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Chapter 5

Symmetries II

In Chapter 2 we had already defined that an operator A, which does not explicitly depend
on the time, i.e., ∂A

∂t
= 0, is then and only then a constant of motion if [H,A] = 0.

Let us define a unitary operator

U(t) = e−
i
~
Ht (5.1)

for translations with respect to time.

Differentiation with respect to time gives

d

dt
U(t) = − i

~
H e−

i
~
Ht . (5.2)

This operation is allowed since all quantities commute, i.e., one has [U(t), H ] = 0. Thus
U(t) fulfills the following differential equation

i~
d U(t)

dt
= H U(t) . (5.3)

This equation has formal similarity with the time-dependent Schrödinger equation, how-
ever, the wave function ψ is here replaced by the operator U . Thus (5.3) can be viewed as
Operator- Schrödinger equation. Eq. (5.3) can also be viewed as defining equation
for U(t). With the initial condition U(0) = 1, one obtains (5.1).
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5.1 Translations

In Section 4.12, we showed by using the commutation relation between ~X and ~P that an
operator

U(~a) = e−
i
~
~a·~P (5.4)

has the properties of a translation operator. We now want to construct this result sys-
tematically.

A translation in space is given by

~x ′ = ~x + ~a , (5.5)

where ~a is an arbitrary vector ∈ R3. Analogously we define the translation of the ~X-
operator as

~X ′ = ~X + ~a1 , (5.6)

and try to find a unitary translation operator U(~a) with

U †(~a) ~X U(~a) = ~X + ~a1 . (5.7)

With

U †(~a2) U
†(~a1) ~X U(~a1) U(~a2) = ~X + (~a1 + ~a2) 1

= U †(~a1 + ~a2) ~X U(~a1 + ~a2)

(5.8)

one has the following property of U(~a):

U(~a2) U(~a1) = U(~a1 + ~a2) . (5.9)

From

U(~a1 + ~a2) = U(~a2 + ~a1) (5.10)

follows

[U(~a1), U(~a2)] = 0 . (5.11)

Furthermore, one has

U(~0) = 1 . (5.12)
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Because of (5.9), the relation

~a 7−→ U(~a) (5.13)

is a Homomorphism, namely the representation of the Abelian translation group with the
unitary operators U(~a). In order to draw conclusions from the above given properties, we
consider (because of simplicity) the one-dimensional problem. One has

U(a2) U(a1) = U(a1) U(a2) = U(a1 + a2) (5.14)

and thus differentiating with respect to a1 or a2 gives

U(a2)
dU(a1)

da1
=

dU(a)

da

dU(a2)

da2
U(a1) =

dU(a)

da

(5.15)

where a = a1 + a2. Thus one has

U(a2)
dU(a1)

da1
=

dU(a2)

da2
U(a1) (5.16)

or

dU(a1)

da1
U−1(a1) = U−1(a2)

dU(a2)

da2
. (5.17)

Since (5.17) has to be valid for different values a1, a2, follows that

dU(a)

da
U−1(a) = U−1(a)

dU(a)

da
= −iK (5.18)

has to be independent of a. The operator K still has to be determined. The solution of

dU(a)

da
= −iK U(a) = U(a)(−iK) (5.19)

is obviously

U(a) = e−iKa , (5.20)

where (5.12) has to be taken into account. From the unitarity of U follows that K is
self-adjoint and vice versa. For an infinitesimal value da, one can expand (5.20)

U(da) = 1 − i da K (5.21)
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and

U †(da) = 1 + i da K . (5.22)

Inserting (5.21) and (5.22) in (5.7) gives

U †(da)X U(da) = (1 + i da K)X (1− i da K)

= X + i da[K,X ]

≡ X + da 1 .

(5.23)

Thus

i[K,X ] = 1 . (5.24)

Comparing (5.24) with the Heisenberg commutation relation gives that

~K = P , (5.25)

i.e., one obtains for U(a)

U(a) e−
i
~
aP . (5.26)

The same considerations are valid for the three-dimensional case. Thus, one has here

U(~a) = e−
i
~
~a·~P . (5.27)

Remarks: In the above derivation, the commutation relation i~[P,X ] = 1 was assumed.

Taking a more general point of view, one could have defined the momentum operator ~P
as ”infinitesimal generator” of the translation (5.21). Then one would have automatically
obtained the commutation relation (5.24). Thus, up to the factor ~, the definition of U(~a)

based on group theory determines the momentum operator ~P .

5.2 Application of U(a) on Quantum States

At the beginning of the Chapter, we already indicated that U(t) can be applied on oper-
ators or quantum mechanical states:

〈A(t)〉ψ = 〈ψ | A(t) | ψ〉 = 〈ψ | U †(t) A(0) U(t) | ψ〉
= 〈U(t)ψ | A(0) | U(t)ψ〉
= 〈ψ(t) | A(0) | ψ(t)〉 .

(5.28)
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Specifically, (5.28) indicates going from the Heisenberg representation to the Schrödinger
representation with respect to time dependence. Analogously translations can be viewed
as

〈ψ | U †(a)AU(a) | ψ〉 = 〈U(a)ψ | A | U(a)ψ〉 . (5.29)

Thus U(a) could be defined via its action on states | ϕ~x 〉. Here we use

~X | ϕ~x 〉 = ~x | ϕ~x 〉 (5.30)

to define the eigenstates and eigenvalues of the position operator ~X . Multiplication of
(5.30) with U(~a) gives with (5.7)

U(~a) ~X | ϕ~x 〉 = ~x U(~a) | ϕ~x 〉
= ~X U(~a) | ϕ~x 〉 − ~a U(~a) | ϕ~x 〉

(5.31)

from which follows

~X U(~a) | ϕ~x 〉 = (~x + ~a) U(~a) | ϕ~x 〉 . (5.32)

Thus, applying U(~a) on a state | ϕ~x 〉 to eigenvalue ~x results in a state to eigenvalue
(~x + ~a), i.e.,

U(~a) | ϕ~x 〉 = | ϕ~x+~a 〉 . (5.33)

One could have chosen (5.33) as alternative to the definition (5.7) for defining the trans-
lation operator U(~a). Obviously one has

U(~a2) U(~a1) | ϕ~x 〉 = | ϕ~x+~a1+~a2〉 = U(~a1 + ~a2) | ϕ~x 〉 , (5.34)

from which we obtain again (5.9)

U(~a2) U(~a1) = U(~a1) U(~a2) = U(~a1 + ~a2) . (5.35)

This relation together with U(~0) = 1 lead to the specific solution (5.20) of the differential
equation. This means, even when starting from the definition (5.33) for the translation
operator, one would end up with the explicit form

U(~a) = e−
i
~
~a·~P . (5.36)

Let us consider the expectation value of (5.7)

〈ψ | U †(~a) ~X U(~a) | ψ〉 = 〈ψ | ~X | ψ〉 + ~a . (5.37)
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In the Schrödinger-type picture, one has

