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Chapter 6

Spin in Quantum Mechanics

6.1 Spinors and Their Properties

Spinors are mathematical entities, which are useful when describing half-integer spins in
the context of rotations of physical systems.

Definition of Spinors:
A mathematical entity S is a spinor if it satisfies the requirement that it changes sign
under a 2π rotation:

S(θ + 2π) = −S(θ) . (6.1)

Part of this requirement is the assumption that S can have a sign associated with it.
As it turns out, spin-1

2
objects (primarily electrons and subatomic particles) have wave

functions that change sign, if the object is rotated through 2π and which can, therefore,
be represented by spinors.
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6.1.1 Geometric Visualization of Spinors

A unit circle in the x − z plane is centered at the origin O and intercepting the positive
z-axis at P . Consider a ray OC making an angle θ with the z-axis, so that θ is the usual
polar angle. Now, bisect the angle so that the point S bisects PC, since OP = OC. Thus

OS(θ) = cos(θ/2) ; PS(θ) = sin(θ/2) . (6.2)

OS and PS are taken to be signed quantities, OS is negative for π < θ < 2π, as is PS
for 2π < θ < /4π.

As the point C goes once around the unit circle, the point S goes from P to O. A second
revolution of C brings S back to P . The path of S is a circle of radius 1

2
. This path

is traced out in a period of 4π of θ. Considering (6.2), OS and PS change sign when
θ −→ θ+π. Therefore, according to our rule, the pair (OS, PS) forms a spinor associated
with C.

In the two-dimensional representation shown in Fig. 6.1, one may view C as marking the

tip of the vector
−→
OC, which has unit magnitude and θ as polar angle. Then OS and PS

form the components of a spinor associated with
−→
OC.

121



6.1.2 Rotations of Spinors

The properties under rotations of the spinor (OS, PS) associated with C can also be
worked out from Fig. 6.1. If C is rotated through an angle β from its position at θ, then
one has the following transformations:

θ −→ θ + β

OS −→ OSβ = cos(β/2) OS − sin(β/2) PS

PS −→ PSβ = sin(β/2) OS + cos(β/2) PS ,

(6.3)

which follow from the trigonometric identities for the sum of two angles. The last two
equations can be written as

(

OS(θ + β)
PS(θ + β)

)

=

[

cos(β/2) − sin(β/2)
sin(β/2) cos(β/2)

] (

OS(θ)
PS(θ)

)

(6.4)

or

S(θ + β) =

(

cos(β/2) − sin(β/2)
sin(β/2) cos(β/2)

)

S(θ) , (6.5)

where S(θ) represents the spinor. In this matrix representation, it is clear that the basic
spinor property, S(θ + 2π) = −S(θ), is fulfilled. The matrix in (6.5) is the 2 × 2 matrix
that transforms any spin-1

2
angular momentum eigenstate under rotation by β about the

y-axis.

If we want to define rotations of spinors around the z-axis, then we should require that
those spinors are eigenfunctions of the angular momentum operator component for this
axis,

J3 S(θ) = −i
∂S

∂θ
= ±S(θ) (6.6)

where we have used the definition (4.24) for a generalized angular momentum ~J . The
linear combination of spinors that satisfy this equation are complex, namely

S(θ) = e±iθ/2 . (6.7)

The matrix form of rotations around the z-axis, which also satisfy (6.6) are

S(θ + α) =

(

e+iα/2 0
0 e−iα/2

)

S(θ) . (6.8)

Thus the spinor S(θ) is complex valued.
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6.2 Pauli Matrices and Their Eigenvectors

Pauli matrices are here introduced through their algebraic properties. They describe
the simplest, non-trivial spin system, namely spin 1

2
. In cartesian coordinates the Pauli

matrices are given by

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

(6.9)

and they are collectively denoted by ~σ = (σ1, σ2, σ3). In terms of Paul matrices, the

”spin” matrices ~S are given as

~S =
1

2
~σ . (6.10)

Properties of Pauli Matrices are:

σ2
j = 1 (6.11)

for j = 1, 2, 3. They anticommute

[σi, σk]+ = σiσk + σkσi = 0 ; k 6= i . (6.12)

