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Chapter 7

Combining Angular Momentum

Eigenstates

7.1 Addition of Two Angular Momenta

Let J
(1)
k and J

(2)
k be two sets of angular momentum operators with

[

J
(1)
k , J

(1)
ℓ

]

= i
∑

m

εkℓm J (1)
m

[

J
(2)
k , J

(2)
ℓ

]

= i
∑

m

εkℓmJ
(2)
m

[

J
(1)
k , J

(2)
ℓ

]

= 0

(7.1)

for k, ℓ,m = 1, 2, 3. Furthermore, R(j1, j2) is defined as a (2j1+1) · (2j2+1)-dimensional
space, which is spanned by the common eigenvectors

| j1, m1; j2, m2〉 = | j1m1〉 | j2m2〉 (7.2)

of the set of operators ( ~J (1))2, ( ~J (2))2, J
(1)
3 , J

(2)
3 . The following relations shall hold for

ν = 1, 2:

( ~J (ν))2 | j1, m1; j2, m2〉 = jν(jν + 1) | j1, m1; j2, m2〉
J
(ν)
3 | j1, m1; j2, m2〉 = mν | j1, m1; j2, m2〉

(7.3)
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where j1, j2 are fixed and mν can take the values jν , jν−1, · · · ,−jν . The states in (7.2)
shall be normalized according to

〈j1, m′
1; j2, m

′
2 | j1, m1; j2, m2〉 = δm′

1
m1

δm′

2
m2

. (7.4)

In this space we want to consider the operators

Jk = J
(1)
k + J

(2)
k . (7.5)

Considering the commutation relations (7.1), it follows that

[Jk, Jℓ] = i
∑

m

εkℓmJm . (7.6)

The space in which ~J acts in a direct product Hilbert space, and we want to determine
in this space R(j1, j2) the eigenvalues and common eigenvectors of ~J and J3. This means
we want to find states

| j1j2JM〉 =
∑

m1m2

| j1j2m1m2〉〈j1j2m1m2 | j1j2JM〉 . (7.7)

The coefficients 〈j1j2m1m2 | j1j2JM〉 that give the amplitude for each product state in
the combined state are called Clebsch-Gordan or vector-coupling coefficients:

〈j1j2m1m2 | j1j2JM〉 ≡ C(j1j2J,m1m2M) ≡ Cj1 j2 J
m1m2M

. (7.8)

As first step we can immediately determine the eigenvalues of J3 and their degeneracy.
From

J3 = J
(1)
3 + J

(2)
3 (7.9)

follows

J3 | j1j2JM〉 = M | j1j2JM〉
=

∑

m1m2

(m1 +m2) | j1j2m1m2〉 C(j1j2J,m1m2M)

= M
∑

m1m2

| j1j2m1m2〉 C(j1j2J,m1m2M) .

(7.10)

Since the basis elements are orthogonal, one has

(m1 +m2) C(j1j2J,m1m2M) = M C(j1j2J,m1m2M) . (7.11)
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From this follows that

C(j1j2J,m1m2M) = 0 if M 6= m1 +m2 . (7.12)

Furthermore

C(j1j2J ; j1, J − j1J) = 0, unless

−j2 ≤ J − j1 ≤ j2 or j1 − j2 ≤ J ≤ j1 + j2

(7.13)

and

C(j1j2J ; J − j2, j2J) = 0, unless

−j1 ≤ J − j2 ≤ j1 or j2 − j1 ≤ J ≤ j1 + j2 .

(7.14)

From (7.13) and (7.14) follows that there are

| j1 − j2 | ≤ J ≤ j1 + j2 (7.15)

allowed values for J .

In general we can say that the eigenvalues of ~J 2 can be numbers J(J + 1) with J =
0, 1

2
, 1, 3

2
, · · · . If there is a quantum number J , then there has to be a (2J+1) dimensional

space R(J) of eigenvectors | JM〉 belonging to the operators ~J 2 and ~J3 with M =
J, J − 1, · · · ,−J . From (7.12) followed that M = m1 +m2, where −j1 ≤ m1 ≤ j1 and
−j2 ≤ m2 ≤ j2. Let us consider now the number of states g(M) for different values of
M . Without loss of generality we assume j1 ≥ j2.

m

m

j

j

-j

-j

2

2

1

2

1
1
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The largest value of M is j1 + j2, thus one has

g(j1 + j2) = 1

g(j1 + j2 − 1) = 2

g(j1 + j2 − 2) = 3

(7.16)

The number increases by 1 until

g(j1 − j2) = 2j2 + 1 (7.17)

is reached. Then it will stay the same unit M = −(j1 − j2) is reached and will decrease
again by 1 from −(j1 − j2)− 1 or until g(−j1 − j2) = 1.

In principle, one can have different states belonging to the eigenvalues J andM . We want
to determine this number of states p(J). From the number of states belonging to a given
M ,

g(M) = p(J =|M |) + p(J =|M | +1) + p(J =|M | +2) + · · · (7.18)

we can conclude by reversing (7.18)

g(M = J) = p(J) + p(J + 1) + · · ·
g(M = J + 1) = p(J + 1) + p(J + 2) + · · ·

(7.19)

Subtracting both relations leads to

p(J) = g(M = J) − g(M = J + 1) . (7.20)

Now we can count the states

p(J > j1 + j2) = 0 , since g(M) = 0 for |M | > j1 + j2

p(J = j1 + j2) = g(M = j1 + j2) = 1

p(J = j1 + j2 − 1) = g(M = j1 + j2 − 1) − g(M = j1 + j2) = 1

and continue up to

p(J = j1 − j2) = g(M = j1 − j2) − g(M = j1 − j2 + 1) = 1 ,

and finally

p(J < j1 − j2) = 0 .
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Thus the eigenvalues J within the allowed interval are given by

J = j1 + j2, j1 + j2 − 1, · · · , j1 − j2 , (7.21)

and they occur exactly only once.

We verify that the number of states | j1m1〉 | j2m2〉 is identical with the number of states
| j1j2JM〉, where | j1 − j2 | ≤ J ≤ j1 + j2 and −M ≤ J ≤ M :

j1+j2
∑

J=|j1−j2|
(2J + 1) = (2j + 1)(2j2 + 1) . (7.22)

7.2 Construction of the Eigenstates

Since we know which vectors | j1j2JM〉 exist, we are left with their explicit construction
and with the determination of the Clebsch-Gordan coefficients.