〈U(~a)ψ | ~X | U(~a)ψ〈 =

∫

d~x ′
∫

d~x 〈ψ | ϕ~x ′〉〈U(~a)ϕ~x ′ | ~X | U(~a)ϕ~x 〉〈ϕ~x | ψ〉

=

∫

d~x ′
∫

d~x 〈ψ | ϕ~x ′〉〈ϕ~x ′+a | ~X | ϕ~x +~a〉〈ϕ~x | ψ〉

=

∫

d~x ′
∫

d~x 〈ψ | ϕ~x ′ 〉(~x + ~a) δ(~x ′ − ~x)〈ϕ~x | ψ〉

=

∫

d~x 〈ψ | ϕ~x 〉~x 〈ϕ~x | ψ〉+ ~a

(5.38)

and thus

〈U(~a)ψ | ~X | U(~a)ψ〉 = 〈ψ | ~X | ψ〉+ a , (5.39)

which shows that U(~a) applied either on the position operator ~X or on the state | ψ〉
leads to a shift of the expectation value by ~a1 as it was expected.

5.3 Transition Operator in Coordinate Space Repre-

sentation

It is instructive to study the translation operator in its coordinate representation. With
(5.33) follows

〈ϕ~x | U(~a) | ψ〉 = 〈U †(~a) ϕ~x | ψ〉 . (5.40)

The explicit form of U †(~a) follows from (5.36):

U †(a) = e
i
~
~a ~P = e−

i
~

(−~a)·~P . (5.41)

Thus U †(~a) acts similar to U(~a); however, here ~a is replaced by (−~a). This also follows
directly from the definition (5.33). Because of U(~a) being unitary, i.e.,

U †(~a) U(~a) = 1 (5.42)

one has

U †(~a) U(~a) | ϕ~x 〉 = | ϕ~x 〉 (5.43)

and thus

U †(~a) | ϕ~x +~a 〉 = | ϕ~x 〉 . (5.44)
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If one replaces here ~x ′ = ~x − ~a, then

U †(~a) | ϕ~x 〉 = | ϕ~x −~a 〉 , (5.45)

and (5.40) becomes

〈ϕ~x | U(~a) | ψ〉 = 〈ϕ~x−~a | ψ〉 . (5.46)

This, in turn, means that in the coordinate space representation U(~a) takes the form

U(~a) ψ(~x) = ψ(~x− ~a) . (5.47)

The relation (5.47) is often used as definition of the translation operator. From

U(~a2) U(~a1) ψ(~x) = ψ(~x− ~a1 − ~a2) = U(~a1 + ~a2) ψ(~x) (5.48)

follows again the relation (5.9) from which we started. A relation as (5.9) conserves the
algebraic structure of an operator and is called Homomorphism. In this example, the
algebraic structure of translations in R3 is mapped on unitary operators in the Hilbert
space. In coordinate space, one has the explicit representation

U(~a) = e−
i
h
~a·~P = e−~a·

~∇ . (5.49)

5.4 Representation of the Translation Group in the

Hilbert Space

Let G be a group with elements {g1, g2, g3 · · · }. Further, one has a map from the elements
of the group on to other mathematical quantities, e.g., operators of a Hilbert space:

g 7−→ U(g) . (5.50)

If this map is a Homomorphism, so that

U(g1g2) = U(g1) U(g2) (5.51)

holds, then U(G) is called a representation of the Group G. Obviously, translations form
a group in R3. With

T~a ~x := ~x + ~a , (5.52)

one has

T~a1T~a2 ~x = Ta1(~x+ ~a2) = ~x+ ~a2 + ~a1 = T~a1+~a2 ~x . (5.53)
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Starting from (5.53), one can easily show all other group properties. If one writes (5.13)
as

T~a 7−→ U(T~a) (5.54)

in analogy to (5.50), then (5.9) or (5.35), one written as

U(T~a1) U(T~a2) = U(T~a1T~a2) (5.55)

and a comparison with (5.51) shows the group homomorphism quite clearly.

Remark: Addition of the vectors ~x and ~a results in the vector ~x +~a. However, adding
the eigenvectors | ϕ~x 〉 and | ϕ~a 〉 of the operator ~X does not lead to the eigenvector
| ϕ~x +~a 〉. One has

~X | ϕ~x+~a 〉 = (~x+ ~a) | ϕ~x+~a 〉 (5.56)

and

~X [| ϕ~x 〉 + | ϕ~a 〉] = ~x | ϕ~x 〉+ ~a | ϕ~a 〉 6= (~x+ ~a)[| ϕ~x 〉+ | ϕ~a 〉] , (5.57)

i.e.,

| ϕ~x +~a 〉 6= | ϕ~x 〉+ | ϕ~a 〉 . (5.58)

5.5 Translational Invariance

Like in classical mechanics, translational invariance will be defined via properties of the
Hamiltonian, i.e.,

H(~P, ~X + ~a 1) = H(~P , ~X) . (5.59)

Considering that U(~a) and ~P commute and that for the scalar product the following
relation holds

( ~X + ~a 1) · · · · · ( ~X + ~a1) = U †(~a) ~X U(~a) · · · U †(~a) ~X U(~a)

= U †(~a) { ~X · · · · · ~X } U(~a) , (5.60)

then one can show that

H(~P, ~X + ~a 1) = U †(~a) H(~P , ~X) U(~a) . (5.61)
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Thus the translational invariance of H can be written as

U †(~a) H(~P , ~X) U(~a) = H(~P , ~X) . (5.62)

In this case U(~a) commutes with H , i.e.,

[H,U(~a)] = 0 . (5.63)

If one considers infinitesimal translations, this means

[H, ~P ] = 0 . (5.64)

In the Heisenberg-representation, one had

~̇P =
i

~
[H, ~P ] . (5.65)

If the Hamiltonian is invariant under translations, then [H, ~P ] = 0 and thus ~̇P = 0, i.e.,
~P is a conserved quantity.

In the so-far considered one-body problems, H was of the form

H =
~P 2

2m
+ V (~x) . (5.66)

Thus invariance of H under translations put the restriction

V ( ~X + ~a 1) = V (~x) (5.67)

on the interaction V . This is only the case if V is independent of ~X . In that case V
can be set to zero. Thus conservation of the linear momentum ~P (with a Hamiltonian
of the form (5.66)) can only occur if there is no potential V , i.e., for the free motion.
Translational invariance of H and the resulting conservation of the total momentum will
only become important for systems with two or more particle.

