Chapter 4

Quantum Mechanics in £2(R?)

According to the considerations in Chapter 1, quantum mechanics is based on self-adjoint
operators A, B, .., which are associated with classical observables, and on Hilbert space
vectors | ), | ¢}, ..., which characterize the state of an ensemble. The physical observables
are given by the scalar products (¢ | A | ¥), (o | A | ¢),---. A specific representation
of the abstract vectors and states is given by matrices and column vectors, as shown
in the previous chapter. Next we want to show that one can find multiplication and
differential operators, as well as functions, such that the commutation relations as well
as the algebraic structures are presented. We consider the so-called coordinate space
representation (or r-space representation) of quantum mechanics.

4.1 Position and Momentum Operators

We consider square-integrable functions v (Z), depending on vectors 7 € R3:

[ Ezw@ @ = [ do [v@F < oo (4.1)
Together with the scalar product
wle) = [ & ¢'@ v(@) (4.2)

those functions are a Hilbert-space, £2(R?).

The position and momentum operators

X - €1X1 + €2X2 + €3X3 (43)
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and
P = &P, + &P, + &P
can be represented in £2(R?) via

Xp(Z) = (€121 + @omy + € 323) Y(D)

and
5 . 77, 0 . h 0 . h 0 .
i.e., via
X (@) = 7 ¢(7)
_ . h = .
Pu@) = = V. v(@)
With these representations, one has
q o0 q
P = |3l s v
hi -
= = O Y(7),

]

ie.,

h
[P, Xj] = 7 Ok 1

(4.4)

(4.5)

(4.9)

(4.10)

as previously required for the abstract vectors. The expectation values for the position

and momentum operators are then given by
WIX0) = [ @rw@Fv@) = [ @i 9@ P
and
5 5. i VS
WPl = [ dov@ 3V o@
Hermiticity: From the above relations follows immediately
@l Xv) = [ @@ Tv@ = [ &s@e@)
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(4.11)

(4.12)

(4.13)



and
1P = [ oo 29uw = [en (290@) v@.
and thus:

Wl Xy) = (Xl
(p| Py)y = (Poly).
(4.15)

Thus, the in (4.7) and (4.8) defined multiplication and differential operators are hermitian,
ie.,
Xt =
pt

ML ey

(4.16)

on the common range of X and X' and P and ﬁT, respectively. One can show that the
ranges always coincide and thus X and P are self-adjoint operators.

4.2 Hamiltonian Operator

In £2(R?) the Hamiltonian

H(P ,X) = — X 4.1
(P, X) 2m+V( ) (4.17)
is given as
(" s ——h—2A+V(:E') (4.18)
i) 2m '

with the Laplace-operator being defined as

A T2 _ > 2. 7 2 ) =3y L 4.19
(? “ axj> (Caa) =% o (4.19)
If the potential is rotationally invariant, i.e.,

V = V(r) (4.20)
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(with » = |Z|), the eigenvalue equation for the energy takes the form

h o

2

(4.21)

This is the time-independent Schrodinger equation for rotationally invariant problems.

4.3 Angular Momentum Operators in £?(R?)

The angular momentum operator (given in units of 7) (3.15)

L= %X « P (4.22)
takes in £?(R3?) the form
I (—, V,x) —Fx -V, (4.23)
i i
Its components are given by
1 0 1 0
Ly = 29~ — — 23 — — 4.24
! 72 ) 8.’L'3 3 1 81‘2 ( )
1 0 1 0
Ly = - — = - — 4.25
2 3 1 8:161 e 1 8$3 ( )
1 0 1 0
Ly = o1~ — — o - —— 4.26
3 7 ) aiL'Q 72 1 8(E1 ( )

As in classical mechanics, spherical coordinates are especially suited for dealing with
rotations in R®. When choosing spherical coordinates as basis, the operators for the
components of L are given as

Ly =i (sin 7 % + cotfcos ¢ %) (4.27)

Ly =i (—cosg@ % + cotfsin ¢ %) (4.28)
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and especially

1 0
= - — . 4.2
Ls 1 00 (4.29)
From this follows
. 1 0 0 1 0?
2 _ i = = — — . 4.
L sin 6 06 <s1n o 80) sin? § 92¢p (4.30)

It should be noted that the components of L, and thus L = >3 _, &Ly depend only on
the angles # and ¢ and not on the radial coordinate r. This can be expected since L is
dimensionless. Using (4.29) and (4.30) one verifies that

[L%Ls] = 0. (4.31)

Finally, one has the explicit representation for the ladder operators

. 0 0
Ly = 4+ (= + ¢ — . 4.32
+ e (80 icotf 8@) (4.32)

Using the definitions, the relations (3.51) and (3.53) can be straightforwardly verified as

[Ls,Ly] = +L, . (4.33)

4.4 Eigenfunctions of the Angular Momentum

The abstract eigenfunctions | Yy,) fulfill the relation (3.67) and (3.68)

E 2 | }/ém> = E(E'i_ 1) | Yv@m) (434)

Ly | Yom) = m | Yom) - (4.35)

With (4.29) and (4.30), the same relation read for £2(R?)

<_ 10 ( gi> _ ! 32) Vin(0,9) = L0+ 1) V(6 ¢) (4.36)

sin 6 00 o0 sin?f 9g?
L0y (0.0) = m Yeul0.0) (4.37)
2890 m\V, Q) = M Vi \U,P) . :

The functions Y, (6, ¢) defined through (4.36) and (4.37) are called spherical harmon-
ics. They do not depend on the radial variable r, since (4.36) and (4.37) are partial
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differential equations in 6 and . If YV, (6, ¢) is multiplied by a constant with respect to
the differentiation with respect to # and ¢, i.e., in the most general case with a function
¢ne(r) depending only on r, then the resulting functions ¢,e(r) Vem (0, @) are still solutions
of (4.36) and (4.37). This is important for the following considerations.