For the quantum mechanical description of a spin-1
2
particle, one needs obviously the

representation of the angular momentum operators ~J with j = 1
2
. The most general form

of spin-1
2
state would be given by

α |
1

2
,+

1

2
〉 + β |

1

2
,−

1

2
〉 (6.13)

or written as column vector
(

α
β

)

. (6.14)

The two basis vectors are then | 1
2
,± 1

2
〉 or

(

1
0

)

and

(

0
1

)

(6.15)

Let us consider

S3 =
1

2
σ3 , (6.16)
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the component of the spin along an arbitrarily chosen 3-axis. We need to find eigenvalues
and eigenvectors of σ3. The eigenvalue equation for σ3 reads

σ3

(

a+
a−

)

= λ±

(

a+
a−

)

(6.17)

where λ± are the eigenvalues. The solutions for the eigenvectors are given by

χ+ =

(

1
0

)

; χ− =

(

0
1

)

(6.18)

with the corresponding eigenvalues λ+ = +1 and λ− = −1. The eigenvectors χ± are
orthonormal, as required for the eigenvectors of a hermitian operator. The eigenstates χ±

are usually referred to as Pauli spinors and χ+ represents a ”spin-up,” χ− a ”spin-down”
state.

According to our general considerations in Chapter 3, we introduce the ladder operators

S+ ≡

(

0 1
0 0

)

and S− =

(

0 0
1 0

)

(6.19)

and it can be easily verified that

S+χ+ = | 0〉

S+χ− = χ+

S−χ+ = χ−

S−χ− = | 0〉 (6.20)

Furthermore

S1 =
1

2
(S+ + S−) =

1

2
σ1

S2 =
1

2i
(S+ − S−) =

1

2
σ2 (6.21)

which is exactly the definition given in (6.10). One could have also introduced

σ± = (σ1 ± iσ2) (6.22)

and then defined the ladder operators as

σ−1 =

(

0 0
2 0

)

; σ0 = σ3 , σ+1 =

(

0 2
0 0

)

, (6.23)

which is often referred to as ’spherical representation.’ Here we have

σ2
± = 0 and σ2

0 = 1 . (6.24)
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From this follows that higher powers of these spherical-basis matrix elements must be
zero. Furthermore, the basis vectors χ± span the spin-space for spin-1

2
particles.

The completeness relation is given by

χ+χ
†
+ + χ−χ

†
− =

(

1 0
0 1

)

= 1 . (6.25)

6.3 Finite Rotations and Pauli Matrices

As discussed in the previous chapter, J3 describes infinitesimal rotations and the Ji are the
generators of a Lie algebra. From the generators all finite rotations can be constructed.
For spin-1

2
states the rotation operator has the following form (cp. 5.95 g)

D
1

2 (αβγ) = e−iα
2
σ3 e−iβ

2
σ2 e−i γ

2
σ3 . (6.26)

Here the description of rotations via Euler angles is used.

6.3.1 Rotations About the 3-Axis

Expanding the expression e−iασ3/2 and using the properties of the Pauli matrices, namely
that for n even, n = 2m, σ2m

3 = 1, and m odd, n = 2m+ 1, σ2m+1
3 = σ3, one obtains

e−iγσ3/2 = cos(γ/2) 1 − i sin(γ/2) σ3 . (6.27)

By explicitly inserting σ3 this leads to

e−iγσ3/2 =

(

e−iγ/2 0
0 e+iγ/2

)

. (6.28)

Thus, matrix elements of rotations around the 3-axis are given by

e−imγ δm′m . (6.29)

6.3.2 Rotations About the 2-Axis

Since σ2 is not diagonal, the rotation matrix must have a more complicated form. The
rotation matrix for a rotation of a spinor was already heuristically derived in 6.1.2 and is
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given by

e−iβσ2/2 =

(

cos(β/2) − sin(β/2)
sin(β/2) cos(β/2)

)

= d1/2(β) . (6.30)

The matrix d1/2(β) is called the reduced rotation matrix for spin 1
2
, reduced in the

sense that the rotation is about a single axis (2), rather than about three axes.

