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Chapter 12

Elements of Formal Scattering

Theory

12.1 Scattering States

In the previous chapter, we more or less phenomenologically derived the boundary condi-
tions for the scattering states. We now want to introduce a more formal definition. The
time-dependent Schrödinger equation

~i | ψ̇(t)〉 = H | ψ(t)〉 (12.1)

with H = H0 + V , and H0 =
P 2

2m
has the solution

| ψ(t)〉 = e−
i
~

Ht | ψ(0)〉 . (12.2)

A reasonable requirement that (12.2) is a scattering state will be to require that long
before and after the scattering process | ψ(t)〉 behaves like a free wave packet | ϕa(t)〉.
Mathematically we can formulate this with the norm as

‖ | ψ(+)
a (t)〉− | ϕa(t)〉 ‖=‖ e− i

~
Ht | ψ(+)

a (0)〉 − e−
i
~

H0t | ϕa(0)〉 ‖ t→−∞−→ 0 (12.3)

where the limit t→ −∞ implies that long before the scattering | ψ(+)
a (0)〉 should behave

as a free wave. The index a denotes an arbitrary initial distribution of momenta in the
wave packet.

‖ e i
~

Ht
(

e
−i
~

Ht | ϕ(+)
a (0)〉 − e−

i
~

H0t | ϕa(0)〉
)

‖

= ‖ | ψ(+)
a (0)〉 − e

i
~
Ht e−

i
~

H0t | ϕa(0)〉 ‖ t→−∞−→ 0 .

(12.4)
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Thus, we can define a scattering state as

| ψ(+)
a 〉 = s− lim

t→−∞
e

i
~

Ht e−
i
~

H0t | ϕa〉 = Ω(+) | ϕa〉 (12.5)

where we defined the Møller operator

Ω(+) := s− lim
t→−∞

W (t) = s− lim
t→−∞

e
i
~

Ht e−
i
~

H0t . (12.6)

In order to show the existence of the Møller operator, we have to show the convergence.
Let t2 < t1 < 0 and consider

‖ [W (t2)−W (t1)] ϕa ‖ = ‖
∫ t2

t1

dt
dW (t)

dt
ϕa ‖

≤ |
∫ t2

t1

dt ‖ dW (t)

dt
ϕa ‖ |

= |
∫ t2

t1

dt ‖ e i
~

Ht 1

~
(H −H0) e

− i
~

H0t ϕa ‖ |

= |
∫ t2

t1

dt
1

~
‖ V e−

i
~

H0t ϕa ‖ |

= |
∫ t2

t1

dt
1

~
‖ V ϕa(t) ‖ | .

(12.7)

The existence of the integral means that the norm ‖ · ‖ has to fall off at least as 1
|t|1+ε .

We already showed that a free wave packet decays as 1
|t|3/2

. If V only exists in a finite

range, one only has to integrate over a finite region, and then the fall-off in t is sufficient.
To show this, let us consider the norm in (12.7) separately.

‖ V ϕa(~r) ‖2 =

∫

d3x V 2(~x) | ϕa(~x, t) |2 (12.8)

We assume that V is square integrable, i.e., a vector in the Hilbert space. If, e.g., V
is local and real, e.g., e−µr/r, this is certainly fulfilled. (V square integrable means
∫

d3x V 2(~x) <∞.) Then (12.8) becomes

∫

d3x V 2(~x) | ϕa(~x, t) |2 ≤
∫

d3x | V (~x) |2 | ϕa(~x, t) |2

≤
∫

d3x V 2(~x)
c

t3

=
c

t3

∫

d3x V 2(x) =
c

t3
· c′

(12.9)
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and thus

‖ V ϕa(~r) ‖ ≤ c̄

| t |3/2 . (12.10)

For the original estimate (12.7) then follows

|
∫ t2

t1

dt
1

~
‖ V ϕa(t) ‖ | ≤ |

∫ t2

t1

dt
c̄

~

1

| t |3/2 ≤ | 1

| t2 |1/2
− 1

| t1 |1/2
| t→−∞−→ 0 .(12.11)

Thus, for square-integrable potentials, the Møller operator exists. If V ≡̇V (~r), then
V ∼ 1

r3/2+ε in order to be square integrable. It can actually be shown (Kupsch-Sandhas
theorem) that the Møller operators exist if the potential

| V (~r) | ≤ c

r1+ε
(12.12)

for r ≥ R, i.e., falls off for large r faster than the Coulomb potential. We can always
expand a wave packet | ϕa〉 ∈ H with respect to plane waves

| ϕa〉 =

∫

d3p | ~p〉〈~p | ϕa〉 =

∫

d3p | ~p〉 ϕ̃a(~p) . (12.13)

The scattering state is then given by

| ψ(+)〉 = Ω+ | ϕa〉

=

∫

d3p Ω+ | ~p 〉 ϕ̃a(~p)

=

∫

d3p | ~p 〉(+) ϕ̃a(~p)

(12.14)

where we define

Ω(+) | ~p 〉 = | ~p 〉(+) . (12.15)

Here that states | ~p 〉(+) correspond to the scattering states. The distribution function
ϕ̃a(~p) is the same for the free wave packet and the scattering state, only the ”basis vectors”
change when going to scattering states.

12.2 Properties of the Scattering States

In (12.6) we have defined the Møller operator as limit for t→ −∞ of the operator

W (t) := e
i
~

Ht e−
i
~
H0t . (12.16)
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To investigate properties of the Møller operator, we consider

lim
t→∞

‖ (W (t)− Ω+)ϕ ‖ = lim
t→∞

(‖ W (t)ϕ ‖ − ‖ Ω+ϕ ‖) = 0 , (12.17)

from which follows (since W (t) unitary)

lim
t→−∞

‖W (t)ϕ ‖ = ‖ Ω(+)ϕ ‖ = ‖ ϕ ‖ (12.18)

from which we can extract that

〈ϕ | ϕ〉 = 〈Ω(+)ϕ | Ω(+)ϕ〉 = 〈ϕ | (Ω(+))† Ω(+) | ϕ〉 , (12.19)

or since | ϕ〉 is an arbitrary state

(Ω(+))† Ω(+) = 1 . (12.20)

The Møller operator is an isometric operator (preserves the norm); however, it is not a
unitary operator, i.e., a left inverse does not exist. Next we consider

(+)〈~p ′ | ~p 〉(+) = 〈Ω(+)~p ′ | Ω(+)~p 〉 = 〈~p ′ | (Ω(+))† Ω(+) | ~p 〉
= 〈~p ′ | ~p 〉 = δ(~p ′ − ~p ) .

(12.21)

(12.21) shows that the scattering solutions are normalized to a δ-function in the same way
the plane waves are. For further studying the properties of the states | p〉(+), we rewrite
Ω(+) as

Ω(+) = s− lim
t→−∞

e
i
~

Ht e−
i
~

H0t

= s− lim
t→−∞

e
i
~

H(t−τ) e−
i
~

H0(t−τ)

= e−
i
~

Hτ Ω(+) e
i
~

H0τ .