The eigenvalue equation (4.37) can be solved immediately, and one obtains
Vem(0,9) = Yem(0) €™ . (4.38)

From the general considerations in Section 3.7, we know that | Y4,) can be obtained from
| Yie) via (3.84), such that

Vi (0, ¢) = — (L)E™ V(9. ¢) - (4.39)

Here L_ is given as differential operator through (4.32). Therefore, it is sufficient to find
the spherical harmonic corresponding to the general vector | Yy)

yﬁf(ga <P) = }/Zf(e) ei&p ) (440)

and determine the function Y, (0, ¢) by (¢ — m)-fold application of L . One has the
general relation (3.70)

Li|Yu) =10}, (4.41)
and thus using (4.32)
e’ (% + icotf %) Yo (0) e = 0, (4.42)
ie.,
(g -/ cot@) Yu(d) = 0. (4.43)
00

The solution of (4.43) is given by
Y = cgsint 6, (4.44)
i.e., one has

Yu(0, ) = cgsinf e (4.45)
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The constant ¢, is fixed through the normalization
2m ™
1 = (Yu|Ya) = /O de /O sin 0.d0 | Va0, ¢) ?

1
= 21 |¢ |? / d cos 0 sin** 0
-1

1
= 2 | ? /_1 de(1 — €2t
(2¢01)2

= 27T‘Ce|2 2m

(4.46)

The normalization condition fixes the state up to a phase factor. If one chooses the phase
factor according to the general convention, one obtains

1 [@2e+1)
Yu(0,9) = (1) 2! A

sin® @ ¢'¢ . (4.47)

Application of (L )*~™ gives the spherical harmonics Yy, (0, ¢) according to (4.39). If
one uses

(L) mesint9 = {—e 9 _ icotf 9 o e sin‘ 9
- 00 0p
—m
d
_ emyp m 20
e sin™™ (dcos 0) sin“* 0
(4.48)
then the spherical harmonics can be written in a particular simple form

(1! (@) Cam) o d
m (0, = me "0 1— 4.49
Yen(0,0) = =z ar (C—m) & getem (1=-&) (4.49)

with & = cosf. With this result our task to find an explicit representation of the abstract
eigenvectors of L 2 and L3 in £2(R?) is finished.

4.5 Special Cases

Here a special, very simple, but important application should be discussed; the case
m = 0. This case is e.g., important in scattering problems. For m = 0, one has

20+1 (=1)* d*

yZO(Oa (P) = A7 2L/ d—é-e (1 - 62)6

o4



20+ 1
= “an Py(§) .
(4.50)
Here
1\ dﬁ
PO = S e - € (451)

is the Legendre polynomial of degree £ in & = cosf. Obviously the spherical harmonics
are for m = 0 independent of .

For ¢ = 0 one has
P(§) =1 (4.52)

for all &, and thus

1
6, = — 4.53
yOO( QO) \/E ( )
is not only independent of ¢, but also of #. The different values of the constant, 1 and

\/%771" result from the fact that P(€) is fixed by choosing the value for £ =1,

Pe=1) = 1, (4.54)

whereas the normalization of Yz, (6, ¢) is given by

(Vi | Yim) = [ dcost dip | Yen(0, ) = 1. (4.55)
This gives the general relation (4.52) and especially for Yyo:
[ Yoo | 4 =1 (4.56)

corresponding to (4.53). This difference in fixing the normalization constant (either
through fixing the value of the function at § = 0 or through the integral of the abso-
lute square of the function) leads to different constants, which is in principal trivial, but
extremely important in applications.

Legendre Functions: The Legendre polynomials P, are defined via (4.51). The con-
nection to the spherical harmonics is given for m = 0 in (4.50). Using the Pp, one defines
the ”associated Legendre functions” via

m/2 deZ(é‘) )

PP = (- gy (4.57)
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The associated Legendre functions allow the representation of the Ve, (8, ¢) via

2+1 (£—m)!
i (+m)!

Vim(6,0) = (—1” ¢™ P (cos) . (4.58)

Details can be looked up in Edmonds: Angular Momentum in Quantum Mechanics, a text
which is very useful for working with angular momentum. It should be noted that the
spatial distribution of the probability with respect to the angles # and ¢ is given through
| Ve (6, ) |2. Obviously, the p-dependence vanishes when taking the absolute value of
the square. For ¢ = 0, there is in addition no #-dependence. For a graphical representation
of the Yy (6, ), see the corresponding section of the CUPS program package on quantum
mechanics.

4.6 Bound State Problem for Rotational Symmetric
Potentials

As demonstrated in Section 3.11, the Hamiltonian

p’2
H = — V 4.
7 + (4.59)
can be written as
P2 h’L 2
H= "1+ "5 1V (4.60)
2m 2m | X |2
with
1 — — — —
2 . 2_ - .
P = {(X Py -niX-P} . (4.61)

X.P’:—_‘v: 4.2
Z:v Tar (4.62)
and thus
1 0 0
P2 = K2 — —r — —
" 72 TarT37°+ or
s, 1 0 , 0
= B2 — 2 4.
hr28rrar (4.63)



One can show immediately that the square of

h (O 1
p _ N 1 4.64
" i<8r+r> (4.64)

gives the expression (4.63).