In analogy to the determination of single angular momentum states, we start from a state

| J = j1 + j2, M = j1 + j2〉 ≡ | j1j1; j2j2〉 (7.23)

and apply the ladder operator

J− = (J1 − iJ2) = (J
(1)
− + J

(2)
− ) . (7.24)

In general we have

J± | j1j2JM〉 =
√

J(J + 1)−M(M ± 1) | j1j2JM ± 1〉 (7.25)

and the corresponding relations for J
(1)
± and J

(2)
± . Applying the ladder operators on a

state as given in (7.7) leads to

√

J(J + 1)−M(M ± 1) | j1j2; JM ± 1〉
=

∑

m1m2

C(j1j2J,m1m2M)
[

√

j1(j1 + 1)−m1(m1 ± 1) | j1j2 m1 ± 1 m2〉

+
√

j2(j2 + 1) − m2(m2 ± 1) | j1j2 m1m2 ± 1〉
]

. (7.26)

If we project this result on states | j1j2m1m2〉, we obtain the following relation for the
coefficients:
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√

J(J + 1)−M(M ± 1) C(j1j2J,m1m2M ± 1)

=
√

j1(j1 + 1)−m1(m1 ∓ 1) C(j1j2J,m1 ∓ 1, m2M)

+
√

j2(j2 + 1)−m2(m2 ∓ 1) C(j1j2J,m1m2 ∓ 1,M) . (7.27)

This relation allows to determine all C-G-coefficients up to a number λ(J, j1j2), which
does not depend on the quantum numbers M,m1 or m2. If we set M = J in (7.27), we
obtain for the case M + 1

0 =
√

j1(j1 + 1)−m1(m1 − 1) (j1j2J, (m1 − 1)(J + 1−m1)J)

+
√

j2(j2 + 1)− (J + 1−m1)(J −m1) C(j1j2J,m1, J −m1, J) , (7.28)

where we used that in this special case M = J = m1 − 1 +m2. Thus, with
C(j1j2J, j1, J−j1 J) ≡ λ(J, j1j2) ≥ 0 and real, all other C-G-coefficients can be obtained
from the recursion relation (7.28). To determine the constant λ(J, j1j2), one uses the
normalization condition for the states

1 = 〈j1j2J | j1j2J〉 =
∑

m1m2

| 〈j1j2m1m2 | j1j2JJ〉 |2 . (7.29)

The remaining phase is chosen so that the C-G-coefficients are real.

The transformation matrix between states, which is represented by C-G-coefficients, is
unitary:

〈j1j2JM | j1j2J ′M ′〉 =
∑

m1m2

〈j1j2JM | j1j2m1m2〉 〈j1j2m1m2 | j1j2J ′M ′〉 (7.30)

or

δJJ ′ δMM ′ =
∑

m1m2

C(j1j2J,m1m2M) C(j1j2J
′, m1m2M

′) (7.31)

and

〈j1j2m1m2 | j1j2m′
1m

′
2〉 =

∑

JM

〈j1j2m1m2 | j1j2JM〉 〈j1j2JM | j1j2m′
1m

′
2〉 (7.32)

or equivalently

δm1m′

1
δm2m′

2
=

∑

JM

C(j1j2J,m1m2M) C(j1j2J,m
′
1m

′
2 M) . (7.33)
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From the unitarity and the property (7.12) follow simplified relations

δJJ ′ =
∑

m1

C(j1j2J,m1 M −m1,M) C(j1j2J,m1M −m2M) (7.34)

δm′

1
m1

=
∑

J

C(j1j2J,m1 M −m1,M) C(j1j2J,m
′
1 M −m′

1,M) . (7.35)

7.2.1 Symmetry Properties of Clebsch-Gordan Coefficients

A study of the general expressions for the C.G. coefficients will reveal the following sym-
metry properties:

C(j1j2j,m1m2m) = (−1)j1+j2−j C(j1j2j,−m1 −m2 −m)
= (−1)j1+j2−j C(j2j1j,m2m1m)

= (−1)j1−m1
[j]

[j2]
C(j1jj2, m1 −m−m2)

= (−1)j2+m2
[j]

[j1]
C(jj2j1,−mm2 −m1), (7.36)

where the symbol [j] is defined by

[j] :=
√

2j + 1 (7.37)

The relations (7.36) bring out the symmetry properties of the C.G. coefficients under the
permutations of any two columns or the reversal of the sign of the projection quantum
numbers. Note that when the third column is permuted with the first or second, there is
a reversal of the sign of the projection quantum numbers of the permuted columns. This
is essential to preserve the relation m1 +m2 = m. By using the first symmetry relation
one finds

C(j1j2j, 000) = (−1)j1+j2−j C(j1j2j, 000). (7.38)

Thus, one obtains the condition

C(j1j2j, 000) = 0 (7.39)

if j1 + j2 − j is odd. Moreover, the quantum numbers j1, j2, j should all be integers;
otherwise the projection quantum numbers can not be zero. The C.G. coefficient of
(7.39) is known as parity C.G. coefficient, since in physical problems such a coefficient
contains the parity selection rule.
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7.3 Special Cases

7.3.1 Spin-Orbit Interaction

Angular momentum coupling is often used when calculating with Hamiltonians con-
structed from subsystem angular momentum operators. One example is the spin-orbit
coupling in the H-atom. Consider the Hamiltonian

H =
P 2

2m
+ V (r) +W (r) ~L · ~S ≡ H0 +HSO

~L · ~S , (7.40)

in which the spin-independent term is HO and the term with the factor HSO is the spin-
orbit part. The independent spaces are orbital angular momentum for operator ~L and
intrinsic spin for ~S. Since the two operators commute, one can write ~L · ~S or ~S · ~L. We
combine the two angular momenta to a total angular momentum

~J = ~L + ~S . (7.41)

Since the electron carries spin 1
2
, one has

| ~J | = | ~L | ± 1

2
| ~L | > 0 . (7.42)

The total angular momentum is conserved, thus

[H, ~J 2] = [H, J3] = 0 . (7.43)

From (7.41) follows

~J 2 = (~L+ ~S)2 = ~L 2 + ~S 2 + 2~L · ~S . (7.44)

By solving for the scalar product and inserting the result in (7.40), one obtains

H = H0 + HSO
1

2
( ~J 2 − ~L 2 − ~S 2) . (7.45)

Thus by forming combined angular momentum states (eigenfunctions of ~J 2, J3 as well as

of ~L 2 and ~S 2), H has become diagonal in these angular momenta, and one can directly
read off the energy:

EJℓ ≡ 〈ℓsJ | H | ℓsJ〉

= 〈H0〉 + 〈HSO〉
1

2
[J(J + 1) − ℓ(ℓ+ 1) − S(S + 1)] . (7.46)
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To be more precise, we form the eigenstates to ~J 2 and J3 as

| ℓ 1

2
JM〉 =

∑

m1m2

C(ℓ
1

2
J,m1m2M) | ℓ 1

2
m1m2〉 (7.47)

or in coordinate and spinor representation

YJM
ℓ 1

2

(θ, ϕ) =
∑

m1m2

C(ℓ
1

2
J,m1m2M) Yℓm1

(θ, ϕ) χ 1

2
m2

. (7.48)

These functions are normalized according to
∫

dϕ d cos θ (YJM
ℓ 1

2

)∗(θ, ϕ) YJ ′M ′

ℓ′ 1

2

(θ, ϕ) = δJJ ′ δMM ′ δℓℓ′ . (7.49)

The eigenstates of H then have the following form

ψ ≡ RℓJ(r) YJM
ℓ 1

2

(7.50)

and

~L · ~S YJM
ℓ 1

2

=
1

2
(J(J + 1)− ℓ(ℓ+ 1)− S(S + 1)) YJM

ℓ 1

2

. (7.51)

Introducing the radial momentum Pr as in (3.64), one obtains the radial Schrödinger
equation after projecting on the YJM

ℓ 1

2

(

Pr +
~
2 ℓ(ℓ+ 1)

2mr2
+ V (r) +W (r)

1

2
(J(J + 1)− ℓ(ℓ+ 1)− S(S + 1))− EJℓ

)

RℓJ(r) = 0 .