(12.22)

Differentiating with respect to τ and evaluating at τ = 0 leads to

0 =
i

~
HΩ(+) − i

~
Ω(+) H0

from which the so-called ”intertwining relation” results:

HΩ(+) = Ω(+) H0 . (12.23)

Applying (12.23) on a plane wave state | ~p〉 gives
HΩ(+) | ~p 〉 = Ω(+) H0 | ~p 〉

= Ω(+) P
2

2m
| ~p 〉

=
p2

2m
Ω(+) | ~p 〉 ,

(12.24)
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from which follows

H | ~p 〉(+) =
p2

2m
| ~p 〉(+) , (12.25)

which states that the full scattering solution | ~p 〉(+) multiplied with H gives the same
energy as the free solution | ~p 〉 multiplied with H0. This also means that the full solution
behaves at large distances similar to the free solution, a boundary condition which we
just imposed in the previous chapter. We also showed that | ~p 〉(+) are eigenstates to the
full Hamiltonian H .

Going to the coordinate space representation should give the results of the previous chap-
ter. For the free Schrödinger equation, we have

〈~x | H0 | ~p 〉 =

∫

d3x′ 〈~x | H0 | ~x ′〉〈~x ′ | ~p 〉

=

∫

d3x′ 〈~x | − ~
2

2m
∇2 δ(~x− ~x ′) | ~x ′〉〈~x ′ | ~p 〉

= − ~
2

2m
∇2 〈~x | ~p 〉 =

p2

2m
〈~x | ~p 〉

(12.26)

where 〈~x | ~p 〉 = 1
(2π~)3/2

exp
(

i
~
~p · ~x

)

. In a similar fashion, we obtain

〈~x | H | ~p 〉(+) =

(

− ~
2

2m
∇2 + V

)

〈~x | ~p 〉(+) =
p2

2m
〈~x | ~p 〉(+) (12.27)

or with 〈~x | ~p 〉(+) = ψ†
~p(~x)

(

− ~
2

2m
∇2 + V

)

ψ†
~p(~x) =

p2

2m
ψ†
~p(~x) , (12.28)

which is the stationary Schrödinger equation for positive energies. Again, the eigenstates
are not normalizable. However, here this is a consequence; in the considerations of the
previous chapter it had to be an assumption. We still will have to show that | ~p 〉(+) =
Ω(+) | ~p 〉 has the correct asymptotic behavior.

12.3 Integral Equation for ψ
(+)
~p (~x)

Before being able to set up an integral equation, we have to prove the following statement.
Given a function g(t), then for ε > 0

lim
t→−∞

g(t) = − lim
ε→0

∫ −∞

0

dt′ ε eεt
′
g(t′) . (12.29)

287



We start from the right-hand side

−
∫ −∞

0

dt′ ε eεt
′
g(t′) = −

∫ −∞

0

d

dt′
(eεt

′
) g(t′) dt′

= g(0) +

∫ −∞

0

dt′ eεt
′ dg(t′)

dt′
.

(12.30)

As a remark, the limit and the integral operation can be interchanged if both converge
separately. Thus we have

lim
ε→0

(−ε)
∫ −∞

0

dt′ eεt
′
g(t′) = lim

ε→0

[

g(0) +

∫ −∞

0

dt′ eεt
′ dg(t′)

dt′

]

= g(0) + g(−∞) − g(0)

= g(−∞) .

(12.31)

With this ”Abel Limit”, we replace the limit with respect to t by a limit ε → 0. Now
we consider the operators

Ω(+) = W (−∞) = − lim
ε→0

∫ −∞

0

ε eεtW (t) dt

= − lim
ǫ→0

∫ −∞

0

ε eεt ε
i
~

Ht e−
i
~
H0t dt

= − lim
ε→0

ε

∫ −∞

0

e
i
~

Ht e−
i
~
(H0+iε)t dt .

(12.32)

Applying this on a state | ~p 〉 yields

Ω(+) | ~p 〉 = − lim
ε→0

ε

∫ −∞

0

dt e
i
~

(H−E−iε)t | ~p 〉

= lim
ε→0

ε
i
~
(H − E − iε)

| ~p 〉

= lim
ε→0

iε
~

E + iε−H
| ~p〉 = lim

ε→0
iε G(z) | ~p〉

(12.33)

where in the last step ~ ≡ 1 was set and z = E + iε. The function

G(z) =
1

z −H
(12.34)
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is called the Resolvent of H . With (12.33) the scattering state can be written as

| ~p 〉(+) = Ω(+) | ~p 〉 = lim
ε→0

iε G(E + iε) | ~p〉 . (12.35)

G(E + iε) contains the full Hamiltonian in the denominator and cannot be treated in the
form (12.35). Therefore, we want to split to equation in such a way that H0 and V are in
separate pieces. We define the free Resolvent as

G0(z) =
1

z −H0
(12.36)

and consider

G−1
0 (z) − G−1(z) = (z −H0) − (z −H) = −H0 + H = V . (12.37)

Multiplying (12.37) from the left with G0(z) and the right with G(z) gives

G0(z) [G
−1
0 (z) − G−1(z)] G(z)

= G(z) − G0(z) = G0(z) V G(z) ,

from which follows

G(z) = G0(z) + G0(z) V G(z) . (12.38)

The relation (12.38) is called Hilbert identity or Second Resolvent equation, and
has already the typical form of an integral equation. Multiplying (12.37) from the right
with G0(z) gives a different form of the Hilbert identity, namely

G(z) = G0(z) + G(z) V G0(z) . (12.39)

By comparison of the last terms in (12.38) and (12.39), we find G0(z) V G(z) =
G(z) V G0(z). Applying (12.38) on a free state | ~p 〉 gives

G(E + iε) | ~p 〉 = G0(E + iε) | ~p 〉 + G0(E + iε) V G(E + iε) | p〉

iε G(E + iε) | ~p 〉 =
iε

E + iε− p2

2m

| ~p 〉 + iε G0(E + iε) V G(E + iε) | ~p 〉 ,

(12.40)

where H0 | ~p 〉 = p2

2m
| ~p 〉. Carrying out the lim ε→ 0 gives

lim
ε→0

iε G(E + iε) | ~p 〉 = | ~p 〉(+) = | ~p 〉 + G0(E + i0) V | ~p 〉(+) . (12.41)

Eq. (12.41) is the Lippmann-Schwinger equation for states, and its exists if
V | ~p 〉(+) is a vector out of the Hilbert space, i.e., V is square integrable. The interpre-
tation of (12.41) is that the full scattering state | ~p 〉(+) is the sum of an incident plane
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wave | ~p 〉 and a ”perturbation” G0 V | ~p 〉(+), which is caused by the potential V . From
this we can deduce that (12.41) has the form of the boundary condition as postulated in
(11.26). Applying the form (12.39) of the Hilbert identity leads to

| ~p 〉(+) = iε G(E + iε) | ~p 〉 = iε [1 +G(E + iε)V ] G0(E + iε) | ~p 〉
= [1 +G(E + iε)V ] | ~p 〉
= Ω(+) | ~p 〉 ,

(12.42)

from which we deduce a representation of Ω(+) as

Ω(+) = 1 +G(E + iε) V . (12.43)

However, this representation is not very useful since G(E + iε) is not known.