For rotationally invariant potentials V = V(|X|), the Hamiltonian takes the following
form in coordinate space:

B 1 0, 0 R2L 2
H= - — 22 L 2= . 4.
2m r? 4 or + 2mr? + V() (4.65)

As shown in Chapter 3, one can choose a set of simultaneous eigenvectors to H, L 2 and
L3, namely

H wném = Ene ¢n€m
L anfm €(£ + 1)1/Jn13m
L3wn£m = m 'l[]nfm

(4.66)

Using (4.65) one obtained the eigenvalue equation for the energy in coordinate space

" o2m 2 or r or 2mr?

2 2
{ h 19 2 2 + w + V(’I‘)} ¢nem(7“,9, (P) = nt ¢n€m(ra 9790) ) (467)

which is called the radial Schrodinger equation. The solutions of this equation are
fixed up to constants with respect to differentiation with respect to r, i.e., up to functions
of 6 and ¢. Therefore, the solutions are of the form

wném(raga SD) = wné(r) Cnfm(ga (‘0) . (468)

On the other hand, the solutions with respect to the angular momentum eigenvalue equa-
tions are given by the spherical harmonics. Thus, the general solution of the eigenvalue
equations (4.66) is of the form

¢’n£m(ra 07 (P) = QSM(T) y@m(ea (p)m . (469)
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A remaining constant, independent of 7,0 and ¢, is fixed up to phase factor through the
normalization of ¥4, (7,0, ¢). Since the normalization of Y, (0, ) is already fixed, it
follows for ¢pe(r)

/ r2 dr dcosf dp | Ynem(r,0,0) [?

= / 2 dr | ¢ne(r) ? / dcost do | Yem(0,0) > = 1.
(4.70)

If one chooses ¢, real (and positive)

/ rdr ¢2,(r) =1. (4.71)

When inserting (4.69) into (4.67), one can omit the spherical harmonics Ve, (6, @), since
they are constants for a differentiation with respect to . Thus one obtains the ordinary
differential equation

1l d ,d R2(+1)
i e el S = (472
2m r? dr 4 dr ne(r) + 2mr? V()| Pnelr) nt Gne(r) (4.72)
With
1 d ,do 1 d?
St = s 4,
r2 dr r dr r dr? (r¢) (4.73)
this leads to
R’ 2 R? L(L+1)
S ——— (réne) + o 2 Gne(r) + V(r)dne(r) = Ene dne(r)  (4.74)

which is the usual radial Schrédinger equation. If one multiplies this equation with
r, one obtains in all terms the function

U,ng(T) = T¢n€(r) : (475)
With this the radial Schrodinger equation takes the simple form
n? > R 00 +1)
— 5 T2 o = FE 4.
o dr? Une(T) o 2 Une(r) + V(r)une(r) e Une(T) (4.76)

and the normalization condition (4.71) becomes

/ dr 2, (r) = 1. (4.77)
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4.7 Solution of the Radial Schrodinger Equation

If one considers (4.74) as differential equation, then this equation has in principle solution
for all values E,,. However, (4.74) was derived from the eigenvalue problem (4.66) in
the Hilbert space, here £?(R3). We are looking, therefore, for solutions which fulfill the
normalization condition (4.77). Since eigenvectors to different eigenvalues are orthogonal,
but on the other hand because of the separability of £?(R?) only countable orthonormal
systems occur, the spectrum of eigenvalues in (4.74) for normalizable solutions can only
have a countable amount of eigenvalues E,,. One has to take into account that the
normalization requirement restricts the solutions in two ways, namely with respect to the
behavior of the functions at » = 0 and at r — oc.

Case 7 = 0: The equation (4.76) is a second-order linear differential equation and thus
has two linearly independent solutions for each E,,;. On the other hand, a general theorem
about spectral decomposition of self-adjoint operator in a Hilbert space guarantees the
uniqueness of the normalizable solutions ¥y, (if there is no further degeneracy). One may
expect, therefore, that the normalization condition excludes one of the linear independent
solutions. Let us consider the behavior of (4.76) at the origin. In the following we assume
that V(r) for r — 0 becomes singular weaker than 7, i.e., weaker than the centrifugal
term. In the vicinity of the origin one can approximate (4.76) by

dQUg K(f + 1)
 dr? + 72
Two linearly independent solutions of this asymptotic equation are given by r+! and r~*.
The latter has to be excluded, at least for £ # 0 since

€ € 1
2 —
/0 dr uy(r) ~ /0 7, dr = oo . (4.79)

For ¢ = 0 there is none such restriction since both solutions are square integrable at the
origin. For the wave function, however, the solution u,, ~ r~¢ would lead because of

(4.75) to

ug 'R0 (4.78)

Ynoo(Z) "~ % (4.80)

The application of the Laplace operator in P2 = —K?A onto this function would then
because of

A% = —dr5(3) (4.81)

lead to an additional )-function in the three-dimensional Schrédinger equation, which
cannot be compensated by any other term. Therefore, we allow for all ¢ only the so-
called regular solution with

ug(r) "R L (4.82)



This, in turn, means that the eigenfunctions un(r) for each E,, are uniquely fixed
through the requirement (4.82) at the origin.

Case r — oo:  Through the considerations about the behavior of wu,.(r) at the origin,

one has for each F,, a unique solution of (4.76). Now we only have to determine those

values of E,, for which the corresponding u?, stays finite when integrating over the entire

space. In order to do this, we have to consider the behavior of the solution for r — oc.

We assume that for large r the potential V' (r) 2falls of at least like the Coulomb potential.
K2 L(e+1)

We also consider that the centrifugal term — 5 =~ because negligible for large r. Thus

for arbitrary F we have the asymptotic equation

- =t _ By, "% 0. (4.83)

If £ <0, then two linearly independent solutions are given by

we(7) ~roeo VB, (4.84)

bl

which do not disappear for r — oo and thus are not square integrable.