5.6 Rotations in R3

A linear map

~x ′ = R ~x (5.68)

in R3 is called rotation in this space if it leaves the there defined scalar product invariant,
i.e., if for two vectors ~x and ~y

(R~y) · (R~x) = ~y · ~x . (5.69)
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Introducing the canonical basis in R3, ~ei, i = 1, 2, 3 with ~ei · ~ej = δij and associating via

(~ej · R ~ek) ≡ Rjk (5.70)

the matrices Rjk with the map R, then (5.68) takes the usual matrix form

x′j =

3
∑

k=1

Rjk xk . (5.71)

The invariance of the scalar product leads to

∑

j

∑

kℓ

Rjkyk Rjℓxℓ =
∑

k

ykxk (5.72)

and thus
∑

j

Rjk Rjℓ = δkℓ (5.73)

or if one uses that RT
kj = Rjk describes the transpose matrix of (Rjk)

∑

j

RT
kjRjℓ = δkℓ or RTR = 1 . (5.74)

The matrices fulfilling (5.74) build a group, the rotational group or the orthogonal group
in three dimensions O(3). For the determinants, one finds

det(RTR) = (det RT )(det R) = (det R)2 = det 1 = 1 (5.75)

and thus

detR = ±1 . (5.76)

From this follows immediately the existence of the inverse R−1 to R and

RT = R−1 , (5.77)

which characterizes orthogonal matrices.

The orthogonal matrices with determinant +1 build a subgroup of O(3), the special
orthogonal group SO(3). SO(3) contains all matrices which can be transformed continu-
ously to the unit matrix, thus the rotations.

The matrix

R̂ = (−δjk) (5.78)

93



is an element of O(3) with det R̂ = −1, and thus does not belong to SO(3). The
transformation (5.71) takes the form

∑

k

R̂T
jk xk = −xj = x′j (5.79)

and describes an inversion (as discussed in Chapter 2). If one multiplies elements of SO(3)
with R̂, one obtains orthogonal matrices, which because of

det(RR̂) = (det R)(det R̂) = −1 (5.80)

do not belong to SO(3).

Parameters of O(3): In general 3 × 3 matrices have nine matrix elements. Because
of (5.74) and det R = 1, they are not all independent. All orthogonal matrices can be
represented in the form

R = eA . (5.81)

Because of

RTR = eA
T

eA = 1 (5.82)

follows

AT = −A (5.83)

and thus for the matrix elements of A

Akj = −Ajk , (5.84)

i.e., only three elements are independent. This means O(3) can be characterized by three

parameters (e.g., by explicitly fixing elements A12, A13 and A23).

The Euler angles are another way of fixing the three parameters. Here the rotation of a
vector ~x is given by

~xA
′ = A(α, β, γ) ~x (5.85)

and A is given as

A(α, β, γ) = A3(α) A2(β) A3(γ) , (5.86)

where the subscripts specify the axis about which the rotation is made. Explicitly:

A3(α) ≡





cosα − sinα 0
sinα cosα 0
0 0 1



 (5.87)
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A2(β) =





cos β 0 sin β
0 1 0

− sin β 0 cos β



 . (5.88)

Note: The matrix describes the active rotation of the vector ~x.

For completeness,

A1(γ) =





1 0 0
0 cos γ − sin γ
0 sin γ cos γ



 . (5.89)

5.7 Rotations around the 3-Axis

As general form of (5.87), one can write

R =





R11 R12 0
R21 R22 0
0 0 1



 . (5.90)

One obtains the subgroup O(2), which is given by the 2× 2 matrix
(

R11 R12

R21 R22

)

. (5.91)

The orthogonality condition now reads

2
∑

j=1

RjkRjℓ = δkℓ k, ℓ = 1, 2 (5.92)

and shows that only one matrix element, e.g., R11, is independent. Because of R11R11 +
R21R21 = 1, it is suggestive to put

R11 = cosα . (5.93)

Then R21 = ± sinα. The choice R21 = sinα leads to the form (5.87), which describes
an active rotation of a vector ~x. An argument for the choice of R11 in (5.93) is the
requirement, that for α = 0, R should be the identity matrix. (Note that (5.92) would
allow to choose R11 = sin β, e.g.).

It can be easily shown that SO(2) is a group. In addition, it is an Abelian group, i.e.,

R(α2) R(α1) = R(α2 + α1) = R(α1 + α2) = R(α1) R(α2) . (5.94)
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(Note: SO(3) is not Abelian.)

Similar to the translation, one can write R(α) in the form

R(α) = e−iα I3 , (5.95)

where I3 is a 3 × 3 matrix. To prove this, we differentiate (5.94) with respect to α1 and
α2 and obtain

R(α2)
dR(α1)

dα1
=

dR(α1 + α2)

d(α1 + α2)
(5.96)

and

dR(α2)

dα2
R(α1) =

dR(α1 + α2)

d(α1 + α2)
. (5.97)

Since both expressions (5.96) and (5.97) are equal, one obtains

dR(α1)

dα1
R−1(α1) = R−1(α2)

dR(α2)

dα2
≡ −iI3 , (5.98)

where I3 is a matrix, which is independent of α. The solution of (5.98) with
R(α = 0) = 1 is given by (5.95).

Let us now consider infinitesimal rotations around the 3-axis. If one replaces in (5.87)
the angle α with an infinitesimal small angle dα, then

cos(dα) ∼= cos 0 = 1

sin(dα) ∼= dα .

(5.99)

That is for infinitesimal angles dα the rotation matrix becomes

R(dα) =





1 −dα 0
dα 1 0
0 0 1



 = 1− idα





0 −i 0
i 0 0
0 0 0



 . (5.100)

Expanding (5.95) up to the same order yields

R(dα) = 1− idα I3 , (5.101)

and thus

I3 =





0 −i 0
i 0 0
0 0 0



 . (5.102)
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By using infinitesimal angles of rotation for the other Euler angles in (5.88) one obtains

I2 =





0 0 i

0 0 0
−i 0 0



 (5.103)

and

I1 =





0 0 0
0 0 −i
0 i 0



 . (5.104)

This result can be summarized in one single equation

(Ik)
ℓ
m = −i εkℓm . (5.105)

Under rotation the infinitesimal rotations Ik, k = 1, 2, 3 behave in the same way as the
coordinate vectors ~ek, i.e.,

RIkR
−1 =

∑

ℓ

IℓR
ℓ
k . (5.106)

The proof can be done directly by matrix multiplication using (5.87), (5.88), (5.89) and the
explicit representation of the Ik. Thus the generator of rotations (infinitesimal rotation)
of an arbitrary rotation around an axis ~n can be written as

I =
∑

k

Iknk (5.107)

where ~n =
∑

k nk~ek. Thus I1, I2, I3 form a basis for the generators of all the one-
parameter Abelian subgroups of SO(3), and one can write for an arbitrary rotation

Rn(α) = e−iα
∑

k Iknk . (5.108)

Similarly, the Euler angle representation of (5.87) - (5.89) can be written in terms of the
generators

A(α, β, γ) = e−iαI3 e−βI2 e−iγI3 . (5.109)

Therefore, for all practical purposes, it suffices to work with the three basis-generators
Ik rather than the 3-fold infinity of group elements A(α, β, γ).