(7.52)

Since J = ℓ ± 1
2
, each energy level with ℓ 6= 0 splits into two separate levels. This is in

the case of the H-atom called fine structure.

< H  >0

j = l + 1/2

j = l - 1/2
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The order of the levels depends on the sign of W (r). A relativistic theory the for H-atom
gives

W (r) =
~

4m2C2

1

r

dV (r)

dr
. (7.53)

7.3.2 Coupling of Two Spin-12 Particles

Let us define

u± := | 1
2
,±1

2
〉(1) ; v± := | 1

2
,±1

2
〉(2) . (7.54)

The states χ(j,m) := | jm〉 with total spin j = 0 and j = 1 are obtained in the following
way. There is one state

χ(1, 1) = u+v+ . (7.55)

From this state, one obtains via applying the ladder operator J− the states

χ(1, 0) =
1√
2
(u+v− + u−v+) (7.56)

and

χ(1,−1) = u−v− . (7.57)

These states already have the correct normalization because of

〈u+v+ | u+v+〉 = 〈u+ | u+〉 〈v+ | v+〉 = 1 . (7.58)

One could have obtained (7.56) even without calculation, observing that χ(1, 0) has to

be symmetric in u and v, since J− = J
(1)
− + J

(2)
− is symmetric in (1) and (2). The relative

phase follows from

J
(1)
− u+ = u− and J

(2)
− v+ = v− , (7.59)

whereas the factor 1√
2
ensures the correct normalization. The vector χ(0, 0) with j =

m = 0 has to be orthogonal to χ(1, 0) and has to contain the products u+v1 and u−v+.
Therefore,

χ(0, 0) =
1√
2
(u+v− − u−v+) . (7.60)

The phase is for both cases consistent with the fact that the C-G-coefficients have to
be positive and real. χ(0, 0) is an antisymmetric state vector, which means that when
coupling two spin-1

2
states the singlet state is antisymmetric with respect to the exchange

of the particles.
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7.4 Properties of Clebsch-Gordan Coefficients

As relatively simple example for the results derived in Section 7.2, we study the coupling
of two equal angular momenta j1 = j2 = j to a total angular momentum 0. This means
we have to calculate C-G-coefficients C(jj0;m −m0). From (7.28) we obtain with J =
M = 0, m1 = m and m2 − 1 = −m

0 =
√

j(j + 1)−m(m+ 1) C(jj0;m− 1,−m+ 1, 0)

+
√

j(j + 1)−m(m+ 1) C(jj0;m,−m, 0) , (7.61)

from which follows

C(jj0;m− 1;−m+ 1, 0) = −C(jj0;m,−m, 0) . (7.62)

Since the C-G-coefficients (7.28) are positive and real, one has

C(jj0; j,−j, 0) = a = λ(0, jj) > 0 . (7.63)

Applying the recursion relation (7.28) (j −m) times starting from (7.63) gives

C(jj0;m,−m, 0) = a (−1)j−m , (7.64)

which gives a change of sign (j−m) times. Here a is a positive constant. The normalization
condition (7.29) gives

| a |2
+j
∑

m=−j

| (−1)j−m |2 = 1 . (7.65)

Thus

a =
1√

2j + 1
(7.66)

and

C(jj0;m,−m, 0) =
(−1)j−m

√
2j + 1

. (7.67)

From this follows that the vector

| jj00〉 =
1√

2j + 1

+j
∑

m=−j

(−1)j−m | jjm−m〉

=
1√

2j + 1

+j
∑

m=−j

(−1)j−m | jm〉(1) | j −m〉(2)

(7.68)
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is rotationally invariant, i.e., a scalar.

The result given in (7.67) illustrates the following important fact: In the above considered
case, one obtains an additional factor (−1) if j and thus m are half-integers. The reason
is the positive choice of λ(J, j1, j2). Apart from this, the addition of two angular momenta
is a completely symmetric process. Specifically, the states

| j1j2JM〉 and | j2j1JM〉 , (7.69)

which differ only in the order of j1 and j2 are identical up to a phase factor. The same
has to be valid for

C(j1j2J ;m1m2M) and C(j2j1J ;m2m1M) . (7.70)

Since the C-G-coefficients are real, one has to have

C(j2j1J ;m2m1M) = (−1)N C(j1j2J ;m1m2M) , (7.71)

where N does not depend on M , since the operators J±, which combine different M
values, are symmetric with respect to interchanging (1) and (2). To determine N , we set
M = J and use again that λ(J, j1j2) has to be positive. Then C(j1j2J,m1m2J) has to be
positive for m1 = j1 as well as C(j2j1J : m2m1J) for m2 = j2.

m

m

j

j

2

2

1
1

m  + m  = J

J-j

J-j

1

2

1

2

Fig. 7.3 m1 −
m2 plane, as used for calculating the phase when interchanging j1 and j2.

In Fig. 7.3 the state | j1j2, j1, J − j1〉 is marked as A, and the state | j1j2, J − j2, j2〉 as
B. When going from B to A, the recursion relation (7.28), (7.69) has to be applied

j2 − (J − j1) = j1 + j2 − J times .
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Thus, one obtains

C(j1j2J ; J − j2, j2, J) = (−1)j1+j2−J C(j1j2J ; j1, J − j1, J) . (7.72)

According to (7.71) we had

C(j2j1J ; j2, J − j2, J) = (−1)N C(j1j2J ; J − j2, j2J) . (7.73)

Inserting (7.72) into (7.73) gives

C(j2j1, J ; j2, J − j2, J) = (−1)N (−1)j1+j2−J C(j1j2J ; j1, J − j1, J) (7.74)

where the C-G-coefficients need to be positive. This is fulfilled for

N = J − j1 − j2 . (7.75)

Since N , as mentioned before, is independent of M , it follows for the general case

C(j2j1J ;m2m1M) = (−1)J−j1−j2 C(j1j2J ;m1m2M) . (7.76)

7.5 Clebsch-Gordan Series

We had constructed

|j1m1〉|j2m2〉 =
∑

j

C(j1j2j;m1m2m)|jm〉 (7.77)

How does this construction behave under rotation? Both sides of (7.77) are vectors, which
need to be rotated by and angle ω ≡ (α, β, γ), where latter are the Euler angles. This
leads to

∑

ν1,ν2

Dj1
ν1m1

(ω)Dj2
ν2m2

(ω)|j1ν1〉|j2ν2〉 =
∑

jµ

C(j1j2j;m1m2m)Dj
µm(ω)|jµ〉 (7.78)

The state on the right side of (7.78) must also be

|jµ〉 =
∑

mu′

1

C(j1j2j;µ
′
1µ

′
2µ)|j1µ′

1〉|j2µ′
2〉 (7.79)