For F < 0, one has in general a superposition of the form

ug(r) ~rooo a(E)e V W r + b(FE) eV o 1P . (4.85)

Since the solution is already fixed up to a constant through the behavior at r = 0, it cannot

20 g
be avoided in general that the non-square integrable term e w

specific energies there is

appears, unless for

b(En) = 0. (4.86)

Then only the square integrable term

_ /2m
Unﬁ(r) R a’(EnK) € n [Ene r (487)

remains. The values E,,, for which the condition (4.86) occurs, are obviously the energy
eigenvalues of (4.76).

Remark: Strictly speaking, the above conditions are not 100% conclusive since the
asymptotic behavior of the solution of correct equation (4.76) does not have to be the
same as the solution of the asymptotic equation (4.85). For a true proof one has to either
give the solution explicitly (like the Coulomb problem) or represent the equation in a
suitable form, e.g., as integral equation, and then study the asymptotic behavior of the
solution.
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4.8 Solution of the Radial Schrodinger Equation for
the Hydrogen Atom

The potential energy of the hydrogen atom is given as
V(i) = — —. (4.88)

The radial Schrédinger equation takes then the form

d? Le+1) N 2m e? 2m

dr? r2 h: or + K?

Eng ’U,ng(T) = 0. (489)

By convention, one relates the variable r as well as the energy E,, to ’atomic units,’ i.e.,
defines
h?

> = 0.529-10% em (= first Bohr orbit) (4.90)
me

T =

and

me*

2h°
These are characteristic units of magnitudes valid for atomic systems. In addition, heuris-
tic considerations based on the Bohr model for the atom are particularly simple. With

E, =— = 13.53 eV (= energy of lowest level in the hydrogen spectrum) .(4.91)

r r

= — = —— 4.92
3 1 hime? (4.92)
and
2m E. 2h?
NNy =12 B,y = oo E, 4.93
¢ ’ p2 | By | met ™ (4.93)

equation (4.89) takes the form

d? (e+1) 2
<d€2 52 + g — Ant unﬁ(rlg) = 0. (4.94)
The asymptotic behavior of u,(r) for r — oo, as discussed in the previous section, suggest
that the ansatz

Une(r) = Une(r1E) = hne(€) eVt (4.95)

for a square integrable solution of (4.94). Substituting (4.95) into (4.94) gives

L(0+1 2
;Iw - 2\/)‘n€ h:w - (52 ) hne + ghne = 0. (4'96)
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This is an ordinary differential equation with non-constant coefficients, which depend on
the variable £ in an analytic fashion. We make the ansatz as polynomial

o0

hne(€) = €51 > at”. (4.97)

v=0

Here the factor £t has been taken out to account for the considerations in the previous
chapter about the behavior of the solution at r = 0. Taking the factor out guarantees
that the series starts with order x,.;. Inserting (4.97) into (4.96) leads to

S (v 1)) T =2 M (C+ v 1) € — e+ 1) £
v=0

+ 26" a, = 0.
(4.98)

Renaming the summation indices in such a way that all terms create the same order in &
(i.e., replacing in the first and third term v by v + 1) gives

o0

S e+v+2)(+v+1) — LL+1))EH a0 = f; 2/ Ane (£+ v+ 1)] £ ,(4.99)

v=0

A comparison of the coefficients leads to the recursion relation for the constants in (4.97)

P 2V el 1+ v) = 2 ay . (4.100)
(l+2+v)(l+1+v)—L(L+1)
If one calculates the coefficient a, according to (4.100), then (4.97) is a solution to (4.96).
However, the solution u,, found by the ansatz (4.97) is then and only then square inte-
grable, if the summation in (4.97) is finite. Again, this can only happen for specific values
of \,¢, namely if for v — n, holds

W e U4+14n)—2 = 0. (4.101)
With this solution, \,; and thus FE,, is fixed. One has
Mt = (4.102)
(L+14n,)?
or with (4.93)
B, = _ M L (4.103)

2n* (L+1+n,)? "

Here the energy eigenvalues are not characterized as E,y, since different combinations of
¢ and n, can lead to the same energy

me* 1
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as long as

n=4~4+14n,. (4.105)
Since the 'radial quantum number’ (historical term) represents a special value of the index
v, i.e., can be 0,1, 2, - -- the value of / is restricted via

0 <?¢ < n-1. (4.106)

This result shows that the Coulomb problem has a special place among the bound state
problems with rotationally invariant potentials. According to (4.106) states with different
values of ¢ can lead to the same energy E,. Since to each ¢ one has the (2¢ + 1)-
fold m-degeneracy, which is valid for all rotational invariant problems, this additional
{-degeneracy leads to a degeneracy of

n—1

S (2¢+1) = n*. (4.107)
£=0

We have already understood the underlying reason for this high degeneracy as consequence
of the special dynamic symmetry of the Coulomb problem.

4.9 The Radial Solution

From (4.95) and (4.97) follows with (4.102), i.e., with A,, = - for the solution of the
radial Schrodinger equation for the hydrogen atom

, +1 oo v
une(r) = e (1) 3 oo (i) . (4.108)

1 n—=0 1

(n,€)

tmf) are given through the recursion relation (4.100) which reads with

The coeflicients a
(4.102)

a(n,e) = 9 %(e-l—l-i-l/)—l a(n,ﬁ)
vt U+24+v)l+14+v)—Ll+1) "

(4.109)

Especially simple is the behavior of u,,(r) for the maximum ¢. According to (4.106) the
maximum value of £ is n — 1, i.e., we have to consider u,,_(r). Here applying (4.109)
shows that already

(nyn—1) _ % n—1 (nyn—1) __ 0 (4 110)
“ T (n+Dn—-(n-1)n @ - '
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Thus for £ = n — 1 the solution of the radial Schrédinger equation is given by

