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Chapter 11

Elementary Scattering Theory

As seen in the previous chapter, the bound state problem is characterized through the
stationary, normalizable states in the Hilbert space. Since quantum mechanical states in
principle always have to be normalized (because of the statistical interpretation of the
wave functions), scattering states should be non-stationary, normalizable solutions of
the Schrödinger equation.

An elementary, conceptually not quite satisfactory, however, in practical applications
extremely successful approach, consists of dropping the normalization condition. This
allows to introduce scattering states as suitably chosen stationary, non-normalizable
solutions of the Schrödinger equation. Stationary states are in principle eigenstates of
the Hamiltonian. If they are supposed to be non-normalizable, they have to be special
solutions from the continuous spectrum of H .

11.1 Free Motion

The force free, single particle motion (free motion) is given by a Hamiltonian, often called
free Hamiltonian,

H0 =
~P 2

2m
. (11.1)

Possible eigenvalues of H0 are the momentum eigenstates defined by

~P | ϕ~p〉 = ~p | ϕ~p〉 . (11.2)
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With (11.2) and (11.1) follows

H0 | ϕ~p〉 =
~P 2

2m
| ϕ~p〉 = Ep | ϕ~p〉 , (11.3)

the ”norm” of those states can be chosen as

〈ϕ~p ′ | ϕ~p〉 = δ(~p ′ − ~p) . (11.4)

The specific form of | ϕ~p〉 is obtained when the explicit representation of the operator ~P
in coordinate space is employed:

〈~x | ~P | ϕ~p〉 =
~

i
~∇ 〈~x | ϕ~p〉 =

~

i
~∇ ϕ~p(~x) = ~p ϕ~p(~x) , (11.5)

which has as solution of the differential equation

ϕ~p(~x) =
1

(2π~)3/2
e

i
~

~p·~x := 〈~x | ~p〉 , (11.6)

which corresponds to a plane wave. The norm is explicitly given as

〈ϕ~p | ϕ~p〉 =
1

(2π~)3

∫

d3x e−
i
~

~p ′·~x e
i
~

~p·~x = δ(~p ′ − ~p) , (11.7)

thus, the norm in a regular sense does not exist.

In general, the time evolution of solutions of the free Schrödinger equation is given
by

−~

i

d

dt
| ϕ(t)〉 = H0 | ϕ(t)〉 (11.8)

with the solution

| ϕ(t)〉 = e−
i
~

H0t | ϕ〉 . (11.9)

With | ϕ~p〉 as starting vector follows with (11.3)

| ϕ~p(t)〉 = e−
i
~

Ept | ϕ~p〉 . (11.10)

This is a stationary solution with the typical time dependence given in a phase factor. It
is obviously not normalizable

〈ϕ~p ′(t) | ϕ~p(t)〉 = 〈ϕ~p ′ | ϕ~p〉 = δ(~p ′ − ~p) . (11.11)

Inserting (11.6) into (11.10) gives the explicit representation

ϕ~p(~x, t) = e−
i
~

Ept ϕ~p(~x) =
1

(2π~)3/2
e

i
~

(~p·~x−Ept) , (11.12)
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which is just the De-Broglie wave. In coordinate space, the physical interpretation of
(11.12) can be readily studied. We have a plane wave. Positions with the same phase

~p · ~x − Ept = constant (11.13)

spread with the phase velocity

~vph =
d~x

dt
=

Ep

p
p̂ =

1

p

p2

2m
p̂ =

p

2m
p̂ =

v

2
p̂ , (11.14)

where p̂ = ~p/ | ~p | indicates the direction of the spread. This leads intuitively to the
fact that plane waves are used to describe the motion of quanta with a definite starting
momentum ~p.

11.2 Free Wave Packets

Especially at the beginning, it is useful to understand that in principle we should have
described the free motion with a normalizable state | ϕa〉. We should work with a packet

| ϕa〉 =

∫

d3p | ϕ~p〉〈ϕ~p | ϕa〉 =

∫

d3p | ϕ~p〉 ϕ̃a(~p) , (11.15)

where ϕ̃a(~p) is the experimentally given distribution of momenta, e.g., around a specific
value ~pa. Of course, we can assume that this distribution is finite, so that the integral
over | ϕ̃a(~p) |2 exists and can be set to one. This means, we can require

‖ ϕa ‖2 = 〈ϕa | ϕa〉 =

∫

d3p 〈ϕa | ϕ~p〉〈ϕ~p | ϕa〉 =

∫

d3p | ϕ̃a(~p) |2 = 1 . (11.16)

In contrast to | ϕ~p〉 this normalizable state | ϕa〉 is not an eigenvector of H0 to a definite
energy E, since

H0 | ϕa〉 =

∫

d3p H0 | ϕ~p〉 ϕ̃a(~p) =

∫

d3p
p2

2m
| ϕ~p〉 ϕ̃a(~p) 6= E | ϕa〉 . (11.17)

The general solution (11.9) of the time-dependent Schrödinger equation (11.8) reads with
the initial state | ϕa〉:

| ϕa(t)〉 =

∫

d3p e−
i
~
H0t | ϕ~p〉 ϕ̃a(~p) =

∫

d3p−
i
~

p2

2m
t | ϕ~p〉 ϕ̃a(~p) , (11.18)

and similarly to (11.17) the time dependence cannot be pulled in front of the integral.
One has instead

| ϕa(t)〉 6= e−
i
~

Et | ϕa〉 . (11.19)
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Using (11.12) we obtain for the wave packet in coordinate space representation

ϕa(~x, t) =
1

(2π~)3/2

∫

d3p e
i
~

(~p·~x−Ept) ϕ̃a(~p) . (11.20)

It can be shown that for a general initial state | ϕ(0)〉 the explicit time evolution is given
by

ϕ(~x, t) =
( m

2πi~t

)3/2
∫

d3x′ e
i
~

m
2t

(~x−~x ′)2 ϕ(~x, 0) . (11.21)

Estimating the absolute value gives

| ϕ(~x, t) | ≤ 1

| t |3/2
∣

∣

∣

m

2πi~

∣

∣

∣

3/2
∫

d3x′ | e im
2πt

(~x−~x′)2 | | ϕ(~x) |

=
constant

| t |3/2 .