Inserting this into (7.78) and taking the scalar product with 〈j1µ′
1|〈j2µ′

2| leads to a relation
between the rotation matrices

∑

ν1ν2

Dj1
ν1m1

(ω)Dj2
ν2m2

(ω)δµ1ν1δµ2ν2 =
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∑

jµµ1

C(j1j2j;m1m2m) C(j1j2j;µ
′
1µ

′
2µ)D

j
µm(ω)δµ1µ′

1
δµ2µ′

2
(7.80)

Since µ′
2 = µ − µ′

1, together with evaluating the Kronecker symbols, one obtains from
(7.78) the so-called Clebsch-Gordan Series

Dj1
µ1m1

(ω) Dj2
µ2m2

(ω) =
∑

j

C(j1j2j;m1m2m) C(j1j2j;µ1µ2µ)D
j
µm(ω). (7.81)

Without proof, the inverse is given by

Dj
µm(ω) =

∑

m1µ1

C(j1j2j;m1m2m) C(j1j2j;µ1µ2µ)D
j1
µ1m1

(ω) Dj2
µ2m2

(ω) (7.82)

Application to wave functions: A rotation is equivalent to unitary transformations. Take
e.g. two wave functions,

ψjm(~r
′) =

∑

m′

Dj
m′m(ω)ψjm′(~r)

ψjµ(~r
′) =

∑

µ′

Dj
µ′µ(ω)ψjµ′(~r). (7.83)

Taking the expectation value leads to

〈ψjµ(~r
′)|ψjm(~r

′)〉 =
∑

m′µ′

(Dj
µ′µ)

∗(ω)Dj
m′m(ω)〈ψjm′(~r)|ψjµ′(~r)〉

δµm =
∑

µ′

(Dj
µ′µ)

∗(ω)Dj
µ′m(ω) (7.84)

7.5.1 Addition theorem for spherical Harmonics

Take two points on a sphere S: P1 ≡ (θ1φ1) and P2 ≡ (θ2φ2). Then consider a system
which is rotated by an angle ω leading to a sphere S ′ with P1 ≡ (θ′1φ

′
1) and P2 ≡ (θ′2φ

′
2).

We want to show that the quantity

I :=
∑

m

(Y m
l )∗(θ1φ1) Y

m
l (θ2φ2) (7.85)

is invariant under rotation of the coordinate system. Start with

I =
∑

m

(Y m
l )∗(θ′1φ

′
1) Y

m
l (θ′2φ

′
2)
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=
∑

mm1m2

(Dl
m1m)

∗(ω)Dl
m2m(ω)(Y

m1

l )∗(θ1φ1) Y
m2

l (θ2φ2)

=
∑

m1m2

(Y m1

l )∗(θ1φ1) Y
m2

l (θ2φ2) (7.86)

For the last equality the orthogonality of the D matrices (e.g. (7.85) was used.

Let us choose a specific coordinate system S0, where P1 is parallel to the z-axis, and P2

is located in the x-z-plane: the coordinates ins S0 are (00) and (θ0). Then

I =
∑

m

(Y m
l )∗(00) Y m

l (θ0)

=
∑

m

√

2l + 1

4π
δm0 Y

m
l (θ0)

=

√

2l + 1

4π
Y 0
l (θ0)

=
2l + 1

4π
Pl(cos θ). (7.87)

7.5.2 Coupling Rule for spherical Harmonics

Consider a rotation of a frame from S to S0 by an angle ω.
Coordinates in S: P1(θ1φ1) and P2(θ2φ2)
coordinates in S0: P1 parallel z-axis, P2 in x-z plane,
rotation in Euler angles (αβγ) ≡ (φθ0).

How does Y m
l ((θ2φ2) associated with P2 transform under this rotation? Consider

Y 0
l (θ0) =

∑

m

Dl
m0(φ1θ10)Y

m
l (θ2φ2)

=

√

2l + 1

4π

∑

m

(Y m
l )∗(θ1φ1)Y

m
l (θ2φ2), (7.88)

where the last identity is given by (7.87). This gives a simple representation for

Dl
m0(φθ0) =

√

2l + 1

4π
(Y m

l )∗(θφ). (7.89)

This relation is very useful in connecting rotation matrices for integer j with spherical
Harmonics.
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Consider the Clebsch-Gordan Series

Dl1
m10

(φθ0)Dl2
m20

(φθ0) =
∑

l

C(l1l2l;m1m2m) C(l1l2l; 000)D
l
m0(φθ0). (7.90)

Replacing the rotation matrices with spherical Harmonics according to (7.89), taking the
complex conjugate and having in mind that C.G. coefficients are real, leads to

Y m1

l1
(θφ) Y m2

l2
(θφ) =

∑

l

√

(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C(l1l2l;m1m2m) C(l1l2m; 000) Y m

l (θφ),

(7.91)
which is the coupling rule for spherical Harmonics with the same argument. The parity
C.G. indicates that this product is non-vanishing only if l1 + l2 − l is even.

The above allows an easy evaluation of integrals involving three spherical Harmonics:
∫

dΩ(Y m3

l3
)∗(θφ) Y m2

l2
(θφ) Y m1

l1
(θφ)

=
∑

l

l̂1 l̂2√
4πl̂

C(l1l2l;m1m2m) C(l1l2l; 000)

∫

dΩ(Y m3

l3
)∗(θφ) Y m

l (θφ)

=
l̂1 l̂2√
4πl̂3

C(l1l2l3;m1m2m3) C(l1l2l3; 000), (7.92)

where l̂ ≡
√
2l + 1.

7.6 Wigner’s 3− j Coefficients

In our considerations of combining two angular momenta, we so far treated the third
angular momentum, the sum | JM〉, in a special way. A more symmetric treatment in
terms of 3− j coefficients considers the three angular momenta on equal terms.

Suppose that we combine two angular momentum states j1 and j2 to form a third state,
| j3,−m3〉, then we combine this state with one of the same j3 but opposite 3-projection,
m3, so that the total projection is zero. If couple this to a state with total J = 0, then
we have an isotropic quantity, a scalar, formed by coupling three angular momenta to
zero. The corresponding coupling coefficient was invented by Wigner and is called 3 − j
coefficient. Its symmetries under permutation of arguments are simpler than those of the
C-G-coefficient.