12.4 Coordinate Space Representation of the Lippmann-

Schwinger Equation

For obtaining a coordinate space representation, we have to form

〈~x | ~p 〉(+) = 〈~x | ~p 〉 +

∫

d3x′
∫

d3x′′ 〈~x | G0(E + i0) | ~x ′〉〈~x ′ | V | ~x ′〉〈~x ′′ | ~p〉(+)

ψ
(+)
~p =

1

(2π~)3/2
e

i
~

~p·~x +

∫

d3x′
∫

d3x′′ G
(+)
0 (~x, ~x ′) V (~x ′, ~x ′′) ψ

(+)
~p (~x ′′) .

(12.44)

If V (~x ′, ~x ′′) is assumed to be local, i.e., V (~x ′, ~x ′′) = V (~x ′) δ(~x ′, ~x ′′), this reduces to

ψ
(+)
~p (~x) =

1

(2π~)3/2
e

i
~

~p·~x +

∫

d3x′ G
(+)
0 (~x, ~x ′) V (~x ′) ψ

(+)
~p (~x ′) . (12.45)

This is an integral equation, valid for local potentials. The same equation is obtained by
solving the stationary Schrödinger equation.

We still have to determine the coordinate space representation of the free Green function
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G
(+)
0 (~x, ~x ′):

G
(+)
0 = 〈~x | G0(E + i0) | ~x ′〉 = 〈~x | 1

E + i0−H0
| ~x ′〉

=

∫

d3p′ 〈~x | 1

E + i0 −H0

| ~p 〉〈| ~p ′ | ~x ′〉

=

∫

d3p′ 〈~x | ~p ′〉〈~p ′ | ~x ′〉 1

E + i0− p′2
2m

=

∫

d3p′
1

(2π~)3
e

i
~

~p ′·(~x−~x ′) 1

E + i0− p′2
2m

.

(12.46)

Considering that ~p = ~p ′ and using spherical coordinates leads to

G
(+)
0 (~x, ~x ′) =

1

(2π~)3

∫ ∞

0

∫ 1

−1

∫ 2π

0

dp p2 d cos θ dϕ e
i
~

p(x−x′) cos θ 1

E + i0− p2

2m

=
m

2π2~2

∫ ∞

0

dp p2
e

i
~

p(x−x′) − e−
i
~

p(x−x′)

ip | x− x′ |
1

2mE + i0− p2

=
m

2π2~2

∫ ∞

−∞

dp p
1

2mE + i0− p2
e

i
~

p(x−x′)

i | x− x′ |

=
m

2π2~2

∫ ∞

−∞

dp p
1

2mE
~2

+ i0− k2
eip(x−x′)

i | x− x′ | ,

(12.47)

where we used p = ~k in the last relation. The integrand has poles for positive energies
for 2mE

~2
− ~

2k2 = 0, and the poles are located at

~k1/2 = ±
√
2mE + iε (12.48)

from which follows

~k1 = +
√
2mE + iε

~k2 = −
√
2mE − iε .

(12.49)
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Re
-i

+i

ε

ε
2mE 2mE- +

Fig.

12.1 Integration path for evaluating G
(+)
0 (~x, ~x ′).

To solve (12.47) we continue the function into the complex plane and integrate along the
path indicated in Fig. 12.1. Since only ~k1 lies inside the contour, we obtain for (12.47)
along the path of Fig. 12.1

m

2π2~3

∫ ∞

−∞

dk
k

2mE
~2

− k2
· eik(x−x′)

i | x− x′ | (12.50)

=
m

2π2~3
· 2πi Res

k→
√
2mE
~

k
2mE
~2

− k2
eik(x−x′)

i | x− x′ | .

We choose to close the contour in the upper half plane, i.e., have
ei(k+iη)(x−x′) = eik(x−x′) e−η(x−x′), which falls off sufficiently fast if we take the upper half
circle → ∞. The pole for +

√
2mE sits in the area enclosed by the contour. Applying the

Residue theorem leads to the final expression

〈~x | G0(E + i0) | ~x ′〉 = − m

2π~2

ei
p
~

(x−x′)

(x− x′)
. (12.51)

With this, (12.45) becomes

ψ
(+)
~p (~x) =

1

(2π~)3/2
e

i
~

~p·~x − m

2π~2

∫

d3x′
e

i
~

~p·(~x−~x ′)

| ~x− ~x ′ | V (~x
′) ψ

(+)
~p (~x ′) (12.52)

which is the Lippmann-Schwinger equation in coordinate space representation.
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12.5 Asymptotic Behavior

In order to make a comparison with the asymptotic boundary conditions imposed in
Chapter 11 and better understand their origin, we have to study the asymptotic behavior
of (12.52). The first term of the right-hand side corresponds to a plane wave and does
already have the desired asymptotic form. We need to study the second term and find
out if it behaves asymptotically as an outgoing spherical wave. Expanding | ~x−~x′ |2 gives

| ~x− ~x ′ |2 = ~x 2 − 2~x · ~x ′ + ~x ′2 ≈ r2 − 2~x · ~x′

= r2
(

1− 2~x · ~x ′

r2

)

(12.53)

and thus

| ~x− ~x ′ | =
√

(~x− ~x ′)2 ≈ r

√

(

1− 2~x · ~x ′

r2

)

≈ r

(

1− ~x~x ′

r2

)

= r − ~x · ~x ′

r
,

(12.54)

which corresponds to a dipole approximation. Inserting (12.54) into (12.52) and consid-
ering that

G
(+)
0 (~x− ~x ′) =

m

2π~2

eikr

r
e−i( k~x

r ) ·~x ′
,

we obtain as asymptotic behavior of (12.52)

ψ
(+)
~p

r→∞−→ ϕ(~x) +

( −m
2π~2

)
∫

d3x′ e−
ik~x
r

·~x ′
V (~x ′) ψ

(+)
~p (~x ′) · eikr

r
(12.55)

which, when compared to the ”Sommerfeld radiation condition” (11.30), shows that the
Lippmann-Schwinger equation has the correct asymptotic behavior. A comparison with
(11.30)

ψ
(sc)
~p (~x)

r→∞−→ ϕ~p(~x) + f(p̂ ′, p̂)
eikr

r

1

(2π~)3/2

gives

f(p̂ ′, p̂) = −m 4π2
~

∫

d3~x ′ e
− i

~
~p ′·~x ′

(2π~)3/2
V (~x ′) ψ

(+)
~p (~x ′)

= −4π2m~

∫

d3x′ 〈~p ′ | ~x ′〉〈~x ′ | V | ~x ′〉〈~x ′ | ~p 〉(+)

= −4π2m~ 〈~p ′ | V | ~p 〉(+) .