(11.22)

Thus for the probability density, we obtain

ρ(~x, t) = | ϕ(~x, t) |2 ≤ constant

| t |3/2 . (11.23)

However, the total probability, which corresponds to the conservation of the number of
particles is given by

‖ ϕ(t) ‖2 = 〈ϕ(t) | ϕ(t)〉 = 〈e− i
~

H0t ϕ(0) | e− i
~

H0t ϕ(0)〉 (11.24)

= 〈ϕ(0) | ϕ(0)〉 = ‖ ϕ(0) ‖2 .

This means that the total probability is independent of t; however, in (11.21) one has to
integrate over increasingly larger areas in order to compensate the 1

|t|3/2
behavior.

11.3 Scattering States

As we saw with respect to the free motion, the energy eigenvalues in the continuous
spectrum are infinitely degenerate. In this simple case, it was possible to explicitly give
the physically realized solutions, the plane waves. If a potential V is present, this is in
general no longer the case. Here we need boundary conditions in order to pick the
physically relevant solutions among the infinitely many possible solutions.

Asymptotic Conditions:
If we assume that the region of the interaction V is specially restricted (short-ranged
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potential), then it seems plausible to assume that the scattering solution | ψ(+)
~p 〉 consists

of a superposition of the free solution and a scattering piece | ψsc
p 〉, which is given by

the potential. According to the previous discussion, one chooses as the free solution the
momentum state | ϕ~p〉. We, therefore, assume that the solution of the full eigenvalue
equation, which is associated with an incoming particle with sharp momentum ~p,

H | ψ(+)
~p 〉 = E | ψ(+)

~p 〉 =
p2

2m
| ψ(+)

~p 〉 (11.25)

can be written as

| ψ(+)
~p 〉 = | ϕ~p〉 + | ψsc

~p 〉 . (11.26)

In principle, this is not yet a real statement, since one can always separate a piece | ϕ~p〉
off any vector (which is normalized on a δ function). The ansatz (11.26) becomes less
trivial if we assume that the piece | ψsc

~p 〉 is caused by the potential, and thus vanishes if
the potential vanishes. This transition can be achieved by multiplying a given potential
with a factor λ and one studies the limit λ→ 0.

In order to obtain a detailed requirement for | ψsc
~p 〉, we use the coordinate space repre-

sentation. Here (11.26) reads

ψ
(+)
~p (~x) =

1

(2π~)3/2
e

i
~

~p·~x + ψsc
~p (~x) . (11.27)

As already mentioned, ψsc
~p (~x) is in general in a complicated way given by the potential

V . If one considers how the influence of a perturbation (here a short-ranged potential)
influences a plane wave, it is reasonable to require as physically motivated boundary
condition that ψ

(+)
~p (~x) behaves asymptotically as an outgoing spherical wave, i.e.,

ψsc
~p (~x)

r→∞−→ 1

(2π~)3/2
fE(x̂, p̂)

e
i
~

pr

r
, (11.28)

where E = p2

2m
. With this we fix the scattering solution as the specific solution of (11.25)

for which in the coordinate space representation the condition (11.28) holds. This means
they are defined by the following requirements

[

− ~
2

2m
~∇2 + V (~x)

]

ψ
(+)
~p (~x) = E ψ

(+)
~p (~x) (11.29)

ψ
(+)
~p (~x)

r→∞−→ 1

(2π~)3/2

[

e
i
~

~p·~x + fE(x̂, p̂)
e

i
~

pr

r

]

. (11.30)

The factor fE(x̂, p̂) is a measure for the magnitude of the scattering part ψsc
~p (~x) of the

scattering solution and is called scattering amplitude. According to our assumptions
fE(x̂, p̂) has to vanish if the potential is zero. The condition (11.30) is also known as
Sommerfeld Radiation Condition.
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11.4 Cross Section

The scattering of a particle under the influence of a potential can be described in the
following fashion. From the incoming current ~j0 of particles the scattering process creates
a current ~jsc of scattered particles.

j

n dF

z-axis
scattering 

center

0

d 

.

Ω

θ

Fig. 11.1

Explanation of the differential cross section.

Experimentally one measures at a distance r from the scattering center the probability
current which penetrates through an area

dF = r2 dΩ . (11.31)

Here dΩ is a solid angle which is given by the resolution of the detector (ideally dΩ
is infinitesimally small). This current is then related to the incoming current, i.e., one
considers the quantity

dσ =
~jsc · ~n dF

| ~j0 |
=

~jsc · ~n r2 dΩ
| ~j0 |

. (11.32)

Here ~n characterizes the location of the areal element dF through which the scattered
particles penetrate. This definition (11.32) shows that dσ has the dimension of an area.
The current is given by the probability density multiplied by the velocity. For the incoming
plane wave, this means

~j0 =

∣

∣

∣

∣

1

(2π~)3/2
e

i
~

~p·~x

∣

∣

∣

∣

2

~v =
~v

(2π~)3/2
, (11.33)
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whereas for the scattered wave

~jsc = | ψsc |2 v′ · ~n =

∣

∣

∣

∣

1

(2π~)3/2
fE(x̂, p̂)

1

r
e

i
~

pr

∣

∣

∣

∣

2

v′~n

=
| fE(x̂, p̂) |2

r2
v′

(2π~)3
~n .

(11.34)

Here the current points in direction of ~n, i.e., it is perpendicular to the corresponding
spheres whose center is given by the scattering center. Inserting (11.33) and (11.34) into
(11.32) leads to

dσ = | fE(x̂, p̂) |2
v′

v
dΩ = | fE(x̂, p̂) |2

√

E ′

E
dΩ . (11.35)

The factor 1
r2

in (11.34) is canceled through the multiplication with the factor r2 from the
area dF in (11.31). This is important since then the result (11.35) does not depend on
the distance r at which the detector is positioned. Experimentally one only has to make
sure that this detector is positioned outside the interaction region, where the asymptotic
conditions are realized. When considering short-ranged potentials, this is trivially fulfilled,
however, leads to complications when considering the quantum mechanical treatment of
Coulomb scattering.