_1x (7T)? _

Upn—1(r) = € =7 (—) i (4.111)
T

With the normalization condition (4.77), this result is completely fixed up to a phase

factor. For r = 0 the function u,,_1(r = 0) is zero, as it has be to according to the

considerations in the previous section. The function has a maximum, which is determined

from
d 1 U (Nl T N
- Up,n— = |— — — nor — ’ =0 4.112
dr ™ 1(r) [ nry + (7’1) (7"1> ] € ' (7‘1> Qo ( )

to be
Tm = n’rp . (4.113)

Thus the maximum of w,, ,—;(r) is located at the radius of the n-th Bohr-orbit. One can
understand this result that one obtains for the maximum allowed ¢, a result resembling
the Bohr-orbits, by the following plausibility argument. In the classical case, one has

m 2

="
27’ +2mr2

+ V(r) (4.114)

from which follows that for a fixed energy the angular momentum is maximized for 7 = 0,
which is the case for circular orbits.

Small Angular Momenta:
As example, let us consider

1 _ r 1 T 2
— 2r _ = — —_— . 4115
2,0 \/2’/‘1 € ' |j“1 2 (T1> ] ( )

This function has two maxima, one (the larger one) at r = 5.24 r; and another at
r = 0.76 r;. There is a finite probability to find the electron even at small distances
r. This is in agreement with the fact that for small ¢ the repulsive centrifugal term
2(¢+1)/2mr? is small.

In general, the function u,, 1(r) has a maximum at the value of the corresponding
'‘Bohr-radius,” r, = n?r;, whereas Unn—k(r) has K maxima, consistent with the fact
that the polynomial expansion on which w,,_x(r) is based has k terms. Thus, only
for the maximum value /¢ one has the simple picture, where the wave function has a
probability distribution resembling a ” Bohr-orbit.” A visualization of the different radial
wave functions, the Yy, (0, ¢) and the probability distribution of the total wave function
can be made with the CUPS program in the volume Quantum Mechanics.
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Spectroscopic Notation:

The quantization of the energy levels if the bound state problem causes because of
FE, — E,, = hw,,, a discrete frequency spectrum for the transition of electrons between
the different levels. Without understanding the underlying physics, there were very early
attempts to organize the spectra. From this period the notation of the different levels origi-
nates and has never been changed. One calls states with £ =0,1,2,3,4,5 S, P, D, F,G, H-
states. The pairs (n,£) of quantum numbers originating from the 0 < ¢ < n—1
possibilities for ¢ are often characterized according to the following scheme:

(1,0) 18

(2,0) (2,1) 25 2P

(3,0) (3,1) (3,2) 35 3P 3D
(4,0) (4,1) (4,2) (4,3) A4S 4P 4D 4F
(5,0) (5,1) (5,2) (5,3) (5,4) 5S 5P 5D 5F

4.10 Laguerre Polynomials

With (4.69) and (4.75), one has for the total wave function of the hydrogen atom

Une(T
Yuan(r0,0) = 0 3,,(0,4) (4.116)
For the Coulomb problem, this solution is explicitly given in form of the power series
(4.108), where the coefficients are given by (4.109). Ounly the first coefficient ai™® can be
chosen arbitrarily. It is, however, restricted through the normalization condition (4.77).

Only a phase factor remains undetermined.

The power series can be brought into closed form. Without proof, the result is given as

Ve (1,0, ) = w[(n+ OIF

2r (20+1) ( 2r )
— ) L — m(0, ) .
X (nrl) n+1 nry y@ ( SO)
(4.117)

Here

d2£—|—1

LeEV () = gemr Lne(©) (4.118)
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is the (2¢ + 1)-th derivative of the Laguerre polynomial, which is defined via

dk

d—gk (ke ¢) . (4.119)

Li(€) = €

See, e.g., Section 13.2 (Laguerre Functions) in Mathematical Methods for Physicists by
G.B. Arfken and H.J. Weber.

4.11 Ionized Atoms with One Electron

An atom with a nuclear charge Z has in its neutron stage Z electrons. If one strips all
electrons but one, i.e., ionizes the atom (Z — 1) fold, then one has again a problem of the
kind treated in Sections 4.8 and 4.9. However, in (4.88) €? has to be replaced by Ze?, and
instead of (4.103) one obtains for the energy eigenvalues

mZ%e* 1
Furthermore, the radius of the lowest Bohr-orbit is given by
52 _ 1
mZe: 7'

r(Z) = (4.121)

i.e., the lowest Bohr-orbit is reduced by % compared to the hydrogen atom. Correspond-
ingly, the wave functions are given as

n—€—=1)! , [2Z _ :z

ném 707 = o /- 1 /N13 — M
Yutm (1,0, ¢) 2n[(n + 012V rng ¢
27r\* 27r
il B S (—) (6. ) . 4.122
X (7’),7’1> n+1 nr yﬁ ( ,90) ( )

As an aside, the maximum of ¢, ,,_1 , is located at

2 T Tn
R 4193
Tz =M 7 =7 (4.123)

which corresponds to the radius of the Bohr-orbit.
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4.12 More General:
Operators in R’

Eigenvectors of the Position

In (4.1) the components of the vector operators

3
X =Y §Xx; (4.124)
7j=1
and
. 3
P =) &P (4.125)
j=1
were introduced with the commutation relations
(X, Xk] = 0
[Pj’Pk] =0
h
[P, Xl =~ oml.
(4.126)

Since the operators X;, Xy and X3 commute, one can expect that according to the theorem
(3.27) there are simultaneous eigenvectors | ¢, u,z,) Of these operators with

Xl ‘ (pw1,w2,w3>
X2 | 90$1,$2,$3>
X3 ‘ (pw1,w2,w3>

T1 | 90$1,w2,$3>
T | Spwl,mz,w?)