The three basis generators Ik satisfy the Lie algebra

[Ik, Iℓ] = i εkℓm Im . (5.110)
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5.8 Rotation of Position and Momentum Vectors

If one rotates the expectation values of ~X , one obtains, according to (5.71),

〈ψ | X ′
j | ψ〉 =

∑

k

Rjk 〈ψ | Xk | ψ〉 , (5.111)

i.e., one has for the components of the ~X-operator

X ′
j =

∑

k

Rjk(α) Xk (5.112)

and correspondingly for the components of the ~P -operator

P ′
j =

∑

k

Rjk(α) Pk . (5.113)

Similar to (5.7) one can try to construct unitary operators U(R(α)), which, when applied

on ~X and ~P , give the results (5.112) and (5.113)

U †(R(α)) Xj U(R(α)) =
∑

k

Rjk(α) Xk

U †(R(α)) Pj U(R(α)) =
∑

k

Rjk(α) Pk .

(5.114)

These definitions lead to

U †(R(α2))U
†(R(α1))XjU(R(α1))U(R(α2)) =

∑

kℓ

Rjk(α1) Rkℓ(α2) Xℓ

=
∑

ℓ

[R(α1) R(α2)]jℓ Xℓ

= U †(R(α1) R(α2)) Xj U(R(α1) R(α2)) .

(5.115)

This means that

U [R(α1)R(α2)] = U(R(α1)) U(R(α2)) . (5.116)

Thus the in (5.114) defined map

R(α) 7→ U(R(α)) (5.117)

is a Homomorphism, a representation of the rotation group with unitary operators in
a Hilbert space.
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Introducing the abbreviation

U(R(α)) ≡ U(α) (5.118)

and remembering that rotations around a fixed axis form a Abelian group, one has similar
to (5.94)

U(α2) U(α1) = U(α2 + α1) = U(α1) U(α2) . (5.119)

Thus one can conclude that u(α) has to be of the form

U(α) = e−iαL3 , (5.120)

with L3 being a self-adjoint operator (since U(α) is unitary). For infinitesimal rotations,
one has

U(α2) = 1− i(dα) L3 . (5.121)

If one inserts the matrix I3 (5.102) into the right side of the definition (5.114) and the
operator (5.121) into the left side, then follows

(1 + i(dα)L3) Xj (1− i(dα)L3) =
∑

k

[δjk − i(dα)(I3)jk] Xk . (5.122)

Comparing the terms of first order in dα gives

[L3, Xj] = −
∑

k

(I3)jk Xk . (5.123)

Inserting the matrix I3 gives explicitly

[L3, X1] = iX2

[L3, X2] = −iX1

[L3, X3] = 0 (5.124)

or
[L3, Xk] = i

∑

m

ε3km Xm . (5.125)

Instead of considering rotations around the 3-axis, which should be labeled as R3(α) to
be more precise, we could have considered rotations R′(α) around the 1-axis and R2(α)
around the 2-axis. Then we would have obtained unitary operators

U(R1(α)) ≡ U1(α) = e−iαL1 (5.126)

U(R2(α)) ≡ U2(α) = e−iαL2 . (5.127)
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Repeating the considerations leading to (5.124) and (5.125) leads to the generalization of
(5.125)

[Lj , Xk] = i
∑

m

εjkm Xk . (5.128)

Similar consideration lead from (5.114) to

[Lj , Pk] = i
∑

m

εjkm Pm . (5.129)

Thus, starting from the definitions (5.114) of the unitary operator U(R(α)), we obtained
the relations (5.128) and (5.129). The definition (5.114) makes no statement about the
existence of U(R(α)). However, the existence is given by the fact that the components
Lj of the orbital angular momentum

Lj =
1

~

∑

m

εjkm XkPm (5.130)

fulfill the commutation relations (5.128) and (5.129). In summary, the components Lj of

the angular momentum operator ~L allow to introduce unitary operators

U(Rj(α)) = e−iαLj , (5.131)

which, when applied on Xj or Pj, lead to the rotated components:

U †(Rj(α)) Xl U(R
j(α)) =

∑

k

R
j
lk(α) Xk

U †(Rj(α)) Pl U(R
j(α)) =

∑

k

R
j
lk(α) Pk .

(5.132)

If one considers a general rotation around an arbitrary axis ~ξ with angle α, characterized
by

~α ≡ α~ξ (5.133)

and consider a general rotation matrix R(α), e.g., (5.86), then one can write as general-
ization of (5.131)

U(R(~α)) = e−i~α ·~L . (5.134)

In case of the Euler-angle scheme, one would have

U(α, β, γ) = e−iαL3 e−iβL2 e−iγL3 . (5.135)
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The relations (5.132) are then generalized to

U †(R(~α)) Xj U(R(~α)) =
∑

k

Rjk(~α) Xk

U †(R(~α)) Pj U(R(~α)) =
∑

k

Rjk(~α) Pk . (5.136)

If one applies (5.136) on eigenvectors | ϕ~x 〉 of ~X , then

U †(R(~α)) Xj U(R(~α)) | ϕ~x 〉 =
∑

k

Rjk(~α) xk | ϕ~x 〉 (5.137)

and thus

Xj U(R(~α)) | ϕ~x 〉 =
∑

k

Rjk(~α) xk U(R(~α)) | ϕ~x 〉 . (5.138)

Multiplication with ~ej and summation over j gives

~X U(R(~α)) | ϕ~x 〉 = (R(~α)~x) U(R(~α)) | ϕ~x 〉 . (5.139)

Thus, applying U(R(~α)) on | ϕ~x 〉 gives an eigenstate to the rotated eigenvalue

~x ′ = R(~α)~x , (5.140)

i.e.,

U(R(~α)) | ϕ~x 〉 = | ϕ(R(~α)~x)〉 . (5.141)

For the expectation values, one obtains

〈ψ | U †(R(α)) ~X U(R(~α)) | ψ〉 = 〈U(R(~α))ψ | ~X | U(R(~α))ψ〉
= R(~α)~x

= x′ . (5.142)

This also means that the result does not depend if one uses rotated operators or rotated
states. For the momentum eigenstates, a similar result to (5.141) holds

U(R(~α)) | ϕ~p 〉 = | ϕ(R(~α)~p)〉 . (5.143)
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5.9 Coordinate Space Representation

We need to consider

〈~x | U(~α) | ψ〉 = 〈U †(~α)~x | ψ〉 . (5.144)

With

U †(~α) | ~x 〉 = | R−1(~α)~x 〉 (5.145)

Eq. (5.144) becomes

〈~x | U(~α)ψ〉 = 〈R−1(~α)~x | ψ〉 . (5.146)

Thus in the coordinate space representation, U(~α) is defined as

U(~α) ψ(~x) = ψ(R−1(~α)~x) . (5.147)

This result can be viewed as a definition of a representation of SO(3), here in L2(R3).