(12.56)
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In order to solve for f(p̂ ′, p̂), one must first solve the Lippmann-Schwinger equation to
obtain | ~p 〉(+). Similar to the considerations following (11.91), one can consider solving
for f(p̂ ′, p̂ ) only in an approximate fashion and expand | ~p 〉(+) =| p〉 + · · · . If one
considers only the first term in the expansion, one obtains the Born approximation for

the scattering amplitude

f(p̂ ′, p̂ )Born = −4π2m~ 〈~p ′ | V | ~p 〉 . (12.57)

12.6 The Lippmann-Schwinger Equation as Operator

Equation

In its general form (12.52) can be written as

| ψ(+)
~p 〉 = | ϕp〉 + G

(+)
0 V | ψ(+)

p 〉 . (12.58)

Multiplying (12.58) with V and defining V | ψ(+)
p 〉 = T | ϕp〉 yields

T | ϕp〉 = V | ϕp〉 + V G
(+)
0 T | ϕp〉 . (12.59)

Since the plane waves | ϕp〉 form a complete set of states, (12.59) is valid as operator
equation:

T = V + V G
(+)
0 T , (12.60)

which is the Operator Lippmann-Schwinger Equation or t-matrix equation.
In its momentum space representation (12.60) reads

〈~p ′ | T | ~p 〉 = 〈~p ′ | V | ~p〉 +

∫

d3p′′ d3p′′′ 〈~p ′ | V | ~p ′′〉〈~p ′′ | G(+)
0 | ~p ′′′〉〈~p ′′′ | T | ~p 〉

= 〈~p ′ | V | ~p 〉 +

∫

d3p′′ 〈~p ′ | V | ~p ′′〉 1

E + iε− p′′2

2m

〈~p ′′ | T | ~p 〉 .

(12.61)

This is an integral equation of Fredholm type, and one has to solve for all values of p′′,
i.e., off-the-energy-shell. However, one needs for the calculation of physical observables
only the values for which p′′2

2m
= E = p2

2m
, i.e., one needs only the on-shell values. The

reason for this is that for the calculation of cross sections only the asymptotic expansion
was used (compared structure of proofs in Chapter 11). The terminology is as follows:
Matrix elements for which

p′2 = p2 = p20 are called on− shell ,

294



those for which

p′2 6= p2 = p20 are called half − shell ,

and those for which

p′2 6= p2 6= p20 are called fully − off − shell .

Here p20 is defined via the incoming energy Ep0 =
p20
2m

. In terms of the t-matrix, (12.56)
can be written as

f(p̂ ′, p̂ ) = −4π2m~ 〈~p ′ | T | ~p 〉 . (12.62)

Let us consider the propagator G
(+)
0 in (12.61). If we write it as

〈~p ′ | G(+)
0 | ~p 〉 =

δ(~p ′ − ~p )

E + iε− p′2

2m

= δ(~p ′ − ~p )

[

P
E − p2

2m

− iπ δ

(

E − p2

2m

)

]

, (12.63)

where we used the Cauchy Principal value

1

x+ iε
=

P
x

− iπ δ(x) (12.64)

then we can consider the approximation

〈~p ′ | G(+)
0 | ~p 〉 ≈ δ(~p ′ − p′)(−iπ) δ

(

E − p2

2m

)

, (12.65)

which is called k-matrix Born approximation.

The Lippmann-Schwinger equation (12.60) is an integral equation of Fredholm type and

can, in principal, be solved by iteration (Neumann series) if the kernel V G
(+)
0 is small,

so that the convergence of the series is secured. In terms of (12.60), this iteration can be
written out as

T (1)(z) = V

T (2)(z) = V + V G
(+)
0 V

T (3)(z) = V + V G
(+)
0 V G

(+)
0 V .

(12.66)
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In general this series can be written as

T (z) =
∞
∑

n=1

V (G
(+)
0 (z)V )n−1 = V

∑

n=0

(G
(+)
0 (z)V )n (12.67)

and is called Born Series.

We could have also started from the Lippmann-Schwinger equation for states as given in
(12.58). If we define as zeroth order to the full solution | ψ(+)

~p 〉0 := | ϕ~p〉, the free solution,
then we obtain in first order iteration

| ψ(+)
~p 〉1 = | ϕ~p〉 + G

(+)
0 V | ϕ~p〉 (12.68)

and in general in n-th order

| ψ(+)
~p 〉n =

n
∑

ν=0

(G
(+)
0 V )ν | ϕ~p〉 . (12.69)

If this series converges for n → ∞, we obtain in this way a solution for (12.58), which
reads

| ψ(+)
~p 〉 =

∞
∑

ν=0

(G
(+)
0 V )ν | ϕ~p〉 (12.70)

and one can say: If the series (12.70) converges, then the vector defined by the series
is a proper scattering state. As we have seen in (12.56), the scattering amplitude can be
written as

fE(p̂
′, p̂) = −4π2m~ 〈ϕ~p ′ | V | ψ(+)

~p 〉 .

Inserting (12.70) yields

fE(p̂
′, p̂) = −4π2m~

∞
∑

ν=0

〈ϕ~p ′ | V (G(+)
0 V )ν | ϕ~p〉 . (12.71)

Thus, the scattering amplitude can be written as a series

fE(p̂
′, p̂) =

∞
∑

i=1

f
(i)
E (p̂′, p̂)

f
(i)
E (p̂′, p̂) = −4π2m~ 〈ϕ~p′ | V (G(+)

0 V )(i−1) | ϕ~p〉 .
(12.72)

Here (i) counts the power of V . The first Born approximation for the scattering ampli-
tude, sometimes called the Born approximation, is linear in the potential. It is useful to
consider a graphical representation of (12.72).
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Fig. 12.2 Schematic

interpretation of the terms in the perturbation series for fE(p̂
′, p̂).

This graphical series expresses the fact that the scattering can be interpreted as a multiple
interaction of the potential. The Born approximation is in this respect also called tree
approximation. The line ~k in the second-order approximation characterizes G

(+)
0 , i.e., the

free motion of the particle between the multiple scatterings. However, this is not the true
free motion since in

V G
(+)
0 V =

∫

d3k1 V G
(+)
0 | ~k1〉〈~k1 | V (12.73)

the momentum ~k1 is an integration variable, and we do not have
k21
2m

= p2

2m
, i.e., ~k1

is not restricted to the on-shell value. We rather have a typical quantum mechanical
behavior, during the interaction we have a momentum uncertainty allowed by the uncer-
tainty principle. To stress again, this point of view is only meaningful if the Born series
converges.