T3 | 90$1,w2,$3> .
(4.127)

Multiplying these equations with €7, €; and €3, respectively, and adding all equations gives

(€1X1 + é’2)(2 + é’3)(3) | @ml,zz,m:’)
and
X [ z)
Let us consider the operator

e a; P;

St

= (€1x1 + €T + €373) | Puy,25,25) (4.128)

=7 |g05g) . (4.129)
1 i\? )

s () e

7; n
= iP)"
2) (aiP)

(4.130)
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From the commutation relations (4.127) follows

h
[Pzanl] = _-nPin_l =
7

hd (4.131)
7

i.e., the commutator with X; acts (with the factor %) like a differentiation with respect
to P;. Thus one obtains

= —q; e P (4.132)

St

[6_% ‘“Pi,XZ-] = - 5¢

As proof one only has to explicitly apply (4.130)

tenx] = 5 (+f) e
%0 -\ n—1
=25 - my (1) (-5) o
= —q ek wbi
(4.133)
Thus for a specific component, one has
e ¥ 6P X | pg) = miem 7 U g, (4.134)
or with (4.132)
(Xi—al)e 7 %P | ) = me 7 %P | g,) (4.135)
and thus
X;e w %P o) = (mita)e #9P | g, ). (4.136)
This result derived for one specific component 7 generalizes immediately to
Xe v pg) = @ +a@) e 757 | a). (4.137)
Starting from (4.132) and generalizing to three components, one obtains
er P XendiP = ¥ 4 g1 (4.138)
where @ is an arbitrary vector € R3. Applying (4.138) on | ¢z) yields
Xe #7P g = @ +a@) e 777 | pg) . (4.139)
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If | oz) is an eigenvector of X | 0z) = 7 | pz), i.e., to the eigenvalue 71, then e# @ P | ;)
is also eigenvector to the X operator, but with eigenvalue (¥ + @), i.e., one has
e TP | op) = vz 1a) - (4.140)
This means X can take all possible values, and its components obey
—o00 < z; < 00. (4.141)

This means, in particular, that each eigenvalue z,z, and x3 in (4.127) has an infinite
degeneracy. If z; is fixed, e.g., then one has infinitely many choices of fixing x5 and x3 in
order to characterize the state | ¢z, zp.z5)-

In Section 1.7 we have shown that due to the uncertainty principle
(AX)y, # 0, (4.142)

which means that eigenvectors to X can not exist.

Remark: The characteristic property of finite dimensional hermitian matrices consists
of the fact that they have complete system of eigenvectors. In infinite dimensional spaces,
this is normally not fulfilled (exception: harmonic oscillator). The position operator
illustrates this clearly. X isa self-adjoint operator in an infinite dimensional space for
which no eigenvectors exist.

This means there is no vector | ¢z), which is element of the Hilbert space (i.e., has a
finite norm) and which fulfills X | ¢z) = ' | ¢#). The question is if the eigenvalue
equation can be fulfilled if one does not require that | ¢z ) is normalizable, i.e., if one
allows eigenvectors, which are not elements of the Hilbert space. Consider the space
L?(R3) of square integrable functions. Here X acts as a multiplication with the variable
Z. The eigenvalue equation reads

X op(@) = & ow(T) . (4.143)
If one writes this equation in the form
(Z—2) ox(@) = 0 (4.144)

then it is obvious that the solution is proportional to the d-function. If one chooses the
proportionality constant to be 1, then

ox () = 6(F -7 . (4.145)

Remember, that the main property of the d-function is to set in the product ¢(Z) §(Z) the
argument of the function v to & = 0. Especially Z6(Z) = 0§(Z) = 0. With this, (4.145)
obviously solves (4.143).
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Of course, the solution (4.145) is not normalizable, i.e., is not in £L*(R?). Building the
scalar product gives the non-existing quantity

:/ &P ot (7 /d3:r<5x B 6@ —F) =06(0). (4.146)

Building the scalar product of two solutions (4.145) with different eigenvalues ¥ and "
gives

o | om) / &z 6(F —T) 6(T— ) = (@ — 7). (4.147)

The é-function is a generalized function (more precisely a functional), which vanishes for
" # Z' and gives a contribution for £ " = & '. It then acts like a Kronecker §;;
with respect to eigenfunctions belonging to the self-adjoint operator X. In this sense
the solution (4.145) of (4.143) are an orthonormal system. They are ‘normalized to a

o-function’.
If an observable A depends only on operators P and X, i.e., A = A(ﬁ, X:), then the

position operators X7, Xo, X3 form complete set of operators, and | ¢z) is completely
characterized when fixing . This implies the completeness relation

= [ & lea)es| - (4.148)

The momentum operator P acts as

B | > h 0 _h 0 _h 0 | )
T1,T2,T = €1~ €2~ S — €3— 5 — T1,T2,T
Po1,m2.28 Vi 0y > O 34 Os Y1222
h —
(4.149)
Proof in the One-Dimensional Case:
According to (4.140) we have
e % P | §0w> = ‘ 90w+a> . (4150)
Differentiation with respect to a yield
7 d
— = P Ygia) = — ta) 4.151
h | SD + > da ‘ SD + > ( )

where we used that the differentiation with respect to the real variable is derived from
(4.130) and gives the same result as differentiating real functions.
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If one further considers that

d d d

- - - = 4.152
da |€0z+a> d(a-l—x) |90z+a> dr ‘sz-f—a) ( o )

and sets the arbitrary parameter a to zero in (4.151), one obtains

h d

P‘@m) = - ; dz ‘pr> (4153)

which is the result (here derived) postulated in Section 4.1.