In (11.33) and (11.34) v and v′ denote the velocity of the incoming and outgoing particles.
Correspondingly the factor

v′

v
=

p′

p
=

√

E ′

E
(11.36)

occurs in (11.35). However, in the here considered case of potential scattering v = v′, a
condition which as been assumed in the asymptotic condition (11.30). Scattering with
v = v′ is also called elastic scattering. From (11.35) we derive that the differential

cross section dσ
dΩ

is given through the scattering amplitude fE(x̂, p̂) according to

dσ

dΩ
= | fE(x̂, p̂) |2 . (11.37)

The amplitude fE has obviously the dimension of a length, which can be immediately
seen from (11.30). In (11.35) the factor (11.36) has been considered explicitly to point out
that in, e.g., inelastic processes energy can be lost in the scattering process, e.g., through
the excitation of composite targets, and then the factors (11.36) have to occur in the cross
section.
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Spatial Symmetries

if the potential is rotationally symmetric or has an axial symmetry with respect to the
direction p̂ of the incoming current, one has to expect that the scattering amplitude will
only depend on the azimuthal angle θ with respect to the direction of the incoming particle.
Choosing the incoming direction as z-axis, we obtain for the asymptotic condition (11.30)

ψ
(+)
~p (~x)

r→∞−→ 1

(2π~)3/2

[

e
i
~

pz + fE(θ)
e

i
~

pr

r

]

(11.38)

and the differential cross section becomes

dσ

dΩ
= | fE(θ) |2 . (11.39)

Total Cross Section

If one sums up the scattering into all different directions, i.e., integrates the differential
cross section over all angles, one obtains the total cross section

σtot =

∫

dΩ
dσ

dΩ
=

∫

dΩ | fE(x̂, p̂) |2 . (11.40)

If the potential has the symmetries leading to (11.39), then this definition simplifies to

σtot =

∫

dΩ | fE(θ) |2 =

∫ π

0

∫ 2π

0

sin θ dθ dϕ | fE(θ) |2

= 2π

∫ 1

−1

d cos θ | fE(θ) |2 . (11.41)

In the preceding discussion we introduce the probability current densities by multiplying
the probabilities with the corresponding velocities, as is customary in electro dynamics,
where charge density times velocity is introduced as current density. This is a quite
intuitive procedure and leads quickly to the desired results. However, we could also have
used the more formal definition of a current density

~j(~x, t) =
~

m
ℑm(ψ∗(~x, t)~∇ ψ(~x, t)) . (11.42)

The current of the incoming particles is then obtained by inserting the plane wave:

~j0(~x, t) =
~

m
ℑm

[

1

(2π~)3
e−

i
~

~p·~x ~∇ e
i
~

~p·~x

]

=
~

m

1

(2π~)3
ℑm

(

i

~
~p

)

=
~p/m

(2π~)3
,

(11.43)
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a result which coincides with (11.33). Similarly, we can determine the current of scattering
particles in direction ~n and obtain

jscr = ~n ·~jsc(~x, t) =
~

m
ℑm

[

ψsc∗(~x, t)~n · ~∇ ψsc(~x, t)
]

=
~

m
ℑm

[

ψsc∗(~x, t)
∂

∂r
ψsc(~x, t)

]

.

(11.44)

Here we used that ~n = ~x
r
, from which follows ~n · ~∇ = ~x

r
· ~∇ = ∂

∂r
. Now we need the

scattered current at the place of the detector, i.e., large r, and thus can use (11.30). This
gives

jscr = ~n ·~jsc(~x, t) r→∞−→ ~

m

1

(2π~)3
ℑm

[

f ∗
E(x̂, p̂)

r

i

~
p
fE(x̂, p̂)

r

]

+ higher orders in

(

1

r

)

.

(11.45)

Aside from higher orders, which are negligible for sufficiently large r, we obtain

~n ·~jsc r→∞−→ 1

(2π~)3
| fE(x̂, p̂) |2

r2
p

m
, (11.46)

which corresponds to (11.34). Inserting (11.43) and (11.45) into (11.32), where now
automatically p′ = p, we obtain the differential cross section (11.37).

11.5 Phase Shifts

The task is to determine fE(θ, ϕ), i.e., the solution of the Schrödinger equation

− ~
2

2m
∇2 ψ~p(~r) + V (| ~r |) ψ~p(~r) = E~p ψ~p(~r) . (11.47)

If V is rotationally symmetric, i.e., [H,L2] = 0, then we can write

ψ~p(~r) =
∑

ℓ,m

âℓ(p)
uℓ,p(r)

r
Yℓm(θ, ϕ) . (11.48)

For ~p parallel to the z-axis, θ is the angle between ~p and the axis, and the problem is
symmetric around the z-axis, i.e., independent of ϕ. Thus we use

ψ~p(~r) =

∞
∑

ℓ=0

aℓ(~p)
uℓ,p(r)

r
Pℓ(cos θ) . (11.49)
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Inserting in (11.47) gives as radial Schrödinger equation

d2

dr2
uℓ,p(r) +

[

p2 − 2m

~2
V (r) − ℓ(ℓ+ 1)

r2

]

uℓ,p(r) = 0 (11.50)

where we used that Ep = p2

2m
. The requirement that only the solution which is regular

at the origin is physically allowed gives uℓ,p(0) = 0 and leads to a unique solution of
(11.50). Next, we need to consider the behavior of uℓ,p(r) for r → ∞. If the potential
V (r) vanishes sufficiently strong for r → ∞, then (11.50) goes asymptotically for large r
to

d2

dr2
uℓ,p(r) +

[

p2 − ℓ(ℓ+ 1)

r2

]

uℓ,p(r) = 0 , (11.51)

which has the general solution

uℓ,p(r) = Bℓ,pr jℓ(pr) + Cℓ,pr nℓ(pr) , (11.52)

where jℓ(pr) and nℓ(pr) are the Bessel and Neumann functions. They have the following
properties:

pr << 1 : jℓ(pr) ∼ (pr)ℓ =̂ regular solution

nℓ(pr) ∼ −(pr)−ℓ−1 =̂ irregular solution

pr >> 1 : jℓ(pr)  
1

pr
sin

(

pr − ℓπ

2

)

nℓ(pr)  − 1

pr
cos

(

pr − ℓπ

2

)

.