In deriving the 3−j coefficient we need to perform the usual angular momentum coupling.
The first combination is, according to (7.7)
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| (j1j2)j3,−m3〉 =
∑

m1m2

| j1j2m1m2〉 〈j1j2m1m2 | j1j2, j3 −m3〉 . (7.93)

The second condition, which produces the state (0, 0), is

| (j1j2j3)00〉 =
∑

m3

| (j1j2)j3 −m3, m3〉 〈j3j3,−m3m3 | j3j300〉 . (7.94)

The C-G-coefficient for coupling to equal angular momentum to total angular momentum
zero is given by (7.67) and is in our case (−1)j3−m3/

√
2j3 + 1 . Using this in (7.94) and

combining this with (7.93), we obtain the expression for three angular momenta coupled
to zero

| (j1j2j3), 00〉 ∼
∑

m1m2m3

| j1m1〉 | j2m2〉 | j3m3〉
(

j1 j2 j3
m1 m2 m3

)

(7.95)

in which the proportionality constant is just a phase. With the phase (−1)j1−j2−m3 , this
leads to the definition of the Wigner 3− j coefficient

(

j1 j2 j3
m1 m2 m3

)

=
(−1)j1−j2−m3

√
2j3 + 1

C(j1j2j3, m1m2 −m3) . (7.96)

The 3− j coefficient is zero unless

m1 +m2 +m3 = 0 . (7.97)

The triangle condition | j1 − j2 | ≤ j3 ≤ j1 + j2 of (7.15) has, of course, also to be
fulfilled. Because of (7.76), one has

(

j2 j1 j3
m2 m1 m3

)

= (−1)j1+j2+j3

(

j1 j2 j3
m1 m2 m3

)

. (7.98)

This can be verified since with (7.96)
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(

j2 j1 j3
m2 m1 m3

)

=
(−1)j2−j1−m3

√
2j3 + 1

C(j2j1j3;m2m1 −m3)

=
(−1)(j2−j1−m3)+(j3−j1−j2)

√
2j3 + 1

C(j1j2j3;m1m2 −m3)

= (−1)j3−2j1 (−1)−j1+j2

(

j1 j2 j3
m1 m2 m3

)

= (−1)j3+j2+j1 (−1)4j1
(

j1 j2 j3
m1 m2 m3

)

.

(7.99)

The factor (−1)4j1 = 1 even for half-integer j1. Furthermore, one can show that the 3− j
coefficients are invariant under cyclic permutation, i.e.,

(

j1 j2 j3
m1 m2 m3

)

=

(

j3 j1 j2
m3 m1 m2

)

=

(

j2 j3 j1
m2 m3 m1

)

(7.100)

and that they fulfill the relation

(

j1 j2 j3
−m1 −m2 −m3

)

= (−1)j1+j2+j3

(

j1 j2 j3
m1 m2 m3

)

. (7.101)

We can rewrite the basic formula (7.7) for combining two angular momenta using the
3− j notation:

| j1j2JM〉 =

j1
∑

m1=−j1

j2
∑

m2=−j2

| j1j2m1m2〉 δm1+m2,M

× (−1)j1−j2−M
√
2J + 1

(

j1 j2 J
m1 m2 M

)

. (7.102)

The unitarity relation analogous to (7.33) reads

∑

j3

| 2j3 + 1)

(

j1 j2 j3
m′

1 m′
2 m3

) (

j1 j2 j3
m1 m2 m3

)

= δm′

1
m1

δm′

2
m2

δm1+m2,−m3

(7.103)

and the one corresponding to (7.31)
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∑

m1m2

(2j3 + 1)

(

j1 j2 j′3
m1 m2 m′

3

) (

j1 j2 j3
m1 m2 m3

)

= δJ ′

3
j3 δm′

3
m3

.

(7.104)

Thus, in both sums the orthogonality conditions for the 3 − j coefficients require weight
factors of 2j3 + 1.

If one of the angular momenta in the 3 − j coefficients is zero, the expression simplifies
and is in analogy with (7.67) given by

(

j1 0 j3
m1 0 m3

)

= δj1j3 δm1−m3

(−1)j1−m1

√
2j + 1

. (7.105)

This is more complicated than (7.67), but it is simpler under the exchange of j1 and j3.

7.7 Cartesian and Spherical Tensors

For theoretical and practical purposes, it is important to analyze the classification of
tensors of different ranks with respect to their behavior under rotations. A tensor of rank
K can be defined as a quantity with 3k components

tn1n2···nk
, ni = 1, 2, 3 (7.106)

if it transforms under rotations x′n′ =
∑3

n=1 Rn′n xn as

tn′

1
n′

2
···n′

k
=

∑

n1···nk

Rn′

1
n1

· · · Rn′

k
nk
tn1···nk

=
∑

n1···nk

tn1···nk
R−1

n1n′

1

· · · R−1
nkn

′

k
.

(7.107)

In other words, the tensor components tn1 ··· nk
, which span the space, are at the same

time a basis for the representation of the rotation group, which is defined as

(Rn′n) 7−→ (Rn′

1
n1

· · · Rn′

k
nk
) . (7.108)

The (tn1···nk
) represents a k-fold product representation of SO(3) and are calledCartesian

tensors.
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In Chapter 5 we constructed via the angular momentum eigenvectors | jm〉 all represen-
tations of SO(3). Thus there has to be a connection to the above introduced quantities.
According to (5.196) we had found for the transformation under rotation of a state | jm〉

| jm′〉′ = U(αβγ) | jm〉

=

+j
∑

m=−j

| jm〉〈jm | U(αβγ) | jm′〉′ ,

(7.109)

where the rotation is parameterized with Euler angles. The matrix elements have the
form (cp. 5.197)

Dj
mm′(αβγ) = 〈jm | e−iαJ3 e−iβJ2 e−iγJ3 | jm′〉

= eiαm−iγm′ 〈jm | eiβJ2 | jm′〉
= eiαm−iγm′

djmm′(β) .

(7.110)

Thus we have the explicit transformation

| jm′〉′ =

+j
∑

m=−j

| jm〉 Dj
mm′(αβγ) . (7.111)

For j = 1
2
the D-function is explicitly given in (6.33). The set of vectors | jm〉 for fixed

j can be combined analogously to tensors to a multi-component mathematical object,
whose components transform under rotations according to (7.111):

| jm′〉′ =
∑

m

| jm〉 Dj
mm′(R) (7.112)

with Dj
mm′(R) = 〈jm | U(R) | jm′〉 .

We define: A quantity with (2k + 1) components

t(k)q ; q = −k,−k + 1, · · · + k

is called spherical or irreducible tensor of rank k, if its components transform as

t
(k)
q′ =

+k
∑

q=−k

t(k)q Dk
qq′(R

−1) . (7.113)

Let us compare the simplest Cartesian and spherical tensors and order according to the
number N of components of the tensors:

N = 3k for cartesian tensors of rank k

N = 2k + 1 for spherical tensors of rank k
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• N = 1: Scalar quantities. Here Cartesian and spherical tensors coincide , scalars
are invariant quantities.

• N = 2: This case only occurs for spherical tensors and leads to the spinor represen-
tation k = 1

2
.

• N = 3: A spherical tensor with three components corresponds to an angular mo-
mentum j = 1. A Cartesian tensor with N = 3 is a vector. Both quantities are
irreducible representations of the rotation group, since they are in irreducible spaces:
The spherical tensor via its definition (7.113), and the vector, since via ~x ′ = R~x the
rotations get defined. Thus, both quantities have to transform equivalently. And
we have to show that we can uniquely associate with each vector ~v a tensor v

(1)
q .