4.13 Coordinate Space Representation of One-Particle
Problems in R’

Using the completeness relation (4.148), an arbitrary state | 1)) can be represented as
W) = 119 = [ d [ealeal ) = [ dPulen @,  (4159)

as long as | ¢) characterizes problems in which the observables only depend on X and

P. A general state | 1) is thus associated in the coordinate space representation with the
"wave function” (%)

[ P) — $(T) . (4.155)

The absolute square of this component is obviously a measure for the probability to find
the vector | ¢z) in | ¢). Thus one defines the probability for the position

wy(Z) = |(pz | ¥) " = 9@ *, (4.156)
where
o= [ ds@lealeelv) = [ dz | v (4.157)
was assumed. Then the total probability is
/d% wy(@) = 1. (4.158)

as it should be for a meaningful definition of probability. In the coordinate representation,
one has

[¥) — $(@)
X|y) — Fo@
Ply) — 594

(4.159)



and

(pz | X [pzr) = To8(F-1)
— h — = N
(pa | Plos) = — = Vo d(@—7)
(4.160)
A Hamiltonian of the form
P2
H=_—+V 4.161
5 (4.161)
has thus in coordinate representation the following form
hQ
(90£|H|80£'>Z—%Ax&f—fl)‘i'(@ﬂvwf'), (4.162)

or if one applies H on an arbitrary state | v)
s | H 0y = [ & (on | H| oa)pnl)

h2
[ [_ B ne 8@ —7) = (o |V | we)| (0o | 0)

2m
h2 = 3./ =
= — A @) + [ & (o |V | pa) (@) -
(4.163)
The energy eigenvalue equation H | ¢) = F | ¢) takes the form
{oz [ H | 9) = / &z’ gz | H | pr)ez | ¢) = Elpz | ¥) (4.164)
and thus
h2
— o B (@) + [ (s |V |0 ) 6@ = EU@) . (1169

If one has a local potential, i.e., {9z | V | ¢z} = V(%) 6(F — %), then (4.165) reduces
to the previously considered equation

- g A+ V@] V@) = B U@, (4.160)

Thus the eigenvalue equation solved in Sections 4.6-4.8 is the eigenvalue equation in a
special representation, namely the coordinate space representation.
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4.14 Momentum Space Representation

Instead of (4.127) and (4.128), one can equally extract from the commutation relations
(4.126) eigenvalue equations for the momentum operator P

Plxs) =7 |xs) (4.167)
with
N 3
P => ¢&Pp;. (4.168)
j=1
Similarly to (4.138), one has
e X Pe-n@X = P _ g1 (4.169)

a result which already has to hold, since the exchange of P and X in the last relation
of (4.126) only leads to a change of sign. Applying (4.169) on | x;) allows a conclusion
analogous to (4.140), namely that starting from a specific | xz), one can always find
momentum eigenstates

| ) (4.170)

which belong to an arbitrary momentum 5’ = p — d. Here @ is to be considered as
arbitrary parameter. Thus the components P; of P can take all values —oo < p; < oo.
Further, from (4.170) follows

. ho-
X Ixa) = Ve [xi) (4.171)

A comparison with (4.149) shows again the change of sign typical for the interchange of
the operators X and P.

Assuming again that observables only depend on X and 13, ie., A()? , 13), one sees that
| x7) is also a complete set of states with the normalization condition

Xz | xz) = 6(p"—p) (4.172)

and the completeness relation

1= [& )] - (4.173)
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Expanding an arbitrary state according to momentum eigenvectors leads to the momen-
tum space representation

10) = [dp el v) = [ &l b0
Plv) = [ @pP sl v) = [dp x5 ()
X0y = [@X 1w ) =[5 91 x) 00

(4.174)

In this representation P acts as multiplicative operator and X as differential operator.
Analogously to (4.160), one has

w1 X [ x5) = PoF—F") (4.175)
i.e., the momentum operator is diagonal, and

h

1

O | X I x0) = vV, 65— 5') - (4.176)

The expectation values of the momentum operator are simple

(Py, = (¢ |P]|y)
_ /d?’p(w\ﬁ\Xﬁ)(Xﬂw

_ /d3pﬁ<w|xﬁ><xﬁw>
= /d3p5|<Xﬁ|¢>|2
- /dSpm«/?(m\?-

(4.177)
The absolute square
Wy (D) = | (xz¥) [P = 9@ |” (4.178)
is the probability to find the momentum eigenstate | x;z) in the state | ¢). Already in
(4.177), it was assumed that || ¥ || = 1, so that
[apa@) = [dp x| v)
= (W]¥) =1 (4.179)
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which confirms that (4.178) is the momentum probability with respect to a total proba-
bility 1.

The position expectation value is in the momentum space representation more complicated

, . - hoo -
WIX[0) = [dp @ e X10) = [@pd@) —= ¥, o). (4180)
The Hamiltonian is in momentum space representation given as

r? oL
Ol Hxp) = Ol g +V i) = %(5(])—10') + (x5 | V]xz1),(4.181)

and eigenvalue equation for the energy

e H Yy = EQG | ¢) (4.182)

takes the form

% b@) + [ (VI 96 = BB (4.183)

In general, one cannot extract a d-function from (xz | V' | x5 ) for a local potential, as it
was the case in the coordinate space representation. For a local potential, one has

ol Vixg) = Ve-5"), (4.184)

so that (4.183) stays in the form of an integro-differential equation. Thus for local poten-
tials the coordinate space representation is more suitable for solving the energy eigenvalue
equation, as explicitly demonstrated for the Coulomb potential.