In the previous considerations, we started from the Lippmann-Schwinger equation (12.58)
and derived the Born series (12.70). We also could have started from (12.70) as definition
of the scattering state, assuming that this definition is only valid within the radius of
convergence of the series. Then we can derive the Lippmann-Schwinger equation starting
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from (12.70).

| ψ(+)
~p 〉 =

∞
∑

ν=0

(G
(+)
0 V )ν | ϕ~p〉

= | ϕ~p〉 + G
(+)
0 V

∞
∑

ν=1

(G
(+)
0 V )ν−1 | ϕ~p〉

= | ϕ~p〉 + G
(+)
0 V

∞
∑

ν=0

(G
(+)
0 V )ν | ϕ~p〉

= | ϕ~p〉 + G
(+)
0 V | ψ(+)

p 〉 .
(12.74)

This shows that we ”summed up” the Born series. However, we do not obtain an explicit
solution on the right-hand side, but rather the unknown function again. This indicates
that in general we do not obtain a closed solution for the scattering state but rather an
integral equation.

We can interpret this in a slightly different way. As we shall see, the Born series con-
verges for sufficiently high energies. In that region (12.70) is a reasonable definition and
within the radius of convergence the Born series and the Lippmann-Schwinger equation
are equivalent. This stays valid for all other energies and thus determines the continuation
of the definition (12.70) to energy regions, where the series does not exist.

It is appropriate to describe this approach here since it shows how one obtains an integral
equation by summing up multiple interactions of V . This procedure is important with
respect to quantum field theory. There the usual practice leads to a Dyson series (an
infinite series corresponding to the Born series, represented by Feynman diagrams).

Summing up this series gives an integral equation, which resembles in its form the
Lippmann-Schwinger equation, the Bethe-Salpeter equation, which, however, has a
much more complicated structure.

12.7 The Lippmann-Schwinger Equation for the Bound

State

If we assume that V supports a bound state | ψb〉 at E = Eb < 0, then the Schrödinger
equation reads

(H0 + V ) | ψb〉 = Eb | ψb〉 (12.75)
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or

(H0 −Eb) | ψb〉 = −V | ψb〉 . (12.76)

Since Eb < 0, there is no regular solution for the case V = 0 and we can write

| ψb〉 =
1

Eb −H0
V | ψb〉 , (12.77)

which is the homogeneous Lippmann-Schwinger equation for | ψb〉. Evaluating the free
Green’s function for E = Eb < 0 (12.51), we see that 〈~x | ψb〉 ≡ ψb(~x ) has the correct

exponential fall-off behavior, namely proportional to e−
√

2m|Eb| |x−x′|
|x−x′|

.

12.8 The Low Equation

When deriving the Lippmann-Schwinger equation for states or operators, we started from
the Hilbert identity given by (12.38). Now we want to start from the alternative form
(12.39), namely

G(z) = G0(z) + G(z) V G0(z) .

Similar to Section 12.3, we apply (12.39) on a free state | ~p 〉, multiplying with iε and
consider the limit ε→ 0.

iε G(E + iε) | ~p 〉 =
iε

E + iε− p2

2m

| ~p 〉 + G(E + iε) V
iε

E + iε p2

2m

| ~p 〉 . (12.78)

Taking the limit ε → 0 gives

| ~p 〉(+) = | ~p 〉 + G(E + iε) V | ~p 〉 , (12.79)

which is the Low equation for states (corresponding to (12.41)). Multiplying with V
and taking into account the definition V | p〉(+) = T | p〉 gives

V | ~p 〉(+) = T | p〉 = (V + V G V ) | ~p 〉 (12.80)

or as operator equation

T = V + V G V . (12.81)

For practical calculations, the Low equation is not particularly useful, since it contains
the full resolvent G(z). If we assume that the Hamiltonian H has bound states with
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H | ψb〉 = Eb | ψb〉 and a continuous spectrum, then we can write the spectral decompo-
sition of G(z) as

1

E ± iε −H
=

∑

b

| ψb〉
1

E ± iε−Eb
〈ψb |

+

∫

d3p | ψ(+)
~p 〉 1

E ± iε−H
〈ψ(+)

~p | .

(12.82)

G(z) is a holomorphic function for Im 6= 0, and G(z) has poles at the binding energies
Eb. Inserting (12.82) into (12.81) leads to

〈~p ′ | T | ~p 〉 = 〈~p ′ | V | ~p 〉 +
∑

b

〈~p ′ | V | ψb〉〈ψb | V | ~p 〉
E − Eb

+

∫

d3k
〈~p ′ | T † | ~k 〉〈~k | T− | ~p 〉

E ± iε− Ek
,

(12.83)

where the subscript ± refers to ±iε in G(E ± iε). If E > 0, then there are no bound
states and the discrete sum over b vanishes. If E < 0 is allowed, then 〈~p ′ | T | ~p 〉 has
poles by E = Eb, and the residue is separable. [Remark: A function f(~q ′, ~q ) is called
separable if f(q′, q) = f1(q

′) f2(q).] The residue can be written as

〈~p ′ | V | ψb〉 = 〈~p ′ | (H −H0) | ψb〉 = (E − E~p )〈~p ′ | ψb〉
= (E − E~p ) ψb(~p

′) ,

(12.84)

where ψb(~p
′) is the bound state wave function for E = Eb. Thus, if E < 0 is close to

Eb, then the t-matrix is dominated by the pole term. The residue is characterized by
the corresponding bound state wave functions. As function of E〈~p ′ | T (E) | ~p〉, has the
following behavior:

EE
(1)

b b

E
0

(2)

Fig.

12.3 Pole structure of 〈~p ′ | T (E) | ~p 〉.

There are poles for the bound states and a cut for the continuous spectrum.
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12.9 Unitarity Relations

When considering only positive energies, the sum over b vanishes in (12.83). Let us
consider the difference of T (+) and T (−) as obtained from (12.83) under the assumption
that V is hermitian.

〈~p′ | T (+)(E) −T (−)(E) | ~p〉 = 〈~p′ | T (+)(E) | ~p〉 − 〈~p′ | T (−)(E) | ~p〉

=

∫

d3k〈~p′ | T (+)(E) | ~k〉
[

1

E −Ek + iε
− 1

E − Ek − iε

]

〈~k | T (−)(E) | ~p〉.

(12.85)

Using the Cauchy principal value 1
x±iε

= P
x

∓ iπδ(x), we obtain

〈~p′ | T (+)(E) −T (−)(E) | ~p 〉 (12.86)

= −2πi

∫

d3k〈~p′ | T (+)(Ek) | ~k〉δ(E − Ek)〈~k | T (−)(Ek) | ~p〉

= −2πi

∫ ∞

0

dk k2
∫

dΩk〈~p′ | T (+)(Ek) | ~k〉δ(k′′ − k)
m

k
〈~k | T ()(Ek) | ~p〉

(12.87)

In the last relation we used δ(ax) = 1
|a|
δ(x), δ(ϕ(x))] =

∑

i
1

|ϕ′(ai)|
δ(x − ai), where ai are

the roots of the equation ϕ(x) = 0, and E = p′′2

2m
.