Thus, we have the following asymptotic behavior for the radial component of the scattering
solution:

ψℓ,p(r) ∼ uℓ,p(r)

r

pr>>1
 Bℓ,p

sin
(

pr − ℓπ
2

)

pr
− Cℓ,p

cos
(

pr − ℓπ
2

)

pr
(11.53)

or equivalently

uℓ,p(r)

r

pr>>1
 Aℓ,p

sin
(

pr − ℓπ
2

+ δℓ(p)
)

pr
. (11.54)

Thus δℓ(p) in (11.54) is a phase shift originating from the potential, which describes a
shift with respect to the free wave (solution). The phase shifts δℓ do not only depend
on the potential but also on the scattering energy Ep, thus δℓ ≡ δℓ(p). (11.54) can be
rewritten as

Aℓ,p · 1

pr
sin

(

pr − ℓπ

2
+ δℓ(p)

)

= Aℓ,p
1

pr

[

sin

(

pr − ℓπ

2

)

cos δℓ(p)

+ cos

(

pr − ℓπ

2

)

sin δℓ(p)

]

,

(11.55)
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and thus we have

uℓ,p(r)

r
 Aℓ,p cos δℓ

sin
(

pr − ℓπ
2

)

pr
+ Aℓ,p sin δℓ

cos
(

pr − ℓπ
2

)

pr
. (11.56)

A comparison of the coefficients of (11.56) and (11.53) gives

Bℓ,p = Aℓ,p cos δℓ

Cℓ,p = −Aℓ,p sin δℓ

(11.57)

with Aℓ,p being a free parameter, which is determined by the overall normalization of the
wave function. Thus, the radial solution can be written as

uℓ,p(r)

r
= Aℓ,p[cos δℓ jℓ(pr) − sin δℓ nℓ(pr)] . (11.58)

Through this equation (11.58) the phase shifts δℓ are defined. The radial solution Rℓ,p(r)
can be further rewritten as

Rℓ,p(r) =
uℓ,p(r)

r
= Āℓ,p [ jℓ(pr) − tan δℓ nℓ(pr)] (11.59)

with

Āℓ,p = Aℓ,p cos δℓ = Bℓ,p (11.60)

and

tan δℓ =
sin δℓ
cos δℓ

= −Cℓ,p

Bℓ,p
. (11.61)

In practical applications, one obtains the phase shift tan δℓ by solving the radial Schrödinger
equation (11.50) up to a value of r where the potential has sufficiently fallen off (in case of
V being the nucleon-nucleon (nn) interaction typical values of r are 15fm). Eq. (11.59),
together with its derivative, gives two equations to determine tan δℓ as

tan δℓ =
p j′ℓ(pr) − γ jℓ(pr)

p n′
ℓ(pr) − γ nℓ(pr)

(11.62)

where γ is the logarithmic derivative of the solution Rℓ,p(r)

γ =
1

Rℓ,p(r)

d

dr
Rℓ,p(r) . (11.63)

Once the phase shift δℓ is obtained, the asymptotic behavior of the scattering solution is
given as (cp. 11.49)

ψ~p(~r)  

∞
∑

ℓ=0

aℓ(p)

[

cos δℓ
sin

(

pr − ℓπ
2

)

pr
+ sin δℓ

cos
(

pr − ℓπ
2

)

pr

]

Pℓ(cos θ) .(11.64)
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Since we are looking for a solution with a definite asymptotic behavior (11.30), we have
to decompose (11.30) with respect to spherical waves. With

eipz =

∞
∑

ℓ=0

iℓ (2ℓ+ 1) jℓ(pr) Pℓ(cos θ)

fE(θ) =

∞
∑

ℓ=0

(2ℓ+ 1) fℓ(p) Pℓ(cos θ)

(11.65)

we can write (11.30) as

ψ~p(~r)  
∞
∑

ℓ=0

(2ℓ+ 1)

[

iℓ
sin

(

pr − ℓπ
2

)

pr
+ fℓ(p)

eipr

r

]

Pℓ(cos θ)

=
∞
∑

ℓ=0

(2ℓ+ 1)

[

eipr

2ipr
− (−1)ℓ

e−ipr

2ipr
+ fℓ(p)

eipr

r

]

Pℓ(cos θ)

=

∞
∑

ℓ=0

[

(−1)ℓ+1 (2ℓ+ 1)

2ip

e−ipr

r
+ (2ℓ+ 1)

(

1

2ip
+ fℓ(p)

)

eipr

r

]

Pℓ(cos θ) .

(11.66)

Here we used that iℓ = eiℓ
π
2 and 1

pr
sin

(

pr − ℓπ
2

)

= 1
2ipr

{

ei(pr−
ℓπ
2
) − e−i(pr− ℓπ

2
)
}

. In

(11.64) the asymptotic form of the scattering solution was given. If one does not use this
form, the original wave function reads in terms of ‘standing waves’

ψ~p(~r) =
∞
∑

ℓ=0

aℓ(p) [cos δℓ(p) jℓ(pr) − sin δℓ(p) nℓ(pr)] Pℓ(cos θ) , (11.67)

or in terms of in and out-going waves

ψ~p(~r) =
∞
∑

ℓ=0

aℓ(p)
1

2ipr

[

ei(pr−
ℓπ
2
+δℓ) − e−i(pr− ℓπ

2
+δℓ)

]

Pℓ(cos θ)

=
∞
∑

ℓ=0

[

− aℓ
2ip

iℓe−iδℓ
−eipr
r

+
aℓ
2ip

i−ℓe−iδℓ
eipr

r

]

Pℓ(cos θ) (11.68)

Comparing with the coefficients of (11.66) leads to the determination of aℓ(p) and fℓ(p).
From

− aℓ
2ip

iℓe−iδℓ = (i2)(ℓ+1) (2ℓ+ 1)

2ip
= i2ℓ(−1)

(2ℓ+ 1)

2ip
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follows
aℓ(p) = (2ℓ+ 1) iℓ eiδℓ(p) (11.69)

and from

(2ℓ+ 1)iℓeiδℓ(p)
1

2ip
i−ℓeiδℓ(p) =

2ℓ+ 1

2ip
eiδℓ(p)

follows

e2iδℓ(p) = 1 + 2ip fℓ(p)

(11.70)

from which follows

fℓ(p) =
1

2ip
[e2iδℓ(p) − 1] (11.71)

or

fℓ(p) =
1

p
eiδℓ(p) sin δℓ(p) =:

1

p
tℓ(p) , (11.72)

where tℓ(p) is called the partial wave amplitude.