For an infinitesimal rotation around the 3-axis follows

U(R3(dα)) ψ(x1, x2, x3) = ψ(x1 + dαx2, x2 − dαx1, x3)

= ψ(x1, x2, x3) + dα

(

x2
∂

∂x1
− x1

∂

∂x2

)

ψ(x1, x2, x3)

=

{

1− idα

[

x1
1

i

∂

∂x2
− x1

1

i

∂

∂x1

]}

ψ(x1, x2, x3) .

(5.148)

With

U(R3(dα)) ≡ 1− idα L3 , (5.149)

we obtain for the generator of the rotation operator in coordinate space representation

L3 =

[

x1
1

i

∂

∂x2
− x2

1

i

∂

∂x1

]

. (5.150)

In general

Lj =
1

2

∑

k,m

εjkm

[

xk
1

i

∂

∂xm
− xm

1

i

∂

∂xk

]

=
1

2

∑

k,m

εjkm
1

~
(XkPm −XmPk) ,

(5.151)
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which is

~L =
1

~

~X × ~P . (5.152)

Again, one sees that the orbital angular momentum operators are the generators of the
rotation operation U(~α).

5.10 Vector Operators in Coordinate Space

Rotating a vector operator ~X gives

~X ′ = R ~X , (5.153)

i.e.,

X ′
j =

∑

k

RjkXk . (5.154)

With

P ′
j = mẊ ′j =

∑

k

Rjk mẊk =
∑

k

RjkPk , (5.155)

one has also

P ′
j =

∑

k

RjkPk . (5.156)

If one constructs with ~X and ~P an operator ~A ( ~X, ~P ) for which holds

~A (R ~X,R~P ) = R ~A ( ~X, ~P ) , (5.157)

then ~A is called vector operator. Its components have the transformation behavior under
rotations

A′
j = Aj(R ~X,R~P ) =

∑

k

RjkAk( ~X, ~P ) . (5.158)

An example is the orbital angular momentum operator, for which we already showed that

L′
j =

1

~

∑

k,m

εjkm X ′
kP

′
m

=
1

~

∑

k,m

εjkm RkℓRmn XℓPn

=
∑

k

RjkLk

(5.159)
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One also has

L′
j =

1

~

∑

k,m

εjkm U †(R)Xk U(R) U
†(R)Pm U(R)

= U †(R)

(

1

~

∑

k,m

εjkm XkPm

)

U(R)

= U †(R)Lj U(R) .

(5.160)

Comparing (5.159) and (5.160) gives

U †(R)Lj U(R) =
∑

k

RjkLk . (5.161)

In general, the following relation holds for vector operators in coordinate space

U †(R) Aj( ~X, ~P ) U(R) =
∑

k

RjkAk( ~X, ~P ) . (5.162)

Definition: An operator C( ~X, ~P ) is called scalar operator in coordinate space if

C(R ~X,R~P ) = C(~x, ~p) . (5.163)

Since

C(R ~X,R~P ) = C(U †(R) ~X U(R), U †(R)~P U(R))

= U †(R) C( ~X, ~P ) U(R) ,

(5.164)

this means that an operator constructed from the operators ~X and ~P is a scalar operator
if

U †(R) C( ~X, ~P ) U(R) = C( ~X, ~P ) (5.165)

or if

[C( ~X, ~P ), Lj] = 0 (5.166)

as can be shown when considering infinitesimal rotations. Consider the scalar product

~A ′ · ~B ′ =
∑

j

A′
jB

′
j =

∑

jkm

RjkAk RjmBm

=
∑

km

δkm AkBm =
∑

k

AkBk = ~A · ~B

(5.167)
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and
∑

j

U †(R) Aj U(R) U
†(R)Bj U(R)

= U †(R)

(

∑

j

AjBj

)

U(R) = ~A · ~B

(5.168)

then follows

[ ~A · ~B, U(R)] = 0 (5.169)

or

[ ~A · ~B, ~L] = 0 . (5.170)

Remark: In (5.162) vector operators were defined with respect to finite rotations. If
one applies in the definition infinitesimal rotation, then follows

[Lk, Aj] = −
∑

m

(Ik)jmAm (5.171)

and thus

[Lk, Aj] = i
∑

m

εkjmAm . (5.172)

This result was introduced in Chapter 3 as definition of vector operators, and (5.170)
was verified by explicit calculation. The above consideration show the deeper reason why
~A · ~B commutes with the generators Lj of rotations in coordinate space.

In Chapter 3 we had also considered the eigenvalue equations for ~L2 and Lk (3.67) - (3.70)

~L2 | ℓm〉 = ℓ(ℓ+ 1) | ℓm〉
L3 | ℓm〉 = m | ℓm〉
L± | ℓm〉 =

√

ℓ(ℓ+ 1)−m(m± 1) | ℓ m± 1〉 . (5.173)

Now we can say that the irreducible representations of the Lie algebra of SO(3) are each
characterized by an angular momentum eigenvalue ℓ from the set of positive integers
and half-integers. The orthonormal basis vectors are specified by (5.173).
The normalization factor was calculated in (3.78).

It should be pointed out that in principal one has the freedom to multiply the normal-
ization constant by an additional arbitrary (m-dependent) phase factor (i.e., complex
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number of unit modulus). The resulting set of vectors would be equally acceptable as a
basis. The basis defined in (5.173) is referred to as canonical basis.

Knowing how the generators act on the basis vectors, one can immediately derive the
matrix elements in the various irreducible representations.

5.11 The Spherical Basis

Usually vectors are represented in the Cartesian basis with the unit vectors ex, ey, and
ez, pointing into the direction of the Cartesian x, y, and z-axis. The Spherical basis is
an equivalent basis, often useful when considering rotations in quantum mechanics. The
basis vectors are defined as

ǫ01 = ez

ǫ11 = − 1√
2
(ex + i ey)

ǫ−1
1 =

1√
2
(ex − i ey) (5.174)

Any vector ~A can be expressed as

~A = Axex + Ayey + Azez =
3
∑

i=1

Aiei

= −A1
1ǫ

−1
1 + A0

1ǫ
0
1 −A−1

1 ǫ11 =
∑

µ=−1,0,1

(−1)µAµ1ǫ
−µ
1 , (5.175)

with

A1
1 = − 1√

2
(Ax + iAy)

A0
1 = Az

A−1
1 =

1√
2
(Ax − iAy) . (5.176)

In addition we have Aµ
⋆

1 = (−1)µA−µ
1 .