Eq. (12.87) is called the off-shell unitarity relation, since in general | ~p |6=| ~p ′ |6=| ~k |.

For elastic scattering, i.e., | ~p |=| ~p′ |, Eq. (12.87) simplifies to

〈~p′ | T (+)(Ep) − T (−)(Ep) | ~p 〉 (12.88)

= −2πi m p

∫

dΩk〈~p ′ | T (+)(Ep) | ~k 〉〈~k | T (−)(Ep) | ~p 〉

which is usually referred to as on-shell unitarity relation.

If we restrict ourselves to the forward direction, i.e., ~p ′ = ~p, or equivalently θ = 0, with
θ being the angle between ~p ′ or ~p, we obtain

〈~p | T (+)(E) − T (−)(E) | ~p 〉 = 〈~p | T (+) | ~p 〉 − 〈~p | T (+) | ~p 〉∗
= 2i Im 〈~p | T (+) | ~p 〉

(12.89)
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and with (12.89)

Im 〈~p | T (+)(E) | ~p 〉 = −π mp
∫

dΩk | 〈~p | T (+)(E) | k̂〉 |2 . (12.90)

Eq. (12.90) is referred to as optical theorem and provides a non-linear relation between
the imaginary part of T in forward direction and the absolute value of T integrated over
all angles.

12.10 S-Operator

In (12.4) the scattering state was defined via its behavior for large negative times, i.e.,
long before the scattering event.

| ψ(+)
a 〉 = s− lim

t→−∞
eiHt e−iH0t | ϕa〉 = Ω(+) | ϕa〉 .

In order to completely characterize the scattering event, we need to have the behavior of
| ψ(+)

a 〉 for large positive t, i.e.,

| ψ(+)
a (t)〉 = e−iHt | ψ(+)

a (0)〉 = e−iHtΩ(+) | ϕa〉 . (12.91)

One of the basic boundary condition was that long after the scattering, the state | ψ(+)
a (t)〉

should again behave as a free wave. Thus, in order to characterize the scattering, we should
consider the probability coefficients | 〈ϕb(t) | ψa

(+)(t) |2 for large times t. Here | ϕb(t)〉 is
a free wave.

Define

Sab = lim
t→−∞

〈ϕb(t) | ψ(+)
a (t)〉

= lim
t→∞

〈e−iH0t ϕb | e−iHt ψ(+)
a 〉

= lim
t→∞

〈eiHt e−H0t ϕb | ψ(+)
a 〉

= 〈Ω(−) ϕb | ψ(+)
a 〉 = 〈ψ(−)

b | ψ(+)
a 〉

(12.92)

with

Ω(−) := lim
t→∞

eiHt e−iH0t (12.93)

and

Ω(−) | ϕb〉 := | ψ(−)
b 〉 (12.94)
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which characterizes the outgoing scattering state. The existence of Ω(−) is guaranteed,
since the proofs of Section 12.1 never explicitly used the limit t→ ∞. Thus, the transition
probability from an incoming state to an outgoing state is given by

S2
ab = | 〈ψ(−)

b | ψ(+)
a |2 . (12.95)

With

Sab = 〈ψ(−)
b | ψ(+)

a 〉 = 〈Ω(−) ϕb | Ω(+) ϕa〉
= 〈ϕb | Ω(−)† Ω(+) | ϕa〉 := 〈ϕb | S | ϕa〉

(12.96)

we define the scattering operator (S-matrix)

S = Ω(−)† Ω(+) . (12.97)

Using the explicit definition of the Møller operators, it can be easily seen that S is unitary.
Furthermore, the existence of S depends on the existence of the Møller operators.

12.11 Energy Conservation

In (12.23) the intertwining relation was given as

HΩ(±) = Ω(±) H0 .

Its complex conjugate equation reads

(Ω(±))† H = H0 Ω±† .

From the isometry property of the Møller operators, Ω(±)† Ω(±) = 1, follows

(Ω(±))† H Ω(±) = H0 . (12.98)

The last equation leads to the interpretation that Ω(±) can be considered as an operator
which transforms H into H0. From this point of view, we have to conclude that Ω(±)

cannot be unitary. If it would be, then H and H0 would have to have the same spectrum.
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Since H0 has only a continuous spectrum, H could not have bound states, which is clearly
not the case. We can say that Ω(±) is then and only then unitary, if H does not have
bound states.

Let us consider

SH0 = Ω(−)† Ω(+) H0 = Ω(−)† H Ω(+)

= H0 Ω(−)† Ω(+) = H0S ,

(12.99)

which shows that [S,H0] = 0. We also have

H0 | ~p 〉 = Ep | ~p 〉
SH0 | ~p 〉 = Es S | ~p 〉 = H0S | ~p〉 , (12.100)

which means that | ~p 〉 as well as S | ~p 〉 are eigenstates of H0 with the same eigenvalue
Ep. For the expectation values for H0 in the initial state (before the scattering) and the
final state (after the scattering), we find

〈ψ(−)
b | H0 | ψ(−)

b 〉 = 〈Sψ(+)
a | H0 | Sψ(+)

a 〉
= 〈ψ(+)

a | S†H0S | ψ(+)
a 〉

= 〈ψ(+)
a | S†S H0 | ψ(+)

a 〉
= 〈ψ(+)

a | H0 | ψ(+)
a 〉

(12.101)

H0 has a complete spectrum of non-normalizable eigenstates {| ~p 〉}, thus S can be
represented in these states. From [S,H0] = 0 follows

0 = 〈~p ′ | [H0, S] | ~p 〉 = 〈~p ′ | H0S | ~p 〉 − 〈~p ′ | SH0 | ~p 〉
= (Ep′ − Ep)〈~p ′ | S | ~p 〉 .

(12.102)

From this follows that 〈~p ′ | S | ~p 〉 6= 0 only if Ep′ = Ep. Therefore, we can write

Sp′p = 〈~p ′ | S | ~p 〉 = δ(Ep′ − Ep)〈p̂′ | S | p̂〉 (12.103)

where p̂ = ~p/ | ~p |. This means Sp′p is defined on-shell.
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12.12 Unitarity of the S-Operator

In order to show that S as defined in (12.97) is unitary, we have to show that

S†S = SS† = 1 . (12.104)

The first relation is easy and we use that Ω(+)† Ω(±) = 1:

〈Ω(±)ϕ | Ω(±)ϕ〉 = lim
t′→∓∞

lim
t→∓∞

〈eiHt′ e−iH0t′ ϕ | eiHt e−iH0t ϕ〉
t′=t
= lim

t→∓∞
〈eiHt e−iH0t ϕ | eiHt eiH0t ϕ〉

= 〈ϕ | 1 | ϕ〉 = ‖ ϕ ‖2 .