Note: If the potentials is absorptive, then δℓ(p) → δℓ,R(p) + iδℓ,I(p). Then (11.71) reads

fℓ(p) =
1

2ip
[e2iδℓ,R(p)e−2δℓ,I(p) − 1],

where one usually defines ηℓ ≡ e−2δℓ,I as absoption factor.
End note

Thus, the solution of the Schrödinger equation for positive energies is given by

ψ
(+)
~p (~r) =

∞
∑

ℓ=0

(2ℓ+ 1) iℓ eiδℓ(p)
uℓ,p(r)

r
Pℓ (cos θ) (11.73)

and

fE(θ) =
1

p

∞
∑

ℓ=0

(2ℓ+ 1) eiδℓ(p) sin δℓ(p) Pℓ(cos θ)

=
1

p

∞
∑

ℓ=0

(2ℓ+ 1) tℓ(p) Pℓ(cos θ) .

(11.74)
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The differential cross section is then given by

dσ

dΩ
= | fE(θ) |2 =

1

p2

∑

ℓℓ′

(2ℓ+ 1)(2ℓ′ + 1)

ei(δℓ−δℓ′) sin δℓ sin δℓ′ Pℓ(cos θ) Pℓ′(cos θ)

(11.75)

and the total cross section by

σtot =

∫ 2π

0

dϕ

∫ 1

−1

dcosθ
dσ

dΩ

=
2π

p2

∞
∑

ℓ=0

2

2ℓ+ 1
(2ℓ+ 1)2 sin2 δℓ(p)

=
4π

p2

∞
∑

ℓ=0

(2ℓ+ 1) sin2 δℓ(p)

(11.76)

where us used
∫

dθ Pℓ P
′
ℓ = 2

2ℓ+1)
δℓ′ℓ. If we define a ”partial wave” cross section as

σp,ℓ :=
4π

p2
(2ℓ+ 1) sin2 δℓ

σtot =
∞
∑

ℓ=0

σp,ℓ

(11.77)

then we see that for each ℓ, σmax
p,ℓ = 4π

p2
(2ℓ+ 1) is the upper bound for σp,ℓ.

The expressions (11.75) and (11.76) for the differential and total cross sections are only
practically useful if only a few partial waves contribute, i.e., are different from zero. This
is the case for short-ranged potentials and small energies, as we will see later. If too
many ℓ’s have to be taken into account, the use of a partial wave expansion becomes
questionable.
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Insert: Different view on boundary conditions:

Consider the free solution of the radial Schrödinger equation

ul,p(r) = Al,p [cos δlrjl(pr)− sin δlrnl(pr)]
≡ eiδl [sin δlGl(pr) + cos δlFl(pr)] (11.78)

with

Fl(pr) = prjl(pr)
Gl(pr) = −prnl(pr). (11.79)

Then

tan δl = −−F ′
l (pr)− Fl(pr)γ(R)

−G′
l(pr)−Gl(pr)γ(R)

(11.80)

and

γ(R) =
1

ul,p

dul,p
dr

∣

∣

∣

∣

∣

r=R

(11.81)

Here one can establish a connection to bound states. A bound state is characterized by a
square integrable solution,

∫ ∞

0

dru2l (r) = 1

lim
r→∞

ul(r) → 0. (11.82)

For scattering states one has the asymptotic behavior

ul(r) ∼ e±i(pr−l π
2
), (11.83)

with Ep = p2/2µ. With p ≡ iκ this becomes Ep = −κ2/2µ and

e±i(pr−l π
2
) = e∓κril, (11.84)

where only p = iκ gives a normalizable wave function. Then the logarithmic derivative is
given by

γ = −κ. (11.85)

This gives an extra condition to the wave function which makes our artificial bound state
problem into an eigenvalue problem.

End insert
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The most simplest case occurs if only the lowest partial wave has to be considered (ℓ = 0),
i.e., if we have s-wave scattering. Then

dσ

dΩ
=

sin2 δ0
p2

, (11.86)

which is independent of the scattering angle θ. Thus, for s-wave scattering, the differential
cross section is isotropic.

A different expression for the phase shift can be obtained in the following way. We consider
the differential equations for the free solution

(r jℓ(pr))
′′ +

[

p2 − ℓ(ℓ+ 1)

r2

]

(r jℓ(pr)) = 0 (11.87)

and for the full solution

u′′ℓ,p(r) +

[

p2 − ℓ(ℓ+ 1)

r
− 2m

~2
V (r)

]

uℓ,p(r) = 0 . (11.88)

Multiplying (11.87) with uℓ,p(r) and (11.88) with r jℓ(pr) and subtracting both equations
leads to

d

dr
[(r jℓ(pr))

′ uℓ,p(r) − (r jℓ(pr)) u
′
ℓ,p(r)] = −jℓ(pr)

2m

~2
V (r)r uℓ,p(r) . (11.89)

Integrating over r and taking into account the boundary condition us,p(0) = jℓ(0) = 0 as
well as asymptotic forms

r jℓ(pr)
r→∞−→ 1

p
sin

(

pr − ℓπ

2

)

uℓ,p(r)
r→∞−→ 1

p
sin

(

pr − ℓπ

2
+ δℓ(p)

)

(r jℓ(pr))
′ r→∞−→ cos

(

pr − ℓπ

2

)

(11.90)

leads to

sin δℓ(p) = − 2m

~2

∫ ∞

0

dr pr jℓ(pr) V (r) uℓ,p(r) (11.91)

where

cos

(

pr − ℓπ

2

)

1

p
sin

(

pr − ℓπ

2
+ δℓ(p)

)

− 1

p
sin

(

pr − ℓπ

2

)

cos

(

pr − ℓπ

2
+ δℓ(p)

)

=
1

p
sin δℓ(p)
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has been used. The expression (11.91) is no simplification with respect to the form
(11.62). Though no asymptotic conditions enter, the integral of (11.91) has to be solved
for all values of r to give the exact solution for sin δℓ(p). In addition, (11.91) requires the
calculation of the scattering solution uℓ,p(r). However, if one uses the approximation

uℓ,p(r) ≈ pr jℓ(pr) , (11.92)

one obtained the so-called Born approximation for the phase shift

sin δℓ(p) ≈ −2m

~2

1

p

∫ ∞

0

dr V (r) [pr jℓ(pr)]
2 . (11.93)