Considering (6.30) one can easily see that the transpose gives the same result as the
inverse rotation β −→ −β. For two successive rotations about the 2-axis, one has

d
1

2 (β2) d
1

2 (β1) = d
1

2 (β2 + β1) = d
1

2 (β1 + β2) = d
1

2 (β1) d
1

2 (β2) , (6.31)

which corresponds to the fact that successive rotations around the same axis commute.

6.3.3 Spinor Nature of Spin-1
2
Rotations

The striking property of both the rotations around the 3- and the 2-axis is the property
of the matrices in (6.28) and (6.30), namely that they change sign when their defining
angles change by 2π. Thus

e±i(α+2π)/2 = −e±iα/2

d1/2(β + 2π) = −d1/2(β) .

(6.32)

Thus, rotation matrices for spin-1
2
states are spinors because of thin transformation prop-

erties.

6.3.4 General Euler-Angle Rotations for Spin-1
2

We can now combine the results of our calculations for rotations about a single axis to
obtain the Euler-angle rotation matrices for spin-1

2
. From (6.20) and (6.22), we obtain

the full rotation matrix (6.18) explicitly

D
1

2 (αβγ) =

(

e−iα/2 0
0 e+iα/2

) (

cos(β/2) − sin(β/2)
sin(β/2) cos(β/2)

) (

e−iγ/2 0
0 e+iγ/2

)

.(6.33)

This matrix has the unitary and spinor properties of its component matrices and provides
a complete expression for the rotation of a spin-1

2
system in terms of Euler angles. Since

rotations about different axes in general do not commute, the order of the matrices in
(6.33) is important.

126



6.4 Spin Space

The eigenvectors of the Pauli matrices provide examples of spinors, they change sign under
rotations of 2π. This behavior of the χ± is apparent from the behavior of the rotation
matrix D

1

2 (αβγ) as given in (6.25).

It is useful to use the spin-1
2
description as a building block when constructing states

and their representations for larger angular momentum numbers. For this purpose, one
introduces the spinor space and angular momentum operators in this space.

6.4.1 Spinor Space and Its Matrix Representation

Suppose we have an abstract space whose ‘coordinates’ are described in terms of the basis
vectors χ+ and χ−. Technically, this is a Hilbert space.

χ

χ

θ/2

(a + , a -

+

-

)

Fig. 6.2 Spinor space

for rotations with unit vectors along the axes being χ+ and χ
−
. A representa-

tive point in the space undergoes a rotation through θ/2, when the system it

describes is rotated by θ.

We want this space to describe rotations for spin-1
2
system so the ”coordinates” of points

in this space, a+ and a−, are allowed to be complex and are required to satisfy

| a+ |2 + | a− |2 = 1 . (6.34)
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The correspondence between the rotation of a spin-1
2
system in configuration space and

the trajectories of its coordinates in spinor space is to be such that a representative point
in the space undergoes a rotation through θ/2 when the system it describes is rotated
by θ. In particular, the spinor space coordinates change sign when θ = 2π and return to
their original values under a double-angle rotation of θ = 4π.

6.4.2 Angular Momentum Operators in Spinor Representation

We define partial differential operators in spinor space (χ+, χ−) as

∂+ ≡
∂

∂χ+

: ∂− ≡
∂

∂χ−

. (6.35)

These operators have the usual differentiation properties. For angular momentum opera-
tors in the spherical basis, we define

J+1 = χ+∂−

J0 ≡
1

2
(χ+∂+ − χ−∂−)

J−1 ≡ χ−∂+ .

(6.36)

To show that the so-defined operators are angular momentum operators, one has to show
that they fulfill the commutation relations for angular momentum operators (3.67) - (3.71).
They also have the appropriate behavior with respect to χ+ and χ−, namely

J±1χ∓ = χ±

J0χ± = J3χ± = ±
1

2
χ± .

(6.37)

A linear combination of χ+ and χ− is usually not an eigenstate of J3. (Here the letter J
stands for the generator of the rotation. We have seen in Chapter 3 that in general the
eigenvalues can be integers or half-integers.)