4.15 Separable Potentials

In this insert, a specific class of potentials shall be considered, which historically have
played a major role in the development of few-body physics. For simplicity we consider
only the one-dimensional case and have in mind that when separating off the angular
momentum part for a rotationally invariant problem, then the energy eigenvalue equation
is one-dimensional. In practice, separable potentials have been defined for each /-state.

A separable potential is given by
Vi =gy A{g], (4.185)

where )\ is a parameter. Precisely, V? is a so-called rank-1 separable potential.
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In coordinate space representation, one has

(e | Vo [ 0ar) = (0l 9) A (g | 0w) = glz) A g*(z') (4.186)
and in momentum space representation
X 1V Ixp) = Ol 9 Ag | xp) = 3p) Ag7 () - (4.187)

Thus, in both representations V* has the same form. The functions g(z) and §(p) are
sometimes called ”form factors,” which should not be confused with the form factors
introduced to describe the charge distribution of an atom or the electromagnetic properties
of nucleons. (4.186) and (4.187) give no preference in which representation the eigenvalue
equation for the energy should be solved. Comparing (4.183) with (4.166) shows that now
(4.183) is simpler due to the simpler kinetic energy term:

p 7 ~% 7 7
T 3p) + 9) A [ a5 0) B0 = BYw) . (4.188)
From this follows
~ p2 ~
~ I o~x( / — E 4 41
1)) [ 56 068) = (£- L) o (1.150)
or
1 ~ (PN AN 7
—— i) A [ W W) Bw) = 9). (4.190)
2m
Multiplication of (4.190) with §*(p) and integration over p results in
[ avg i) [ 36 dw) = A [ dp g () dp) (420
2
from which the dependence on t(p) can be completely eliminated
/ dp §*(p) ———— §(p) = A" (4.192)
2m

This is an equation which completely determines the energy eigenvalue E' and only con-
tains potential parameters. Thus in the momentum space representation separable po-
tentials lead to a closed form equation for E, which can be easily treated with standard
numerical methods. This made separable potentials quite appealing.

It is quite instructive to consider the above derivation again, but now without a specific
representation. The eigenvalue equation (4.188) reads then

(2 + 1G] 19 = Blw) (4.193)
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which can also be written as

9 Algl¥) = (E— %) | ) (4.194)
1
- [ g) Mg l¥) =1v). (4.195)

Multiplication with (g | gives

0 ——— 19 Aa]¥) = g]9) (4.196)

2m

from which (g | 1) can be eliminated
—— g = A7 (4.197)

The only operator present in this equation is the momentum operator. It is thus most
reasonable to use the momentum space representation, since here P is diagonal

[dvta] 2= 1) G la) = A~ (1.198)

2m

from which (4.192) directly follows:

/ ap AW E (4.199)

p2

2m

Thus different from local potentials, for separable potentials the momentum space repre-
sentation is much more suited. For the so-far considered cases, the harmonic oscillator
and the Coulomb potential, the discussion in this section appears quite academic, since
both potentials are not separable. Even the, in principle, very complex nuclear force
seems to be approximately local, at least for larger distances. There the nucleon-nucleon
force is of Yukawa-type

e Hr

(pz | Van [@z) = A 5(F —Z'). (4.200)

r
On the other hand, one often has to rely on approximative methods for solving compli-
cated problems. However, perturbative methods are often not accurate enough or do not
converge. A different method consists of the expansion of local potentials in terms of
separable potentials. Then the above considerations are of central importance, and in
this case it is definitely easier to work in momentum space.
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4.16 Transition from Coordinate Space to Momen-
tum Space Representation

The abstract state | ¢) can be represented either as superposition of coordinate space
eigenvectors

/d?’x | pz) (Vz | ) /d3x | pz) V() (4.201)
or of momentum eigenvectors
/ &Pp | xz) (x5 | V) / Pp | xp) () - (4.202)

Here the expansion coefficients (”wave functions”) are either (%) = (@3 | ¥) or ¢(p) =
(X7 | ¥), and represent the same state | ¢). Going from one representation to another
simply means a change of basis. We have

W@ = ez V) = [d oz ) 19) = [dp ez x5) 9(F)  (4.208)
and
06 = Ol 0) = [d5 (1) (we9) = [d Gl en) 9(3) . (4209

As always when performing a change of basis, we have to determine the new basis in
terms of the old basis and vice verse, i.e., we have to determine the coefficients (¢z | x;)
and (xz | ¢z). For this, let us consider

(b | Plxp) = P vz | xz) (4.205)
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and

— h —
(pz | Pl xp) = sz (oz | x5 ) - (4.206)
Thus the coefficients (pz | x7 ) have to obey the differential equation
h =, o
~ Vo loz|x5) = Pleslxz) - (4.207)

~

The solution is given by

(s | ) =~
Pz Xp — (271'71)3/2 e

St

Pe (4.208)

if one takes into account the normalization conditions

(pzlpz) = 0(@—-2") and (x5 |xz) = 0(F—7p") (4.209)

and appropriate choice of the arbitrary phase factor. Inserting (4.208) into (4.203) and
(4.204) gives

1 i~
V@) = g [ PreE 70D
W) = G [ A e U@

(4.210)

which is the expected result that coordinate space and momentum space representation
of a state | ¢) transform into each other via Fourier transformation.

Finally, it should be derived that the momentum space representation of local potentials,

i.e., of potentials that are diagonal in coordinate space representation {(pz | V | ¢z /) =
V(Z) 6(Z — &) is indeed of the form (4.184). On has in general

Ol Vg = [dz [ Gples) s | VIes) (020 | x0)

(4.211)
which becomes for local potentials
1 —i p—p ! X — ‘7 = —
el Vixg) = @iy /d3a:e w PR = V(E-p) (4.212)
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