The question is under which conditions can (11.93) provide a good approximation for the
phase shift. This should be expected if the right-hand side of (11.96) is small compared
to 1, or more precisely, if the function jℓ(pr) is small in the domain of V (r). For small
incident energies, one can argue as follows: The function ρ jℓ(ρ) increases close to the
origin (ρ = 0) from zero as ρℓ+1. It has a turning point at ρ =

√

ℓ(ℓ+ 1). Thus, we

can assume that pr jℓ(pr) stays small up to r = 1
p

√

ℓ(ℓ+ 1) and that, therefore, the

approximation (11.93) is good if the range of the potential fulfills

R ≤ 1

p

√

ℓ(ℓ+ 1) . (11.94)

Formulated in a different way: If the range R and the incident particle energy (given p)
are fixed, the phase shifts θℓ are small for all ℓ values which fulfill (11.94) and then (11.93)
is a good approximation. This result can also be understood semi-classically. The length

bℓ =

√

ℓ(ℓ+ 1)

p
=

~
√

ℓ(ℓ+ 1)

~p
=

angular momentum

momentum

is the impact parameter of the particles incident with a specific angular momentum. From
classical mechanics, we know that there is no scattering if the impact parameter becomes
larger than the range. For large energies, we use that the function ξ jℓ(ξ) is bounded for
all values of the argument. Then the right-hand side of (11.93) will be small if p is so
large that

2m

~2p

∫ ∞

0

| V (r) | dr ≪ 1 .

(This estimate is, of course, only valid if the integral over | V (r) | exists.) Thus, for high
energies the Born approximation (11.93) should be valid for all values of ℓ. However, at
high energies one should calculate relativistically.

A final remark:
If we had started with a radial wave function normalized such that

uℓ,p(r) −→ jℓ(pr) + tan δℓ nℓ(pr) , (11.95)

269



then (11.91) becomes

tan δℓ = −2m

~2

1

p

∫ ∞

0

dr jℓ(pr) V (r) uℓ,p(r) . (11.96)

From the Born approximation for the phase-shift (11.93) we can draw some conclusions
about the relation of the sign of the phase-shift δℓ and the behavior of V (r), since all
other terms under the integral are positive.

• If δℓ < 0, then V (r) > 0, i.e. repulsive.

• If δℓ > 0, then V (r) < 0, i.e. attractive.

Example: Hard Sphere Scattering

Imagine a hard sphere of radius R, i.e. a potential that is infinitely repulsive for r < R
and zero outside the sphere. Since the wave function does not penetrate inside the sphere,
the wave function must vanish for r < R. That is we obtain

u0(kr) =

{

0, r < R
sin(kr − kR), r > R

(11.97)

A comparison with the free solution

ul(kr) ∼ eiδl sin(kr − l
π

2
+ δl) (11.98)

gives for the phase shift obtained for scattering from a hard sphere

δ0(E) = −kR. (11.99)

Here we see that a negative phase shift usually arises from repulsive potentials. Note also,
that even a very simple potentials produce energy dependent phase shifts.

11.6 The Low Energy Limit

Here the behavior of the phase shift at low energies will be considered. For potentials
that can be assumed to vanish beyond r = R, the earlier expressions for tan δℓ, (11.62)
and (11.96) can be used to explore the low energy behavior of the phase shift. When
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the external kinetic energy E is small compared to the depth of the potential, the wave
function inside the potential will not depend sensitively on E. The total kinetic energy
at any radius is E+ | V (r) |, which is for small E nearly equal to | V (r) |. Thus, we can
to first approximation consider the logarithmic derivative γ (11.63) to be independent of
energy.

If we introduce the low energy behavior of jℓ(pr) and nℓ(pr) as

pr jℓ(pr)
pr<<ℓ−→ (pr)ℓ+1

1 · 3 · 5 · · · (2ℓ+ 1)

−pr nℓ(pr)
pr<<ℓ−→ 1 · 3 · 5 · · · (2ℓ− 1)

(pr)ℓ

(11.100)

then we obtain from (11.62) after multiplying numerator and denominator with pR

tan δℓ
p→0−→ (ℓ+ 1)− R γ0(R)

ℓ+R γ0(R)

(pR)2ℓ+1

[1 · 3 · 5 · · · (2ℓ− 1)]2 (2ℓ+ 1)
(11.101)

where γ0(R) is the zero energy logarithmic derivative. Thus, as the energy approaches
zero, the tangent of the phase shift also approaches zero as

tan δℓ ≈ aℓ p
2ℓ+1 . (11.102)

For ℓ = 0 (s-waves) (11.101) yields

tan δ0
p→0−→ 1− R γ0(R)

γ0(R)
p = −pa0 . (11.103)

The quantity a0 is usually called the zero energy scattering length, or simply the
scattering length and is defined by

a0 =
R γ0(R)− 1

γ0(R)
. (11.104)

If the wave function is small at r = R, the quantity Rγ0(R) will be large at
(

a0
R

)

≃ 1;
if, instead, u′ℓ,p(R) is nearly zero, Rγ0(R) will be small and a ≃ − 1

γ0(R)
. The scattering

length a0 has a simple geometric interpretation. In the low energy limit, the wave function
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u0(r)
r>R
= eiδ0 sin(pr + δ0)

p→0−→ p(r − a0) , (11.105)

where sinα ≈ tanα ≈ α was used.

Thus a0 is the point nearest to the origin at which the external wave function, or its
extrapolation toward the origin, vanishes. Considering the radial Schrödinger equation
for p→ 0, ℓ = 0, i.e.,

[

d2

dr2
− U(r)

]

u0(r) = 0

we can deduce

1. For a repulsive potential (U > 0), the curvature of u0(r) is always away from the r
axis so that a0 > 0.

r
a

U(r)

Fig. 11.2

Illustration of the geometrical meaning of the scattering length

a0.