6.4.3 Including Spin Space

To include spin in quantum mechanics, we extend the Hilbert space to a direct product
of an external space with an internal one:

| ψ〉 = | ψspace〉 ⊗ | χspin〉 ≡ | ψspace | χspin〉 ≡ | ψχ〉 . (6.38)
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The independence of the two spaces requires

[~S, ~L] = 0 , (6.39)

which means that spin operators do not act on the external space (and vice verse).

The ket | χ〉 in (6.38) is the spin-space part of the state vector. It cannot be represented
as a continuous function, but instead is represented by 2s + 1 discrete components. To
span a spin space of dimension 2s + 1 requires 2s + 1 independent basis vectors. These
basis vectors are denoted by | s ms〉, with ms having all values from s to −s in steps of
1 : ms = {s, s− 1, · · · ,−s}. These vectors are eigenstates of the spin operators

~S2 | s ms〉 = s(s+ 1) | s ms〉 6= S2 | s ms〉

S3 | s ms〉 = ms | s ms〉 . (6.40)

An explicit representation (in the group-theory sense) is given by the set of 2s + 1
numbers

〈σ | s ms〉 ≡ χs ms(σ) =

{

1, for σ = ms

0, for σ 6= ms
. (6.41)

Once we have basis vectors, we can expand an arbitrary spin-state vector | χs〉 as linear
combination of them

| χs〉 =

+s
∑

ms=−s

αms | s ms〉 , (6.42)

where αms is a number. Whereas the number of components 2s+ 1 is finite, the number
of | χs〉 states, which can be formed by (6.42) is infinite. The common spin vector is a
representation of the state vector (6.42) in column vector form:

〈σ | χs〉 =











αs

αs−1
...
α−s











. (6.43)

In this representation, the basis vectors have the form

| s, s〉 =











1
0
...
0











; | s, s− 1〉 =











0
1
...
0











; | s,−s〉 =











0
0
...
1











. (6.44)
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The operators are now matrices, e.g., the unit operator is given by

1s =

+s
∑

ms=−s

| sms〉 〈sms | =







1 0 0 · · ·
0 1 0 · · ·
...

...
...






. (6.45)

The spin states | sms〉 combine with the external (orbital angular momentum) states

| ℓmℓ〉 to form states | ℓs; jmj〉 of total angular momentum ~J = ~L + ~S. The direct
product of the two spaces,

| ℓmℓ〉 | sms〉 ≡ | ℓs;mℓms〉 , (6.46)

can be expanded as a direct sum of spaces spanned by basis vectors | ℓs; jmj〉.

To find the expansion coefficients, take the unit operator in ℓs-space

1ℓs =
ℓ
∑

mℓ=−ℓ

s
∑

ms=−s

| ℓs;mℓ ms〉 〈ℓs;mℓ ms | (6.47)

and consider

| ℓs; jmj〉 ≡ 1ℓs | ℓs; jmj〉 =
∑

mℓ,ms

| ℓs;mℓ ms〉 〈ℓs;mℓ ms | ℓs; jmj〉 . (6.48)

The matrix elements 〈ℓs;mℓms | ℓs; jmj〉 are Clebsch-Gordan coefficients. An explicit
representation of the | ℓsj mj〉 in the spin-angle basis | θϕσ〉 is given by the spin spherical

harmonics

Yℓs
jm(θ, ϕ, σ) ≡ 〈θϕσ | ℓs; jm〉

=
∑

mℓms

Yℓmℓ
(θ, ϕ) χsms(σ) 〈ℓs;mℓms | ℓs; jmj〉

(6.49)

where

〈θϕσ | ℓs;mℓms〉 = Yℓmℓ
(θϕ) χs ms(σ) . (6.50)

These ‘spin-angle’ functions are useful since they are simultaneous eigenfunctions of j, ℓ
and s.
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6.5 Single Particle States with Spin

6.5.1 Coordinate-Space-Spin Representation

The Hilbert space of the single particle states with spin is given by the spinor
(here spin 1

2
):

ψ =

(

ψ+(~x)
ψ−(~x)

)