(12.105)

In order to show the other relation, we need to consider the mapping properties of Ω(±)†.
Applied on a scattering state, it gives

Ω(±)† | ψ(±)
a 〉 = Ω(±)† Ω(±) | ϕa〉 = | ϕa〉 . (12.106)

This means, applied on a scattering state Ω(±)†, gives a full wave packet.

|p>

|p>

b

(+)

(+)

(+)

Ω

Ω

H H 

|ψ  >
Fig. 12.4 Map-

ping properties of the Møller operators.

Fig. 12.4 illustrates that

| p〉(±) = Ω(±) | ~p 〉
| ~p 〉 = Ω(±)† | ~p 〉(±) with Ker(Ω(±)†) 6= 0

0 = Ω(±)† | ψn〉 .
(12.107)
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Thus Ω(±) Ω(±)† = Pc, a projection operator on the continuous spectrum. Now consider

S†S = (Ω(−)†Ω(+))†(Ω(−)†Ω(+)) = Ω(+)†Ω(−)Ω(−)† Ω(+)

= Ω(+)† PcΩ
(+) = 1

SS† = (Ω(−)†Ω(+))(Ω(−)†Ω(+))† = Ω(−)†Ω(+)Ω(+)†Ω(−)

= Ω(−)†Pc Ω
(−) = 1 .

(12.108)

As a remark: S is only unitary on the whole Hilbertspace H if the states | p〉(+) span
the entire space of scattering states.

Let us now consider the probability of scattering into all possible final states

∫

d3p | 〈~p | S | ϕa〉 |2 =

∫

d3p 〈~p | S | ϕa〉∗〈~p | S | ϕa〉

=

∫

d3p 〈ϕa | S† | ~p 〉〈~p S | ϕa〉

= 〈ϕa | S†S | ϕa〉 = ‖ ϕa ‖2 .

(12.109)

Thus, the probability is conserved in the scattering process.

12.13 Transition Operator

In (12.96) the scattering operator was defined as the transition probability

Sba = 〈ψ(−)
b | ψ(+)

a 〉

= 〈ϕb | ψ(+)
a 〉 + 〈 1

Ea − iε−H
V ϕb | ψ(+)

a 〉 ,

(12.110)

where we used the Low equation (12.79) for the last step. One also has

〈ϕb | ψ(+)
a 〉 = 〈ϕb | ϕa〉 + 〈ϕb | G0(Ea + iε) V | ψ(±)

a 〉 .

= δba +
1

Ea − Eb − iε
〈ϕb | V | ψ(+)

a 〉

(12.111)
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Inserting (12.111) into (12.110) leads to

Sba = δba +

[

1

Eb −Ea + iε
− 1

Eb −Ea − iε

]

〈ϕb | V | ψ(+)
a 〉

= δba − 2πi δ(Eb − Ea) 〈ϕb | T (+)(Ea) | ϕa〉
= δba − 2πi δ(Eb − Ea) T

(+)
ab (Ea) .

(12.112)

This suggests that the S operator can be split into two parts according to

S = 1 − 2πi τ (+) (12.113)

where

τ
(±)
ba := δ(Eb −Ea) T

(±)
ba (12.114)

describes the scattering. For the interaction V = 0 follows S = 1.

Thus, τ±ba describes the scattering process and has to appear in the differential cross
section. Thus for scattering relevant quantity is S − 1, where the scattering in forward
direction is subtracted. Due to the δ function δ(Eb−Ea), τ

(±)
ba is only defined for Eb = Ea,

i.e., on-shell. Another way to formulate this is that the S operator only defines the on-
shell elements of the T operator. However, this is not enough to define an operator – one
has to know the matrix elements for all momenta. From the unitarity of the S operator
follows

SS† = (1− 2πiτ (+))(1+ 2πiτ (−))

= 1− 2πi(τ (+) − τ (−)) + 4π2 τ (+)τ (−)

(12.115)

and from there

τ (+) − τ (−) = −2πi τ (+)τ (−)

δ(Eb − Ea)(T
(+)
ba − T

(−)
ba ) = −2πi

∑

α

δ(Eb −Ea) δ(Ea −Eα) T
(+)
bα T (−)

αa

(12.116)

and for E0 = Ea

T
(+)
ba − T

(−)
ba = −2πi

∑

α

δ(Eb − Eα) T
(+)
bα T (−)

αa (12.117)
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or explicitly

〈~p | T+(Ep)− T (−)(Ep) | ~p 〉 = −2πi

∫

d3k δ(Ep − Eα)

〈~p | T (+)(Ep) | ~k 〉〈~k | T (−)(Ep) | ~p 〉
(12.118)

which is the on-shell unitarity relation already derived in (12.89). However, (12.118)
contains less information than the unitarity relations derived in Section 12.9, which are
given fully-off-shell.

12.14 Cross Section

The cross section should describe the probability that under given initial conditions some-
thing is scattered into the direction of ~p ′, where the forward direction should be sub-
tracted. This probability is obviously given by S − 1 and can be defined as

dW = d3p′ | −2πi〈~p ′ | T | ϕ~p 〉 |2
= p′2 dp′ dΩ~p ′ | −2πi〈~p ′ | T | ϕ~p 〉 |2

= m
√
2mE ′ dE ′ dΩ~p 4π2 | 〈~p ′ | T | ϕ~p 〉 |2

(12.119)

where p2 = 2mE has been used. Next we need to consider

| 〈~p ′ | T (Ep) | ϕ~p 〉 |2 =

∣

∣

∣

∣

∫

d3p 〈~p ′ | T (Ep) | ~p 〉 ϕ̃p0(~p )

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫

d3p δ(E ′ −Ep)〈p̂′ | T (Ep) | p̂〉 ϕ̃p0(~p )

∣

∣

∣

∣

2

.

(12.120)

For ϕ̃p0(~p ) being a wave packet which is sharply peaked at ~p = ~p0 and 〈p̂′ | T (Ep) | p̂〉
being a slowly varying function, we can write

|〈~p ′ | T (Ep) | ϕ~p 〉 |2 ≃ | 〈p̂′ | T (Ep0) | p̂〉 |2
∫

d3p δ(E ′ − Ep) ϕ̃p0(~p ) |2

and thus

dW ≈ 4π2 mp0 dΩ dE | 〈p̂′ | T (Ep0) | p̂〉 |2
∫

d3p δ(E ′ − Ep) ϕ̃p0(~p ) |2

= 4π2 mp0 dΩ dE | 〈p̂′ | T (Ep0) | p̂〉 |2 I(Ep) .