Apply this to the position vector ~r = −r11ǫ−1
1 + r01ǫ

0
1 − r6−11ǫ

1
1 with

r11 = − 1√
2
(rx + iry)

r01 = rz
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r−1
1 =

1√
2
(rx − iry) , (5.177)

where the position vector can be a function ~r(x, y, z) or ~r(r, θ, φ). Using the relations

x = r sin θ cosφ
y = r sin θ sin φ
z = r cos θ

one calculates

r11 = − r√
2
sin θeiφ =

√

4π

3
rY 1

1 (r̂)

r−1
1 =

r√
2
sin θe−iφ =

√

4π

3
rY −1

1 (r̂)

r01 =
r√
2
cos θ =

√

4π

3
rY 0

1 (r̂) (5.178)

leading to the well known spherical harmonics of order 1

Y 1
1 (r̂) = −

√

3

8π
sin θeiφ

Y −1
1 (r̂) =

√

3

8π
sin θe−iφ

Y 0
1 (r̂) =

√

3

8π
cos θ (5.179)

which leads to the representation of the position vector in terms of spherical harmonics
of order 1

~r =

√

4π

3
r
∑

µ

(−1)µY µ
1 ǫ

−µ
1 (5.180)

5.11.1 Transformation of a spherical vector under rotation of

the coordinate system

Consider a rotation of a vector ~A around the z-axis with angle α. In Cartesian coordinates
this is given as





Ax′

Ay′

Az′



 =





cosα sinα 0
− sinα cosα 0

0 0 1









Ax
Ay
Az



 . (5.181)
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In spherical components one obtains

(A1
1)

′ = − 1√
2
(Ax′ + Ay′) = − 1√

2
(Axe

−iα + iAye
−iα) = A1

1e
−iα

(A0
1)

′ = A0
1

(A−1
1 )′ = A−1

1 eiα (5.182)

so that




A1
1

A0
1

A−1
1





′

=





e−iα 0 0
0 1 0
0 0 eiα









A1
1

A0
1

A−1
1



 . (5.183)

Consider now the rotation of the vector ~A′ around the y’-axis with angle β. In Cartesian
coordinates one obtains





Ax′′

Ay′′

Az′′



 =





cos β 0 − sin β
0 1 0

sin β 0 cos β









Ax′

Ay′

Az′



 . (5.184)

while for spherical coordinates one obtains the transformation matrix

My′(β) ≡











1
2
(1 + cos β)

√

1
2
sin β 1

2
(1− cos β)

−
√

1
2
sin β cos β

√

1
2
sin β

1
2
(1− cos β) −

√

1
2
sin β 1

2
(1− cos β)











. (5.185)

so that
~A′′ =My′(β) ~A

′ =My′(β)Mz(α) ~A . (5.186)

One needs one more rotation about the new z-axis to obtain a complete rotation with the
Euler angles α, β, and γ,

M(αβγ) =Mz′′(γ)My′(β)Mz(α) , (5.187)

so that

~A′ = M(αβγ) ~A , (5.188)

or in components

A′
µ =

∑

ν

Mµν(αβγ)Aν . (5.189)

The D-function or rotation matrix D1(αβγ) is defined as the transpose of the matrix
M(αβγ), so that

A′
µ =

∑

ν

D1
νµ(αβγ)Aν , (5.190)
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with

D1(αβγ) =







e−iγ
(1+cos β)

2
e−iα − sinβ√

2
e−iα eiγ

(1−cos β)
2

e−iα

e−iγ sinβ√
2

cos β −eiγ sinβ√
2

e−iγ
(1−cos β)

2
eiα sinβ√

2
eiα eiγ

(1+cos β)
2

eiα






. (5.191)

Remarks: The matrices D are called representation corefficients of the rotation group,
and abbreviated as D-matrices. When using the parameterization based on Euler angles,
one should note that the usual definition in quantum mechanics is not identical with the
one traditional choice made in classical mechantics. When consulting literature, one has
to be careful about the choice if phase conventions, which is unfortunately not unique.

5.11.2 Rotation of quantum mechanical states

When representing the rotation of a state ψjm(~r), where j is an arbitrary angular mo-
mentum, and m the respective quantum number, one has

ψjm(~r
′) = M(αβγ)ψjm(~r)

(5.192)

where

D
j
m′m(αβγ) = 〈ψjm′(~r) | M(αβγ) | ψjm(~r)〉

≡ 〈jm′| M(αβγ) |jm〉 (5.193)

Rotations around the z-axis are relatively simple to represent,

D
j
m′m(αβγ) = 〈jm′| e−iαJze−iβJye−iγJz |jm〉

= e−iαm
′〈jm′| e−iβJy |jm〉e−iγm (5.194)

The representation of Jy is purely imaginary, thus the matrix element in (5.194) is real.
Thus

D
j
m′m(αβγ) = e−iαm

′

d
j
m′m(β)e

−iγm , (5.195)

where the functions djm′m(β) are the Wigner d-matrices. In general, in the the canonical
basis Jy is always represented by an imaginary anti-symmetric matrix (5.103), hence the
dj matrices are real (and orthogonal).

Their special form is determined by the value of j, which can be integer or half-integer.

Let us consider j having integer values ℓ and define

U(α, β, γ) | ℓm〉 = Dℓ(α, β, γ)m′m | ℓm 〉 , (5.196)

109



where U is the operator representing the group element A(α, β, γ). Then (5.195) reads

Dℓ(α, β, γ)m′m = e−iαm
′

dℓ(β)m′m e−iγm (5.197)

and

dℓ(β)m′m = 〈ℓm′ | e−iβJy | ℓm〉 . (5.198)

Since U(α, β, γ) is supposed to be a unitary operator, the Dℓ matrices have to be unitary:

D†(α, β, γ) = D−1(α, β, γ) = D(−γ,−β,−α) , (5.199)

where the index ℓ has been omitted in (5.199). For the dℓ matrices, one has

d−1(β) = d(−β) = dT (β) (5.200)

where dT denotes the transpose of the matrix. The real matrices dℓ satisfy a number of
symmetry relations, e.g.,

dℓ(β)m′m = dℓ(−β)mm′

= dℓ(π − β)−m′m (−1)ℓ−m
′

= dℓ(β)−m−m′ (−1)m
′−m .

(5.201)

For integer values of ℓ the D-functions are closely related to the spherical harmonics Yℓm
and Legendre functions. Specifically

Yℓm(θ, φ) =

(

2ℓ+ 1

4π

)
1

2

[Dℓ(φ, θ, 0)m0]
∗

Pℓm(cos θ) = (−1)m
(

(ℓ+m)!

(ℓ−m)!

)
1

2

dℓ(θ)m0

Pℓ(cos θ) = Pℓ0(cos θ) = dℓ(θ)00 .

(5.202)
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5.12 Special Galilei Transformations:

Determination of the Unitary Operator Repre-

senting the Transformation

Two observers O and O′ describing the same physical system S use reference frames
moving with velocity ~v0 with respect to each other. The reference frames coincide at
t = 0. O and O′ compare their measurements at the same instant of time, and their
clocks are identical. Thus, the transformation law for the classical dynamical variables is
given by

~ri(O
′) = ~ri(O)− ~v0t

~Pi(O
′) = ~pi(O)−mi~v0

= t(O′) = t(O) ,

(5.203)

where mi is the mass of the ith particle of the system S, i = 1, 2, · · · , N . Eqs. (5.203)
define the special Galilei transformations of non-relativistic mechanics.