(6.51)

where ψ±(~x) are square integrable functions. The scalar product is defined as

〈ψ | φ〉 =

∫

d3x {ψ∗
+(~x) φ+(~x) + ψ∗

−(~x) φ−(~x)} , (6.52)

and thus the absolute value is given by

‖ ψ ‖2 =

∫

d3x{| ψ+(~x) |
2 + | ψ−(~x) |

2} . (6.53)

The action of the ~X and ~P operator are

Xjψ =

(

xjψ+(~x)
xjψ−(~x)

)

Pjψ =

(

~

i
∂

∂xj
ψ+(~x)

~

i
∂

∂xj
ψ−(~x)

)

,

(6.54)

the spin operators act as matrix operator on ψ, e.g.,

σ1ψ =

(

ψ−(~x)
ψ+(~x)

)

σ2ψ =

(

−iψ−(~x)
iψ+(~x)

)

σ3ψ =

(

ψ+(~x)
ψ−(~x)

)

(6.55)

6.5.2 Helicity Representation

A particle is said to possess intrinsic spin if the quantum mechanical states of that
particle in its own rest frame are eigenstates of the operator J2 with the eigenvalues
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s(s+1). These states are referred to as | ~p = 0, λ〉, where λ = −s, · · · , s is the eigenvector
of the operator J3 in the rest frame. (The index 3 refers to an appropriately chosen
z-direction.)

To define unambiguously a particle state with linear momentum | ~p |, and direction
η̂(θ, ϕ), we proceed as follows:

1. We specify a ”standard state” in a fixed direction (usually chosen to be along the
z-axis), and

2. Define all other states relative to the standard state by means of a specific rotational
operator.

(The idea behind being similar to the one defining angular momentum states | jm〉 being
obtained from the ”standard state” | jj〉 by applying the lowering operator.)

The standard state is an eigenstate of the momentum operator with components p1 =
p2 = 0, p3 =| ~p |,

P1 | pẑ, λ〉 = 0 = P2 | pẑ, λ〉

P3 | pẑ, λ〉 = p | pẑ, λ〉 .

(6.56)

Since along the direction of motion (z-axis), there can be no ”orbital angular momentum,”

the spin index λ can be interpreted as the eigenvalue of the total angular momentum ~J
along that direction. More formally, since ~J · ~P commutes with ~P , the standard state can
be chosen as simultaneous eigenstate of these operators. Thus with (6.56), one has

~J · ~P

p
| pẑ, λ〉 = J3 | pẑ, λ〉 = λ | pẑ, λ〉 . (6.57)

Now, a general single particle state with momentum in an arbitrary direction characterized
by n̂(θ, ϕ) is defined via

| ~p, λ〉 ≡ | p, θ, ϕ, λ〉 = U(ϕ, θ, 0) | pẑ, λ〉 . (6.58)

By construction, the label λ represents the helicity of the particle. Since ~J · ~P is invariant
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under rotations, i.e., [ ~J · ~P , Jk] = 0, one has explicitly

~J · ~P

p
| ~p, λ〉 =

~J · ~P

p
U [R(ϕ, θ, 0)] | pẑ, λ〉

= U [R] U [R]−1
~J · ~P

p
U [R] | pẑ, λ〉

= U [R]
~J · ~P

p
| pẑ, λ〉

= U [R] λ | pẑ, λ〉

= λ | p, θ, ϕ, λ〉

(6.59)

Let us turn to states with definite angular momentum (J,M). Then the ”standard state”
is given by

| pẑ, λ〉 =
∑

J

| pJλλ〉 , (6.60)

and a general state is obtained by rotating the ”standard state”

| p, θ, ϕ, λ〉 =
∑

JM

| pJMλ〉 DJ(ϕ, θ, 0)Mλ . (6.61)

The states are composed of states with all values of total angular momentum J .

It should be mentioned that the helicity characterization of states applies equally well
for zero mass states (e.g., photon or neutrino states), as for non-zero mass states. In
contrast, the static spin, as introduced in 6.6.1, has no meaning for zero-mass states. In
a relativistic description of particle states, helicities are usually preferred.