2. For an attractive potential

1. incapable of producing an s-wave bound state:
a0 < 0 (Fig. 11.3.a)

2. capable of producing an s-wave virtual state or ”zero energy resonance”: a0 =
∞ (Fig. 11.3.b)

3. capable of producing one s-wave bound state: a0 > 0 (Fig. 11.3.c)
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a
a

u (r) u (r)
u (r)

U(r)
U(r) U(r)

0
0

0

(b) (c)(a) Fig. 11.3

Illustration of the scattering length a0 for various attractive potentials U(r).

The scattering length also has an important physical significance. In the low energy limit,
only the s-wave makes a non-zero contribution to the cross section (11.102) so that the
angular distribution of the scattering is spherically symmetric and the total cross section
is

σtot =
4π

p2
sin2 δ0

p→0−→ 4πa20 . (11.106)

This is similar to the result one obtains for the low energy scattering of a hard sphere of
radius a. Thus, the scattering length is the ”effective radius” of the target at zero energy.
However, there is a factor of 4 between the quantum mechanical cross section at low
energies and the classical cross section for scattering from a hard sphere (σclassical = πa2).
This can be explained by the fact that in quantum mechanics one considers probabilities,
i.e. the square of wave functions. At low energies the wave length is considerably larger
than the size of the target, thus the scattering can be viewed as scattering by on the entire
surface of the sphere, not only the cross section area of the sphere.
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11.6.1 Effective Range Expansion

Here we only consider the very low energy regime, and thus we only need to take l = 0
into account. For the scattering amplitude we have

f0(k) =
1

k
eiδ0 sin δ0

=
1

k

sin δ0
e−iδ0

=
1

k

sin δ0
cos δ0 − i sin δ0

=
1

k

tan δ0
1− i tan δ0

=
1

k

1

cot δ0 − i

=
1

k cot δ0 − ik
. (11.107)

Using the definition of the scattering length, k cot δ0 = −1/a0, we can rewrite the scat-
tering amplitude as

f0(k) =
1

− 1
a0

− ik
=

a0
−(1 + ia0k)

=
−a0 + ia20k

1 + a20k
2
. (11.108)

For the different pieces of the scattering amplitude we thus get

ℜef0(k) k→0−→ ∼ a0

ℑmf0(k) k→0−→ ∼ a20k. (11.109)

From Eq. (11.106) we saw that the elastic cross section in the low energy limit is given
by σ = 4πa20. Thus in the low energy limit the optical theorem

σ =
4π

k
ℑmf0(k) (11.110)

is fulfilled.

Important consequence: A single, real number, a0, completely parameterizes all low
energy scattering. This is an advantage for e.g. experiments that use low energy neutron
scattering to study solids. It is a disadvantage for deduction of specific properties of the
projectile-target interaction.

Consider the s-wave wave function

u0(r) ≡ eiδ0 [sin δ0G0(kr) + cos δ0F0(kr)]
k→0−→ kr + tan δ0

274



∼ (r + a0)k (11.111)

This shows that outside of the range of the potential the wave function for in the low
energy limit is proportional to a0 + r, and thus intercepts the axis at r = −a0.

Let’s go back to Eq. (11.107) and insert the effective range expansion to the next order,
i.e.

k cot δ0 = − 1

a0
+

1

2
k2r0. (11.112)

This leads to the scattering amplitude

f0(k) =
1

− 1
a0

− ik + 1
2
k2r0

= − a0
1 + ia0k − 1

2
a0k2r0

(11.113)

Again, this expression for the scattering amplitude fulfills the optical theorem:

4π

k
ℑmf0(k) =

4π

k

a20k

(1− 1
2
a0k2r0)2 + a20k

2
=

4πa20
(1− 1

2
a0k2r0)2 + a20k

2
(11.114)

and

σ =

∫

dσ

dΩ
= 4π |f0(k)|2 =

4πa20
(1− 1

2
a0k2r0)2 + a20k

2
(11.115)

11.6.2 Relation to Bound States

Consider the scattering amplitude

fl=0 ≃
1

k
eiδ0 sin δ0 =

1

k

tan δ0
1− i tan δ0

≈ −a0
1 + ia0k

. (11.116)

f is an analytic function and has a pole at tan δ0 = 1/i. Here this means that k = i/a0.
Considering the energy we have

E =
k2

2m
=

−1

2ma20
≡ −EB. (11.117)

Thus, the knowledge of the scattering length seems equivalent to the knowledge of the
scattering amplitude. If there is a bound state (with a small binding energy), it determines
the low energy scattering:

σ ≈ |f0|2 ≈
1

2m(E + EB)
. (11.118)
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Conversely, knowledge of the scattering length determines the bound state energy. E.g.
from the knowledge of the deuteron binding energy one determines the triplet nucleon-
nucleon scattering length to be

at0 ≈
1√

EB2m
= +4.32fm (11.119)

Experimentally a value at0 = 5.42fm is extracted. The difference comes from the fact
that the bound state is not truly at zero energy and some higher order terms are needed.

Note: While the scattering length approximation does not hold if the energy gets far from
zero, the relation of the poles of the scattering amplitude to bound states is general.

11.7 Levinson’s Theorem

The scattering length a0 is not simply a measure of the potential size or strength. If U(r)
becomes stronger, then more than one bound state can exist, and the cycle going from
negative to positive scattering length can repeat. This is consistent with tan δ0 = pa0,
where tan is a multi-valued function.

tan δ0 varies periodically and discontinuously from −∞ to +∞. If the potential is strong
enough to have a bound state at k = 0, we must be on the second branch of the tan
function, and the zero energy phase shift is π rather than zero.

The general result of this consideration is Levinson’s Theorem

δ(k = 0)− δ(k ≡ ∞) = nBπ (11.120)

where nB is the number of bound states supported by the specific potential U(r). Levin-
son’s theorem relates the phase shift as zero and infinite energy to the number of bound
states nB.

11.8 Breit-Wigner Resonances

Negative energy state (bound states) are stationary states and obey the stationary Schrödinger
equation. States with positive energy, confined in a positive potential well are confined,
but will eventually through the potential barrier. Those state are called quasi-bound
states or resonances.
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V(r)

r

Bound

States

Resonances

E < 0 

E > 0

Fig. 11.6

Sketch of a potential supporting bound states and resonance

states.

