the initial conditions
Gola't = 0) =< 2’|z >= 6(a" —x) .
The solution is related to the Green’s function of the Schrédinger operator

ot 2m 0x?’

which is determined by the differential equation

2 2
(w2 12

5 T o @) Dz —2',t—t)=6(x—12") 6(t — )

and the retardation condition
Dz —a',t—t)=0 fort<t/.
Differentiation of (10.214) shows that 1), (', t) fulfills the Schrédinger equation.

One can also directly construct ¢, (2, t) by obtaining from (10.215) and consider v, (2, t)
as matrix element

. 2
Po(z' t) =< z'le” & 3w |z >

and directly evaluates the matrix element.
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10.6.4 The Interaction Picture

Consider the Hamiltonian H = Hy + H', where Hj is the Hamiltonian for an imper-
turbed system. The solutions of the Hy can be calculated exactly. H' is considered as
perturbation.

2
An example is the Hamiltonian for an electron, H = ﬁ (P - ¢ A) + eo.

In such a case, it is useful to make the ansatz that the operators and the states time
dependent. In addition to the operator u(t,t = 0) = u("), one introduces the operator

up(t) = e~ # Hot (10.216)
and defines the Interaction picture or Schrodinger picture as

Ar(t) = Uyt(t) As Us(t)
lpr(t) > = Uy '(t) U@)|[v.(0) > . (10.217)

For t = 0 follows

A(0) = As=Ax(0)=A
[%1(0) > = [4,(0) >= |¢m > .

Similar to the Heisenberg picture, the Interaction picture is evolving from the Schrédinger
picture through a unitary transformation, where uy'(¢). The difference is that the time
dependence introduced by H' is now transferred on the states, which are constant in
the Heisenberg picture. The time dependence is given according to (10.217) through the
unitary operator

wt)=Uyt ) U(t) . (10.218)
If H is time independent, then

w(t) Uy () U(t) = e & Mot = 7 1L

Derivation of a different equation for w(t):

L d . d . d
ih = w(t) = ih <% Uo(t)> U+ ih U} S U= ~UlHu+ UJHU

= Uy'(H — Hy)U
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Introduce the operator

Hi(t) = Ug'(t) H'Uy(t) (10.219)
so that
L dw(t)
zh7 = H;(t)w(t)
w0) = 1
[Yr(t) > = w(t) |vs(0) > . (10.220)

Hj(t) is called ”interaction operator” and essentially carries the time dependence

H(t)=Hy+ H'(t) .

All previous derivations stay valid since the differential equation i 4 U(t,t0) = H(t) U(t, t,)
was only used for U(t) = U(¢,0). It is important to realize that H,(t) for different times
does not commute
[Hr(t), Hi(t')] #0 for t #1t". (10.221)

Consider the one-dimensional motion

Qult) = e FMQO) e F M =Q(0)+ Lt

P
Hi(t) = H'(Q:(1) = H(QO)+ — 1),

m

and

Qul1), Qu(t)] — 1t 1)

10.6.5 Dirac-Dyson Time-Dependent Perturbation Theory

In general, the differential equation for the operator w(t),

ih L w(t) = Hy(t) w(t) (10.222)
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or in integral (solved) form

wit)=1- + /0 dr Hy(7) w(r) . (10.223)

The boundary condition w(0) = 1 is incorporated in (10.223). The advantage of this
formulation is that one can impose an iterative procedure for determining w(%).

e On the right-hand side, stet w(7) = 0, then w(t) ~ w(t) = 1.

e One puts w(7) = 0, and thus w(t) ~ wy(t) = 1.

Inserting w(m;) = 1 one obtains

Q

i ot
w(t) 1- ﬁ/o dt Hy(m) dr

= w1 +w2(t) .

The result is reinserted into (10.223), and one obtains as second-order approximation

1

w(t) -3 Ot Hi(m) {1— — / Hi(m) dTQ} dm

Q

= 1- % /Ot Hi(m) + (%) /0 dT1/0 Hi(m) Hi(7) drmi dry

= wy+ wl(t) + w2(t) .

This procedure can be continued for arbitrary, and one obtains an infinite series:

~ 3 wal) (10.224)

with the terms

Wy =

wl(t) = H[ T1 d7'1

i\? t
(x)g(t) = ( ) / H[ T1 7'2) dT1 dTQ

wn(t). _ (%1) / / / Hyt) Hy(m) - - - Hy(7) dr - - - dry d(@0.225)
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Assuming that the series converges and that the differentation is allowed, (10.225) is an
explicit construction of solutions to (10.222):

ih % wp(t) = ( = ) / / 1(m2) Hp(ms) - - - Hp(m,) dmy, - - - d7py
H

Thus

The initial conditions are fulfilled since

we(0) =0 forn=12,---

Define a time-ordered product

T (HI(TI) HI(TQ)) =

{ Hi(m) Hi(me) form >m (10.226)

Hi(me) Hr(m1) form>m
The operator with the largest time sits to the left.
From this follows
/ / (Hi(m1) Hi(m2)) dry dry
- / |7 T () Hi(m)) dry dry + / / T(Hy(m) Hy(r)) dry drs
- /0 /0 Hi(n) Hi(ry) dry dry + /0 / Hy(m) Hy(m) dry dry . (10.227)
The second term can be further modified.

For arbitrary functions one has

/ / 7'1,’7'2 dTQ dT1 / / 7'1,’7'2 d7'1 d’TQ .
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On both sides of the equation, one integrates over the same region. Applied in the current
situation, this means

t t t T2
/0 " HI(TQ) H[(’Tl) dTl dTQ = /0 /0 H[(Tz) H[(Tl) dTl d’7'2

t T1
- / / Hy(n) Hi(ts) dr dry -
0 0

Thus, one see that the two integral in (10.227) are identical. One can obtain this result
immediately if one notices that

T(Hr(n)Hi(r2)) = T(Hr(m2) Hr(m1)) ,

i.e., that the integrand of (10.227) is symmetric with respect to the diagonal 7, = 7.

Thus we get for wy(t):

wat) = — (") / / (Hy(r1) Hi(7)) dry drs (10.228)

and

wn(t) = ( ) / / (Hi(r1) Hy(7y) - - - Hi(m)) dry - - - dy drs . (10.229)

Thus the expansion

proved to be correct.

This series can be written as
P
w(t) = T (eﬁ / HI(T) dTg)
0
1
nZ:O E ( ) / / HI T1 HQ(TQ)"'HI(TTL) dTn"'dTQ dTQ.

This expression is also known as Dyson’s formula.
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