6.6 Isospin

Some elementary particles can behave very similar under certain reactions. In nuclear
physics this is the case for protons and neutrons. If one neglects their slight mass differ-
ence as well as the Coulomb interaction between the protons with respect to the nuclear
interaction, then one can consider protons and neutrons as identical. This suggests to
consider both particles as two different charge states of one particle, the ”nucleon.”

Mathematically one has to enlarge the Hilbert space of the state vector describing a nu-
cleon by a further observable which can have two district eigenvalues and which commutes

133



with all other observables. Further, one would like to introduce operators, which trans-
form formally a proton state into a neutron state with identical space-spin-wave function.

Let us denote with | p〉 a proton state and with | n〉 a neutron state. Then we define the
following operators in analogy with the operators for spin-1

2
particles:

τ3 | p〉 = + | p〉

τ3 | n〉 = − | n〉

τ− | p〉 = | n〉

τ− | n〉 = 0

τ+ | p〉 = 0

τ+ | n〉 = | p〉

τ1 =
1

2
(τ+ + τ−)

τ2 =
1

2i
(τ+ − τ−)

(6.62)

One can easily verify that the quantities τi behave formally like the Pauli matrices σi.
Therefore, the three observables τi/2 are called isospin operators. The operator of the
electric charge is given as

q =
1

2
(τ3 + 1) . (6.63)

The general state of a nucleon is now given as

ψ ≡ ψ(~x,ms, mt) , (6.64)

where ms gives the m-quantum number of the spin and mt, the isospin quantum number,
gives the charge of the nucleon. mt can (as ms) only take the values ± 1

2
, where + 1

2

corresponds to a proton and − 1
2
to a neutron.

Analogously to rotations in spin space, one can define unitary operators in isospin space

d̃ = cos
ϕ

2
· 1 − i sin

ϕ

2

3
∑

j=1

αjτj (6.65)

with αj , ϕ real,
∑

j α
2
j = 1, which describe rotations in isospin space. The three operators

τj behave formally like the components of a vector under rotations

d̃(~α, ϕ) τj d̃
†(~α, ϕ) =

3
∑

k=1

R(~α, ϕ)jk τk . (6.66)

Thus, isospin can be treated formally in the same way as spin.
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6.6.1 Nucleon-Nucleon (NN) Scattering

Consider as example the phase shifts in NN scattering. Consider first the quantum num-
bers that specify the partial wave states:

• orbital angular momentum L, L=0,1,2,· · · =⇒ not conserved (due to tensor force)

• total spin S=1
2
(σ1 + σ2), S=0,1 =⇒ conserved

• total angular momentum J=L+S, J=|L−S|, · · · , L+S =⇒ conserved by rotational
symmetry. Possible values are:

J =

{

L S = 0
|L− 1|, L, L+ 1 S = 1

(6.67)

• total isospin T=1
2
(τ1 + τ2) T=0,1 =⇒ conserved

What are the allowed partial waves if we account for the Pauli priinciple for fermions, i.e.
that the total wave function must be totally antisymmetric? The possibilities are spelled
out in the following table:

even L = 0, 2, 4, · · · S = 0 =⇒ T = 1
spatial wf symmetric antisymmetric symmetric
even L = 0, 2, 4, · · · S = 1 =⇒ T = 0
spatial wf symmetric symmetric antisymmetric

odd L = 1, 3, 5, · · · S = 0 =⇒ T = 0
spatial wf antisymmetric antisymmetric antisymmetric

odd L = 1, 3, 5, · · · S = 1 =⇒ T = 1
spatial wf antisymmetric symmetric symmetric

Thus, if L, S, and J are given, then T is completely specified by the Pauli principle.

Using a spectroscopic notation to specify NN scattering partial wave states:
2S+1LJ with L=0,1,2,3,4, .. =⇒ S,P,D,F, G, ...
the lowest allowd states are therefore:
1S0,

3S1,
1P1,

3P1,
3P2,

1D2,
3D2, ...

A consequence of the Pauli principle from the table is that if we have neutron-neutron
scattering at very low energies, for example, the only available channel is 1S0, while

3S1

is not allowed.
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The lowest NN T=0 neutron-proton phase shifts

The lowest NN T=1 proton-proton phase shifts
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