Consider the expansion of the phase shift tan δℓ for p→ 0 as given in Eq. (11.101),

tan δℓ
p→0−→ (ℓ+ 1)−R γℓ(R)

ℓ+R γℓ(R)

(pR)2ℓ+1

[1 · 3 · 5 · · · (2ℓ− 1)]2 (2ℓ+ 1)
(11.121)

The denominator vanishes for R γℓ(R) = −ℓ. Thus tan δℓ → ∞, i.e. δℓ =
π
2
+ nπ, This

condition occurs for a specific momentum pR at a specific energy ER = pR/2µ.

Expanding γ(R) around ER gives

γℓ(R)R ≈ −l + (E −ER)
d(γℓR)

dE
|E=ER

(11.122)

Substitution of Eq. (11.122) into Eq. (11.121) and neglecting the term (E − ER) in the
numerator for E → ER leads to

tan δℓ ≈ 1

E −ER

1

2

2(pR)2ℓ+1

[(2ℓ− 1)!!]2 d(γR)
dE

=
1

ER −E

Γl

2
(11.123)

with

Γl =
−2(pR)2ℓ+1

[(2ℓ− 1)!!]2 d(γR)
dE

. (11.124)
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This leads to the Breit-Wigner resonance form of the amplitude

fℓ = eiδℓ sin δℓ =
Γl/2

ER −E − iΓl/2
(11.125)

and the famous Breit-Wigner cross section in a specific partial wave partial wave ℓ.

σtot
ℓ =

4π(2ℓ+ 1)

p2
Γ2
l /4

(E − ER)2 + Γ2
l /4

(11.126)

where Γl is called the width of the resonance. From the derivation it is apparent that
Γl ∼ (dγℓ(R)/dE)

−1. Thus, if Γl is small, γℓ(R) (and thus δℓ) varies rapidly near ER. If
this is the case, the resonance will be sharp, and the total cross section σtot will have a
sharp peak.
However, unless the resonance is very narrow, then the 1/k2 factor in σtot will distort
the shape of the cross section and may shift the peak from ER to a lower energy.

Physically, a sharp peak in the energy dependence of the cross section indicates a dynam-
ical origin, such as a strong attraction at that energy. If the phase shift passes rapidly
through π/2 (modulo π), this probably means a resonance, i.e. beam and target particle
binding temporarily and then breaking up again.

Resonances are poles in fℓ(E) at E = ER − iΓl/2. This means

p =
√

2µE =
√

2µEr − iµΓl =
√

2µE
√

1− iΓl/2Er

≈ pr − i
µΓl/2

pr
(for small Γl) (11.127)

If Γl is small, the pole is right below the real positive p-axis. When taking E = p2/2µ,
bound state poles map to the first Riemann sheet, resonance poles move into the lower
half of the second (unphysical) Riemann energy sheet.

The smaller Γl, the sharper σtot peaks, the longer lived the resonance is, and the closer
the pole is to the real axis.

11.9 The Classical Limit

Let us now examine the scattering amplitude (11.71, 11.74) in the classical limit, that
is, at a sufficiently high energy that the particle may be localized. At these energies,
many partial waves will contribute so that the partial wave expansion for fℓ(θ) may be
approximated by an integral. In addition, most of the scattering will result from high
partial waves so that we can assume that the phase shift for ”normal” potentials will
behave as shown in Fig. 11.4.
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11.4 The phase shift δℓ as function of ℓ for high energies E.
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The region where δℓ is relatively constant will make little contribution, as we will see
below. As a result, we have from (11.74)

fE(θ) =
∑

ℓ=0

(2ℓ+ 1)
e2iδℓ − 1

2ip
Pℓ(cos θ)

≃
∫ ∞

0

dℓ ℓ
e2iδℓ − 1

ip
Pℓ(cos θ) .

(11.128)

For large ℓ and small angles, the Legendre polynomial may be replaced by a Bessel function
using the expansion

Pℓ(cos θ) ≃ j0

[

2

(

ℓ+
1

2

)

sin
1

2
θ

]

+
1

4
sin2 1

2
θ + · · · . (11.129)

This greatly simplifies the integration since it avoids integrating over the order of the Leg-
endre polynomial. It is also convenient to use b = ℓ

p
and to recognize that the momentum

transferred to the scattered particle, which we shall denote by q, is

q = | ~p− ~p ′ | = (p2 + p′2 − 2pp′ cos θ)1/2

= p(2(1− cos θ))
1

2 = 2p sin
θ

2
(11.130)

for elastic scattering, i.e., | ~p | = | ~p ′ |. Then (11.128) may be rewritten to obtain the
semi classical approximation

fE(θ) =
p

i

∫ ∞

0

db b (e2iδ(b) − 1) j0 (qb) . (11.131)
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This formula is reminiscent of very similar formulas in the classical theory of diffraction.
Its physical implications can be seen most strikingly by assuming that δ(b) has a limiting
form as suggested by Fig. 11.4, namely that it is constant for b < R and zero for b > R.
In this simple case, the integral in (11.131) can be performed analytically giving

fE(θ) ≈ j0(qR)

qR
(11.132)

where j1(qR) is the first-order Bessel function. This result, familiar from the theory of
Fraunhofer diffraction, gives a cross section as shown in Fig. 11.5.
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)|θ

Fig.

11.5 Differential cross section is the classical limit.

As expected, the cross section is sharply peaked in the forward direction and is concen-
trated within the region having θ <∼ ( 1

pR
). At high energies, we can extract the physical

content of (11.131) by using the method of ”steepest descent.” For large q the integrand
will oscillate rapidly as b varies. Asymptotically, the Bessel function has the form

j0(qb)
qb→∞−→ (2πqb)1/2

[

exp
(

i
(

qb− π

4

))

+ exp
(

−i
(

qb− π

4

))]

(11.133)

so that the dominant contribution to the integral will come from those values of b for
which 2δ(b)±qb is nearly constant. The term in (11.131) that is independent of the phase
shift does not contribute to the scattering away from the forward direction as can be seen
by returning to (11.128) and noting that

∑∞
ℓ=0

(

ℓ+ 1
2

)

Pℓ(cos θ) = δ(1− cos θ). Thus,
the important region of b is determined, for fixed θ, by the relation

dδ(b)

db
± 1

2
q = ±p sin θ

2
. (11.134)

It may be seen from this, as pointed out earlier, that values of b, for which δ(b) is a
constant, will not contribute to scattering out of the forward direction (q > 0).
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