To illustrate this connection, we consider a special case rotations around the 3-axis. The
components of v

(1)
q transform with the matrix

D(1)
qq′(−θ, 00) = 〈jq | eiθJ3 | jq′〉 = eiθJ3 δqq′

=





eiθ 0 0
0 1 0
0 0 e−iθ



 , (7.114)

so that we have for the components

v
(1)′

j =











eiθ v
(1)
1

v
(1)
0

e−iθ v
(1)
−1

. (7.115)

On the other hand, the components of the rotation matrix in Cartesian coordinates is
given as

Rn′n(θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 , (7.116)

thus

v′1 = cos θ v1 − sin θ v2

v′2 = sin θ v1 + cos θ v2

v′3 = v3 . (7.117)

Comparing (7.115) and (7.117), we see that v3 transforms like v
(1)
0 . If one defines

v± = ∓ 1√
2
(v1 ± iv2) (7.118)
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one finds from (7.117) that

v′+ = eiθv+

v′− = e−iθv− . (7.119)

A comparison with (7.115) shows that v± transforms as v
(1)
± .

In summary:
By defining

v
(1)
±1 ≡ v± = ∓ 1√

2
(v1 ± iv2)

v
(1)
0 = v3

(7.120)

we can associate with each Cartesian vector ~v a spherical tensor with angular momentum
j = 1. The sign in (7.118) to chosen so that when introducing spherical coordinates, one
has

x± = r

√

4π

3
Y1±1(θ, ϕ) . (7.121)

Thus we explicitly showed that each Cartesian vector ~v transforms with respect to rota-
tions like a quantity with angular momentum j = 1.

Let us now consider a Cartesian tensor of rank 2 with the components tkℓ, k, ℓ = 1, 2, 3.
It has nine components, as many as a spherical tensor with k = 4. But tkℓ and t

(4)
q are

completely independent and have no connection with each other!

According to the general tensor rule (7.103), tkℓ transforms like the product of two systems
with j1 = j2 = 1. We have already shown explicitly that two angular momenta j1 = j2 = 1
can be coupled to total angular momentum 0, 1, 2. One can show this explicitly in the
following way:

1. tr(t) =
∑3

k=1 tkk := t(0) is invariant and corresponds to j = 0.

2. The antisymmetric part t
(1)
kℓ := 1

2
(tkℓ − tℓk) has three independent components.

One can define an axial vector (pseudovector) via an :=
∑

kℓ εnkℓ t
(1)
kℓ . Then an

transforms like an angular momentum state with j = 1.

3. The remaining part is the symmetric, trace-free quantity tkℓ :=
1
2
(tkℓ+tℓk)− 1

3
δkℓ tr t,

which has five components and transforms like an object with j = 2.
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Therefore, we can rewrite a tensor of rank 2 as

tkℓ = t
(2)
kℓ + t

(1)
kℓ +

1

3
δkℓt

(0) . (7.122)

It is no accident that the parts with j = 0 and j = 2 correspond to symmetric tensors,
while t

(1)
kℓ is antisymmetric. This corresponds to the rule for the interchange of two angular

momenta in the state | j1j2JM〉, since the factor (−1)J−j1−j2 = (−1)J−2(j1 = j2 = 1)
gives a change of sign only for J = 1. In general, any tensor tn1 ··· nk

can be decomposed
by the techniques of symmetrization, antisymmetrization and trace-operation into its
irreducible parts. For the lowest rank tensors these results are summarized in the following
table:

N Cartesian Tensor Spherical Tensor

1 scalar S t
(0)
0 ⇔ | 0, 0〉

2 – t
(1/2
(q) ⇔ | 1

2
, m〉, spinor

3 3-vector ~v t
(1)
(q) ⇔ | 1, m〉; Y1m

4 – t
(3/2)
(q) ⇔ | 3

2
, m〉

5 symmetric tensor with trace 0
1
2
(tkℓ + tℓk)− 1

3
δkℓ tr(t) t

(2)
(q) ⇔ | 2, m〉

The observables of classical physics can be characterized according to this scheme. How-
ever, those observables only correspond to spherical tensors with integer j. For j = 0
and j = 1 we already encountered numerous examples. An example for j = 2 is the
quadrupole moment of a classical charge distribution

Qkℓ =

∫

d3r ρ(r)

[

xkxℓ −
1

3
δkℓ r

2

]

. (7.123)

This tensor is obviously symmetric and tr Qkk = 0.

7.8 Tensor Operators in Quantum Mechanics

We apply the considerations of the previous Section now to quantum mechanical observ-
ables. By writing

T ′ = U−1(R) T U(R) (7.124)

we arrive at the following transformations for
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1. Cartesian tensors

U−1(R) Tn′

1
··· n′

k
U(R) = T ′

n′

1
··· n′

k

=
∑

n1···nk

Tn1···nk
R−1

n1n′

1

· · · R−1
nkn

′

k
. (7.125)

2. Spherical tensors

U−1(R) T
(k)
q′ U(R) = T

(k)′

q′ =

+k
∑

q=−k

T (k)
q D(k)

qq′ (U(R
−1)) . (7.126)

Considering infinitesimal rotations around an axis ~n, we obtain with

U−1(θ) = 1+ iθ ~n · ~J =⇒ D(k)
qq′ = 〈kq | 1 + iθ ~n · ~J | kq′〉

= δqq′ + i〈kq | θ ~n · ~J | kq′〉
(7.127)

the result

[~n · ~J, T (k)
q′ ] =

∑

q

T (k)
q 〈kq | ~n · ~J | kq′〉 . (7.128)

For a rotation around the 3-axis, we recover the familiar relation

[J3, T
(k)
q′ ] = q′ T

(k)
q′ , (7.129)

which is analogous to

J3 | kq〉 = q | kq〉 . (7.130)

Defining the commutator with the tensor operators corresponds thus to applying the
operator on states

[J3, T
(k)
q ] −→ J3 | kq〉 . (7.131)

Since (7.128) contains the scalar product ~n · ~J , this correspondence holds also for J2 and
J1 and J±. We obtain

[J±, T
(k)
q ] =

√

k(k + 1)− q(q ± 1) T
(k)
q±1 . (7.132)

The following table summarizes the results of this Section:
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Cartesian Cartesian Spherical Spherical Angular
Tensor Tensor Tensor Tensor Momentum
Rank k Operator Rank k Operator States

tn1···nk
Tn1···nk

t
(k)
q T

(k)
q | kq〉

El c-numbers Operators c-numbers Operators Hilbert
in Hilbert in Hilbert Space
Space Space Vectors

Trf. R−1
n′

1
n1
· · ·R−1

n′

1
nk

Rotation Matrices D(k)
q′q (R

−1) D(k)
q′q (R)

Ex:

C. ~x ~X x± = ∓ 1√
2
(x1 ± ix2) X± = ∓ 1√

2
(X1 ± iX2) | 1,±1〉

Sp. x0 = x3 X0 = X3 | 1, 0〉

Note: The Hilbert space vector | ~x 〉 = | x1x2x3〉 is not contained in any of the categories
in the table, since it transforms as

U(R) | ~x 〉 = | R~x 〉 . (7.133)

The state | ~x 〉 is a superposition of infinitely many angular momentum eigenstates:

| ~x 〉 =
∑

nℓm

| En,ℓ, ℓ,m〉〈Enℓ, ℓ,m | ~x 〉

=
∑

nℓm

| Enℓ, ℓ,m〉 Unℓ(r)

r
Y∗

ℓm(Ω) (7.134)

where one has to sum (integrate) over the entire spectrum of the Hamiltonian.
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7.9 Wigner-Eckart Theorem

7.9.1 Qualitative

The Wigner-Eckart Theorem states that the matrix elements of an irreducible tensor
operator between any well defined angular momentum states can be factored into two
parts:

1. one part depending on the magnetic quantum numbers

2. another part completely independent of the magnetic quantum numbers.