If UG is the operator that gives in the quantum mechanical case the translation from the
variables used by O to those used by O′, then it must satisfy

U
†
G ~ri UG = ~ri − ~v0t

U
†
G ~pi UG = ~pi − ~v0mi

U
†
G UG = UG U † = 1 .

(5.204)

Remark: Spin variables, if present, are supposed to remain unaltered, since this happens
for any orbital angular momentum intrinsic to the system. Thus we can ignore spin
variables in the following discussion.

From (5.204) follows

[U †
G ~ri UG, U

†
G ~pi UG] = [~ri − ~v0t, ~pi − ~v0mi]

= [~ri, ~pi] .

(5.205)

Since UG does not commute with both ~ri and ~pi, it has to be a function of both dynamical
variables. The simple structure of (5.204) together with the unitary of UG suggest that
UG can be written as a product

UG = U r
G U

p
G (5.206)
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where Up
G is only a function of ~pi and U

r
G only a function of ~ri. With

U
p†
G ~ri U

p
G = ~ri − ~v0t

U
r†
G ~pi U

r
G = ~pi − ~v0mi

(5.207)

(5.204) follows. From (5.207) follows

[Up
G, ~ri] = ~v0t U

p
G

[U r
G, ~pi] = ~v0mi U

r
G .

(5.208)

Remembering that the commutator acts like a derivative, (4.129), this is

−i~ ∂U
p
G

∂pik
= v0,kt U

p
G

i~
∂U r

G

∂rik
= v0,kmi U

r
G .

(5.209)

Since Up
G is only a function of ~pi and U

r
G only of ~ri, (5.209) can be immediately integrated

U
p
G = e

i
~
~P ·~v0t

U r
G = e−

i
~

∑
imi~ri·~v0 .

(5.210)

Thus

UG = γ(t, ~v0) e
i
~
~P ·v0t e−

i
~
M ~R·~v0 , (5.211)

whereM is the total mass of the system, ~P the total linear momentum and ~R the operator
describing the c.m. position. Because of the unitary of UG, the modulus of γ(t, ~v0) is 1.
The order of U r

G and Up
G in (5.211) is not essential, since with eAeB = e[A,B] eBeA follows

e−
i
~
M ~R·~v0 e

i
~
~P ·~v0t = e

i
~
Mv2

0
t e

i
~
~P ·~v0t e−

i
~
M ~R·~v0 . (5.212)

5.13 Invariance Under Special Galilei Transforma-

tions

The operator UG of (5.211) still contains the undetermined factor γ(t, ~v0) of modulus 1,
which may depend on t and ~v0. In the following, this factor is determined and explicitly
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shown that it can not be set to 1. (If it would be 1, we would obtain that a quantum
mechanical system containing only free particles is not invariant under special Galilei
transformations.) This essential difference from the other cases considered so far stems
from the fact that the transformation, which UG represents, is explicitly time dependent.

The theory is invariant under special Galilei transformations if

i~
∂UG(t)

∂t
+ [UG(t), H(t)] = 0 , (5.213)

where H = H0 + V (t) with H0 =
∑

i

p2i
2mi

being the free Hamiltonian and V (t) the
interaction Hamiltonian. In ordinary quantum mechanics, the theory of free particles
should be invariant under special Galilei transformations, i.e.,

i~
∂UG(t)

∂t
+ [UG(t), H0] = 0 . (5.214)

Inserting (5.211) into (5.214) yields
[

∑

i

p2i
2mi

, UG

]

= i~
dγ(t, ~v0)

dt
γ−1(t, ~v0) UG − (~v0 · ~P ) UG . (5.215)

Evaluating the commutator gives

− 1

2
(~v0 · ~P UG + UG ~v0 · ~P ) = i~

dγ(t, ~v0)

dt
γ−1(t, ~v0) UG − (v0 · ~P ) UG (5.216)

or

1

2
[(v0 · P ), UG] = i~

dγ(t, ~v0)

dt
γ−1 (t, ~v0) UG . (5.217)

Considering that i
~
[M~v0 · ~R, ~P · ~v0] =Mv20 , one can obtain

i~
dγ(t, ~v0)

dt
= − 1

2
Mv20 γ(t, ~v0) (5.218)

which has as solution

γ(t, ~v0) = c(~v0) e
i
~

1

2
Mv2

0
t (5.219)

with | c(~v0) |= 1. Since (5.214) still leaves a free, time independent phase factor in UG,
we can choose c(~v0) = 1. Then we obtain for UG

UG(t) = e
i
~

1

2
Mv2

0
t e

i
~
~P ·~v0t e−

i
~
M ~R·~v0

= e−
i
~

1

2
Mv2

0
t e−

i
~
M ~R·~v0 e

i
~
~P ·~v0t .

(5.220)
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Using eA+B = e−
1

2
[A,B] eAeB, we can write (5.220) as

UG(t) = e
i
~

(~P t − M ~R)·~v0 (5.221)

Finally, we need to discuss the transformation properties of the energy when going from
Observer O to Observer O′. If for O the time evolution

i~
dψ0(t)

dt
= H(t) ψ0(t) (5.222)

is valid, then one has for O′:

i~ UG(t)
dψ0(t)

dt
= (UG(t) H(t) U †

G(t)) UG(t) ψ0(t) . (5.223)

With ψ0′(t) = UG(t) ψ0(t), we have

H ′(t) = UG(t) H(t) U †
G(t) + i~

∂UG(t)

∂t
U

†
G(t)

= UG(t) H(t) U †
G(t) − 1

2
Mv20 − (~v0 · ~P ) . (5.224)

For the latter the explicit representation of UG(t) was used. We get then for the expecta-
tion values of the energy operator for the observers O and O′

〈E〉0 = 〈E〉0′ + ~v0 · 〈~P 〉0′ +
1

2
Mv20 (5.225)

which simplifies if 〈~P 〉0′ = 0, i.e., if 0′ is at rest relative to the c.m. of the system.

Eq. (5.224) is useful if one wants to obtain conserved quantities. If we require invariance
of the theory under the group of special Galilei transformations, then we get with
(5.221)

d

dt
(~P t−M ~R) = 0 . (5.226)

If in addition invariance under space translations is assumed, i.e., ~P (t) = const., this
gives

d

dt
~R (t) =

1

M
~P , (5.227)

which shows that the center of mass moves with uniform velocity.
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5.14 General Considerations

5.14.1 Exponential Form of the Representation

Given a Lie group of order n, one defines a one-parameter subgroup in the following
way: It is a subgroup of G whose elements g(t) depend continuously on a real parameter
t(−∞ < t < +∞). By properly changing the parameterization, one obtains for the
element g(t) the simple composition law:

g(t1) g(t2) = g(t1 + t2)

g(0) = 1 .

(5.228)

In such a case, t is said to be a canonical parameter. (Since group elements are charac-
terized by values of parameters a1, a2, · · · , an, a one-parameter subgroup is obtained by
properly expressing ai in terms of t.