(12.121)
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Needed is the scattering into a definite solid angle dΩ, thus one can integrate over the
energy

dW (Ω) = 4π2 mp0 dΩ | 〈p̂′ | T (Ep0) | p̂0〉2
∫

dE ′ I(E) . (12.122)

The energy δ-function can be written as
δ(E ′ − E) = m

p0
δ(| ~p′ | − | ~p0 |) leading to another factor m

p0
in 12.122.

The differential cross section was defined as the flux scattered into a specific solid angle
dΩ divided by the incoming flux:

dσ =
dW (Ω)

W0

=
(2π)4 mp0 · m

p0
ρ0 ∆t | 〈p̂′ | T (Ep0) | p̂a |2 dΩ

ρ0 ∆t

(12.123)

from which follows

dσ

dΩ
= (2π)4 m2 | 〈p̂′ | T (Ep0) | p̂0〉 |2 = | f(p̂′, p̂) |2 (12.124)

which gives the relation between the on-shell t-matrix and the scattering amplitude. For
the total cross section this leads to

σtot =

∫

dΩ
dσ

dΩ
= (2π)4m2

∫

dΩ|〈p̂′|T (Ep0)|p̂〉|2. (12.125)

12.15 Scattering of Identical Spinless Particles

For identical particles the states have to be symmetric (or antisymmetric) under the
exchange of the two particles. Interchanging particle labels corresponds to replacing
~p = (p, θ, φ) by −~p = (p, π − θ, φ + π). Similarly, the scattering amplitude has to be
symmetric (antisymmetric) under the exchange of 1 and 2, i.e., we have to consider

f(p̂′, p̂) ± f(−p̂′, p̂) = f(θ, φ) ± f(π − θ, φ+ π) , (12.126)

Since for spinless particles, the interaction is rotationally invariant around the axis along
the incoming momentum ~p, we drop the dependence on φ and have

dσ

dΩ
= | fp(θ) + fp(π − θ) |2

= | fp(θ) |2 + | fp(π − θ) |2 + 2Re(f ∗(θ) f(π − θ)) .

(12.127)
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First, the differential cross section for the scattering of two identical spinless particles
is symmetric around 90o. Second, dσ

dΩ
contains three terms, the cross sections for the

amplitudes for scattering into the direction (θ, φ) for particles interference from z = −∞
and z = +∞ and an influence term, which is a typical quantum mechanical effect, since
one must add amplitudes and not intensities.

Next, we consider the scattering of two identical spin 1
2
particles interacting via a spin-

independent potential. Since their spin is a good quantum number, we consider S = 0 and
S = 1 states separately. The total wave function must be antisymmetric. For S = 0, χs=0

is antisymmetric, thus the spatial part must be symmetric. Thus, we obtain for the cross
section in the singlet state

dσs
dΩ

= | f(θ) + f(π − θ) |2 (12.128)

For S = 1, χs=1 is symmetric, thus the spatial part must be antisymmetric, and we obtain

dσt
dΩ

= | f(θ) − f(π − θ) |2 . (12.129)

Eqs. (12.128) and (12.129) assume that the scattering particles are in a definite spin
state, i.e., beam and target are polarized. If this is not the case, i.e., if beam as well as
target are unpolarized, i.e., spins are randomly oriented, then we must average over the
random spin orientations. This corresponds to the assumption that the four spin states,
S = 0, ms = 0, S = 1, ms = ±1, 0 occur with equal frequency. Then the unpolarized

differential cross section is given by

dσ

dΩ
(unpol) =

1

4

dσs
dΩ

+
3

4

dσt
dΩ

. (12.130)

12.16 The Gellman-Goldberger Relation

The Gellman-Goldberger relation or two-potential formula is particularly appropriate
when the interaction between the projectile and the target decomposes naturally into two
parts: V = V0 + V1. This division is especially useful if the scattering wave function
under the action of one part can be obtained exactly, while the effect of the other can
be treated in the same approximation. In this sense, the formula leads to the so-called
”distorted-wave Born approximation” and, in other circumstances, to the method of the
”final state interaction.”

Let us assume that the interaction potential V = V0 + V1. Then, the corresponding LS
equation reads

T = (V0 + V1) + (V0 + V1) G0T

= (V0 + V1) + V0 G0T + V1 G0T (12.131)
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As a reminder, from (12.58) we had for the scattering state

| ~p 〉(+) = | ~p 〉 + G0V | ~p 〉(+)

from which follows

| ~p 〉(+) = (1−G0V )
−1 | ~p 〉 = Ω(+) | ~p 〉 . (12.132)

From the relation (12.39), we obtained the Low equation in the form

| ~p 〉(+) = | ~p 〉 + GV | ~p 〉 = (1 +GV ) | ~p 〉 = Ω(+) | p〉 (12.133)

So we have the different representations of the Møller operator

Ω(+) = (1−G0V )−1 = (1 +GV ) = 1 + G0T . (12.134)

Multiplying (12.131) from the left with Ω
(+)†
0 := (1− V0G0)

−1 gives

(1− V0G0)
−1 (1− V0G0)T = (1− V0G0)

−1 V0 + (1− V0G0)
−1 V1 (12.135)

+ (1− V0G0)
−1 V1G0T

T = T0 + (1− V0G0)
−1 V1 (1 +G0T )

(12.136)

where we used that T0 = V0 + V0 G0T0 as exact solution of the Hamiltonian H0 + V0.
Using the relations (12.134), one obtains

T = T0 + Ω
(−)†
0 V1 Ω(+) (12.137)

where Ω(+) is the Møller operator for the full scattering problem. Eq (12.137) is the so-
called ”two-potential formula.” The first term is the scattering amplitude for the potential
V0 alone; in many cases, it is either known or calculable. The second term incorporates
the effect of the ”residual potential ”V1 and must often be treated approximately. If the
interaction V1 is sufficiently weak, it can be treated in a first order approximation, which
means here Ω(+) ≈ Ω

(+)
0 so that

T ≈ T0 + Ω
(−)†
0 V1 Ω

(+)
0 (12.138)
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or in terms of matrix elements

〈~p ′ | T | ~p 〉 := Tfi = 〈~p ′ | T0 | ~p 〉 + (−)〈~p0 ′ | V1 | ~po〉(+) . (12.139)

The second term is a generalization of the Born approximation in which distorted wave
functions | p0〉(+) are used to calculate the scattering due to V1 in the presence of V0. It is
often called the distorted wave Born approximation. For instance, in the scattering
of protons from nuclei, one might choose V0 to be the Coulomb potential and V1 the short-
range nuclear force. Then the second term in (12.139) approximates the scattering due to
the nuclear force, taking account of the Coulomb repulsion and the consequent reduction
in the amplitude of the wave function at small separations. See Ch. Elster, L. C. Liu
and R. M. Thaler, “A Practical calculational method for treating Coulomb scattering in
momentum space,” J. Phys. G 19, 2123 (1993).
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