That means that (1) contains the entire geometry or the symmetry properties of the
system, and (2) contains the dynamics of the physical process. Formally this is written
as

〈jfmf |T µ
k |jimi〉 = C(jikjf ;miµmf) 〈jf‖Tk‖ji〉. (7.135)

This means the entire dependence of the matrix element on the magnetic quantum num-
bers can be factored out as C.G. coefficient, and a ‘reduced’ matrix element independent
of the projection quantum numbers (double bar matrix element).

Remarks:

(a) The literature gives different definitions, sometimes containing a factor ĵf =
√

2jf + 1.

(b) the C.G. coefficient depends on the coordinate system that is used to evaluate
the matrix element and implies the conservation of angular momentum. If this
factorization is possible in one coordinate system, then it is possible in all coordinate
systems obtained by rotation from the original coordinate system.

Consider matrix elements in a rotated coordinate system (r̂′):

〈ψjfmf
(r̂′)|T µ

k (r̂
′)|ψjimi

(r̂′)〉
=

∑

m′

f
µ′m′

i

(D
jf
m′

f
mf

)∗(ω) Dk
µ′µ(ω)D

ji
m′

imi
(ω)〈ψjfm

′

f
(r̂′)|T µ′

k (r̂′)|ψjim′

i
(r̂′)〉

=
∑

m′

f
µ′m′

i

(D
jf
m′

f
mf

)∗(ω) Dk
µ′µ(ω)D

ji
m′

imi
(ω) C(jikjf ;m

′
iµ

′m′
f)〈jf‖Tk‖ji〉

=
∑

J

C(jikJ ;miµM)
∑

m′

f

(D
jf
m′

f
mf

)∗(ω)DJ
m′

f
M(ω)〈jf‖Tk‖ji〉δjfJ

= C(jikjf ;miµmf ) 〈jf‖Tk‖ji〉. (7.136)
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For the second equation the coupling of two rotation matrices,

Dk
µ′µ(ω)D

ji
m′

imi
(ω) =

∑

J

C(jikJ ;miµM) C(jikJ ;m
′
iµ

′M ′)DJ
M ′M(ω) (7.137)

was used and summed over m′
i and µ′, remembering that m′

f − m′
i + µ′ = M ′. For the

last equality the summation over J was replaced by jf and the orthogonality of the D
matrices gives δmfm.

The consideration in (7.136) is not a proof of the Wigner-Eckart theorem, rather a con-
sistency check.

7.9.2 Proof of the Wigner-Eckart Theorem

Following Wigner as layed out in Brink-Satchler (1962).

Define an irreducible tensor operator of rank k via

Q ≡ 〈ψjfmf
(r̂)|T µ

k (r̂)|ψjimi
(r̂)〉

=

∫

dΩ ψ∗
jfmf

(r̂) T µ
k (r̂) ψjimi

(r̂). (7.138)

One can carry out the angular integration either by rotating the functions in a fixed
coordinate system or by rotating the coordinate system and keep the functions fixed. Let
us do the latter and rotate the coordinate system through Euler angles such that r̂ goes
from (00) to (θφ). This leads to

Q =

∫

dΩ
∑

m′

f
µ′m′

i

(D
jf
m′

f
mf

)∗(Ω) Dk
µ′µ(Ω)D

ji
m′

imi
(Ω) ψ∗

jfmf
(00) T µ

k (00) ψjimi
(00)

=
∑

m′

f
µ′m′

i

∑

J

C(jikJ ;miµM) C(jikJ ;m
′
iµ

′M ′) ψ∗
jfmf

(00) T µ
k (00) ψjimi

(00)

×
∫

dΩ(D
jf
m′

f
mf

)∗(Ω)DJ
M ′M(Ω) (7.139)

With
∫

dΩ(D
jf
m′

f
mf

)∗(Ω)DJ
M ′M(Ω) =

4π

2jf + 1
δjfJδm′

f
M ′δmfM (7.140)

Summing over J and m′
f gives

Q = C(jikjf ;miµM) δmfM





4π

2jf + 1

∑

m′

iµ
′

C(jikjf ;m
′
iµ

′m′
f) ψ

∗
jfmf

(00) T µ
k (00) ψjimi

(00)




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= C(jikjf ;miµM) δmfM 〈jf‖Tk‖ji〉, (7.141)

where the term in the bracket in (7.141) is defined as ‘reduced’ matrix element.

Example:
Calculate the reduced matrix element for the case of the spherical harmonics:

〈lf‖Yl‖li〉 =
4π

2jf + 1

∑

m′

im
′

C(lillf ;m
′
im

′m′
f ) (Y

m′

f

lf
)∗(00)Y m′

l (00)Y
m′

i

li
(00)

=

(

(2li + 1)(2l + 1)

4π(2lf + 1)

)1/2

C(lillf , 000), (7.142)

where Y m
l (00) =

√

2l+1
4π
δm0 was used.

7.10 Applications

An important application of the Wigner-Eckart Theorem are the so-called selection

rules. From (7.141) and the properties of the C −G coefficients follows that

〈β, j′m′ | T q
k | α, jm〉 = 0 (7.143)

only if

m′ = m+ q (7.144)

and

j′ = k + j, k + j − 1, · · · , | k − j | . (7.145)

A very important application of this result are the selection rules for electromagnetic
transitions. If the wave length is large compared to the size of the system under con-
sideration, the radiation probability is given by the square of the matrix elements of the
electric dipole operator e ~Q:

〈E ′, j′m′ | e ~Q · ~ε | Ejm〉 , (7.146)

where ~ε describe the polarization vector of the electric field (and is thus a c-number).
Only the matrix elements

〈E ′, j′m′ | ~Q | E, jm〉 (7.147)

164



determine the transition probability. Since ~Q corresponds to a spherical operator with
k = 1, the allowed transitions must fulfill

j′ = j + 1, j, j − 1

or

∆j = j′ − j = ±1, 0 (7.148)

which constitutes the so-called E1-selection rule.