Example: Every arbitrary rotation in R3 can be expressed by rotations around fixed
axes, like in case of Euler angles. One can then write the operators corresponding to the
elements of the one-parameter subgroup as T (a1(t), a2(t), · · · , an(t)), and has with (5.228)

T (t1) T (t2) = T (t1 + t2) . (5.229)

Evaluating the derivative of T (t) at t = 0 gives

dT (t)

dt
|t=0 =

∑

k

(

∂T (t)

∂ak

∂ak

∂t

)

|t=0

=
∑

k

Jk ck

(5.230)

where ck = ∂ak
∂t

|t=0 . Here we used the fact that the value t = 0 of the parameter
corresponds to the identity element ai = 0.

The operator

dT (t)

dt
|t=0 =

∑

k

Jk ck (5.231)
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is called the infinitesimal generator of the one-parameter subgroup in the considered
representation and is a linear combination of the infinitesimal generators Jk. The gener-
ators, in turn, constitute a representation of the Lie algebra associated with the group.
Using (5.229) and (5.230) one can express the general element T (t) in term of the Jk’s.
Differentiating (5.229) with respect to t1 and putting t1 = 0, t2 = t gives

dT (t)

dt
=

dT

dt
|t=0 T (t) =

(

∑

k

ckJk

)

T (t) , (5.232)

with the solution

T (t) = e
∑

k Jkckt . (5.233)

Thus, a generic element of the one-parameter subgroup is expressed in terms of the in-
finitesimal generator

∑

k Jkck. The important part is that for a connected Lie group it
can be proved that every element of the group belongs to a one-parameter subgroup G(t).
Since we are interested in the unitary representation of the Lie groups, it follows that the
operators Jk must be skew hermitian. It is then customary to write

T (t) = ei
∑

k Ikckt (5.234)

where Ik is self-adjoint.

5.14.2 Casimir Operators

A very useful concept in the theory of group representation is that of Casimir operators.
Consider the Lie algebra associated with the group

[λi, λj] =
∑

k

ckij λk . (5.235)

We call Casimir operator for the considered algebra every expression c in the λi’s that
commutes with all the basic elements of the algebra

[c, λk] = 0 . (5.236)

Note, that c does in general not belong to the algebra, since it is not linear in the
λi’s. The importance of determining the Casimir operators is obvious. c is an operator,
expressed in terms of the generators which commutes with all the generators and thus
with all the operators representing elements of the group. If the considered representation
is irreducible, c must then be a constant multiple of the identity in the linear vector space
carrying the representation. The irreducible representations can then be labeled by the
eigenvalues of a sufficiently large number of Casimir operators.
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Insert:
The elements ckij in (5.235) are called structure constants of the Lie algebra. The rank

of a Lie algebra is defined to be the maximum number of independent elements of the
algebra that commute among themselves. If the algebra has rank r, the corresponding
group is also said to be of rank r.

Cartan’s Theorem Consider the n× n matrix

gij =
∑

kℓ

cℓik c
k
jℓ . (5.237)

A sufficient condition for an algebra to be semi-simple is that

det | gij | 6= 0 . (5.238)

Moreover, if (5.238) is satisfied, the necessary and sufficient condition that the corre-
sponding group is compact is that gij be a negative definite matrix.

Cartan’s theorem guarantees that gij is non-singular. Then one can define a matrix gij

∑

j

gij gij = δij . (5.239)

Define a Casimir operator by

C =
∑

ij

gij λiλj . (5.240)

Evaluating [C, λk] gives that the so-defined C commutes with all λk. Eq (5.240) is the
so-called quadratic Casimir operator.

It can be shown that the minimum number of Casimir operators required to have a
complete set, i.e., to specify completely the irreducible representations, equals the rank
of the algebra.

5.15 Projection Operators

Definition: An operator P is called projection operator when it is

1. self-adjoint, i.e., P † = P
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2. and

P 2 = P . (5.241)

An example is the operator

Pϕ = | ϕ〉〈ϕ | (5.242)

with ‖ ϕ ‖= 1. If Pϕ is applied on a state | ψ〉, it creates a state vector | ϕ〉 with a
proportionality factor 〈ϕ | ψ〉

Pϕ | ψ〉 = | ϕ〉〈ϕ | ψ〉 , (5.243)

i.e., | ψ〉 is projected into the direction of | ϕ〉.

One has the matrix elements

〈χ | Pϕ | ψ〉 = 〈χ | ϕ〉〈ϕ | ψ〉
= 〈ψ | ϕ〉∗〈ϕ | χ〉∗
= (〈ψ | ϕ〉〈ϕ | χ〉)∗

= 〈ψ | Pϕ | χ〉∗
= 〈Pϕχ | ψ〉 .

(5.244)

Since 〈χ | and | ψ〉 are arbitrary states, it follows that Pϕ = P †
ϕ as required by (5.241).

Furthermore,

P 2
ϕ = | ϕ〉〈ϕ | ϕ〉〈ϕ | = | ϕ〉〈ϕ | = Pϕ (5.245)

as required by (5.241). Thus Pϕ is a projection operator. Similarly one shows that

P =
∑

ν

| ϕν〉〈ϕν | +

∫

dλ | ϕλ〉〈ϕλ | (5.246)

with 〈ϕν′ | ϕν〉 = δν′ν , 〈ϕλ′ | ϕλ〉 = δ(λ′−λ) and 〈ϕν | ϕλ〉 = 0 is a projection operator.

In fact (5.246) is the most general form of a projection operator. On the one hand, every
self-adjoint operator can be represented in a spectral decomposed form. On the other
hand, the eigenvalue fulfill

P | ϕν〉 = cν | ϕν〉 (5.247)
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and with (5.241) one has

P 2 | ϕν〉 = c2ν | ϕν〉 = cν | ϕν〉 = P | ϕν 〉 . (5.248)

From this follows that

cν(cν − 1) = 0 . (5.249)

This means that cν = 1 or cν = 0. Thus one has

P =
∑

ν

| ϕν〉 cν 〈ϕν | +

∫

dλ | ϕλ〉 cλ 〈ϕλ |

=
∑

ν

| ϕν〉〈ϕν | +

∫

dλ | ϕλ〉〈ϕλ | (5.250)

where the sum (integral) has to be taken over all ν(λ) for which cν = cλ = 1.

With these preliminaries, one can write the probability to measure the value aν of an
observable A as expectation value of an operator. If one defines for the eigenvalues aν of
the discrete spectrum of A

Paν =

∫

∑

dλ | ϕaν,λ〉〈ϕaν,λ | , (5.251)

then the probability to find aν in the state | ψ〉 is given by

〈ψ | Paν | ψ〉 =

∫

∑

dλ | 〈ϕaν,λ | ψ〉 |2 = pψ(aν) . (5.252)

Thus the probability is given as

pψ(aν) = 〈ψ | Paν | ψ〉 . (5.253)
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