The selection rule (7.144),m′ m+q (here q = 1) determines the direction of polarization of
the emitted light and can be observed if the m-degeneracy is removed (as in the Zeeman-
effect). If ~ε is parallel to the magnetic field, one obtains in (7.146)

~ε · ~Q = Q3 = Q0 . (7.149)

Because of q = 0 follows

m′ = m or ∆m = 0 . (7.150)

This means: The ∆m = 0 transitions lead to quanta which are polarized parallel to the
magnetic field. Due to the transversality of the electromagnetic waves, those quanta are
emitted perpendicular to the magnetic field. If ~ε is perpendicular to the magnetic field:

~ε · ~Q = ε1Q1 + ε2Q2 = αQ+1 + βQ−1 . (7.151)

Here we use the relation (7.120) for the transition from Cartesian to spherical vector
components. Then the selection rule reads

m′ = m± 1 or ∆m = m′ −m = ±1 . (7.152)

Thus ∆m = ±1 transition lead to polarization perpendicular to the magnetic field, i.e.,
the quanta can also be emitted in the direction of the magnetic field. In this direction
they are either right (∆m = −1) or left (∆m = +1) circular polarized, if m denotes the
initial and m′ the final state.

Apart from selection rules, the Wigner-Eckart Theorem can be used to make predictions
about relative magnitudes of matrix elements, especially of intensities. In relative
magnitudes the reduced matrix element of (7.136) cancels. We consider as example the
magnetic moment. We consider a system of electrons (or nucleons). The magnetic
moment is given by a vector operator ~µ, which is in general composed of the angular
momenta ~L(i) and the spins ~S(i):

~µ =
∑

i

µℓ
(i)
~L(i) +

∑

i

µs
(i)
~S(i) , (7.153)
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where the parameters µℓ
(i) and µs

(i) are proportional to the magnetons of each particle.

The entire system is assumed to be in a state | En, jm〉. The observable values of the
magnetic moment are given by the expectation values

〈Enjm | ~µ | Enjm〉 , (7.154)

and consists of (2j + 1) numbers. According to the Wigner-Eckart Theorem, all these
numbers can be expressed by a single number, the reduced matrix element

〈Enj ‖ µ ‖ Enj〉 , (7.155)

(independent of m1 and thus a number) and well-known C-G-coefficients. In this sense,
one can refer to a magnetic moment of the state. Let us consider a specific expectation
value, µ3 (m = 0). With (7.136) one obtains

〈Enjm | µ3 | Enjm〉 = (−1)
C(1jj; 0mm)√

2j + 1
〈Enjm ‖ µ ‖ Enjm〉 . (7.156)

The C-G-coefficients are given by

C(j1j;m0m) = −C(1jj; 0mm) =
m

√

j(j + 1)
:= cos θ . (7.157)

m
j(j+1)

cos θ

Fig. 7.4 C-G-coefficient

C(j1j;m0m).

We can define the magnetic moment by
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µ(Enj) := 〈Enjj | µ3 | Enjj〉 = −
√

j

(j + 1)(2j + 1)
〈Enj ‖ µ ‖ Enj〉 . (7.158)

Then we obtain with (7.157)

〈Enjm | µ3 | Enjm〉 = µ(Enj) cos θ

√

j + 1

j
. (7.159)

From this result and Fig. 7.4, one can see the geometric character of the C − G coef-
ficients. They express the dependence of the magnetic moment from the direction of ~µ
in space with respect to the states. Thus, the Wigner-Eckart Theorem allows a group
theoretical calculation of matrix elements as function of the geometrical parameters of
the problem, and one can calculate ratios of matrix elements without needing further dy-
namical information. The theorem does not give any tools for the calculation of absolute
magnitudes.

As example, we calculate the reduced matrix elements for the anomalous Zeeman

Effect. First, we need to calculate the splitting of the atomic levels according to the
interaction Hamiltonian

HZeeman = µB B(L3 + 2S3) , (7.160)

where the constant magnetic field B points in z-direction. The splitting of the energy
levels is calculated via the matrix elements

〈Enℓj, ℓ, jm | HZeeman | Enℓj, jm〉 . (7.161)

Since HZeeman only contains the 3 components of ~L and ~S, this matrix is already diagonal,
and the splitting of the energy levels is given by

∆Enℓjm := 〈Enℓj, ℓ, jm | HZeeman | Enℓj, ℓ, jm〉 . (7.162)
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We need to calculate the matrix elements

〈Enℓj, ℓ, jm
′ | ~L+ 2~S | Enℓj , ℓ, jm〉 . (7.163)

According to the Wigner-Eckart Theorem, they are (expressed in spherical tensor com-
ponents) proportional to

〈Enℓj, ℓ, jm
′ | ~J | Enℓj , ℓ, jm〉 . (7.164)

This can be seen most easily when considering the 3 components

〈γ, jm′ | L3 + 2S3 | γ, jm〉 = 〈γ, jm′ | L0 + 2S0 | γ, jm〉 = C(j1j;m0m′) F (γ, j)

〈γ, jm′ | J3 | γ, jm〉 = 〈γ, jm′ | J0 | γ, jm〉 = C(j1j;m0m′) F̃ (γ, j)

(7.165)

Both quantities are proportional to the same C-G-coefficient. Thus we set

〈· · · | ~L+ 2~S | · · · 〉 ≡ g 〈· · · | ~J | · · · 〉 . (7.166)

This factor g is known as Landé g-Factor. In the present case, we can determine g
without calculating the dynamics of the problem. We first use that

~L + 2~S = ~J + ~S (7.167)

and set

g = 1 + α (7.168)

where α is defined via

〈· · · | ~S | · · · 〉 = α 〈· · · | ~J | · · · 〉 . (7.169)

To calculate α we calculate the matrix elements of ~J · ~S in two different ways. First by
using ~J = ~L+ ~S,

~J · ~S = ~L · ~S + ~S 2 =
1

2
( ~J 2 − ~L 2 + ~S 2) , (7.170)

i.e.,

〈Enℓjℓjm
′ | ~J · ~S | Enℓjℓjm〉 =

1

2
(j(j + 1)− ℓ(ℓ+ 1) + s(s+ 1)) δmm′ . (7.171)
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On the other hand, we have (E := Enℓj)

〈E, ℓjm′ | ~J · ~S | E, ℓjm〉 =
∑

m′′
〈E, ℓjm′ | ~J | E, ℓjm′′〉〈E, ℓjm′′ | ~S | E, ℓjm〉(7.172)

since the states | Enℓj , ℓjm〉 are a complete set in the considered subspace. With (7.169)
follows

〈E, ℓjm′ | ~J · ~S | E, ℓjm〉 = α
∑

m′′

〈E, ℓjm′ | ~J | E, ℓjm′′〉〈E, ℓjm′′ | ~J | E, ℓjm〉

= α 〈E, ℓjm′ | ~J 2 | E, ℓjm〉 .
(7.173)

A comparison of (7.173) with (7.171) gives

α =
1

2j(j + 1)
(j(j + 1) + s(s+ 1)− ℓ(ℓ− 1)) (7.174)

and

g = 1 +
1

2j(j + 1)
(j(j + 1) + s(s+ 1)− ℓ(ℓ+ 1)) . (7.175)

In all formulas we have s(s + 1) = 3
4
; however, they are written in a more general way

since they are valid for many-electron systems as long as one has LS-coupling. The
Landé factor depends on j and ℓ, not on Enℓj . One can thus write

∆Enℓjm = g(j, ℓ) µBBm . (7.176)

The energy splitting is proportional to m, but of different magnitude for the different
terms. This leads to the complicated level scheme of the anomalous Zeeman Effect.
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