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Chapter 9

Quantum Mechanics of Identical

Particles

Up to now we considered only one-body systems. The special success of quantum me-
chanics can be seen in the prediction of observables of systems consisting of more than
two particles, i.e., N = 3, 4, · · · . In this description one has to consider that the particles
are identical. The symmetry properties following from the identity of the particles are
crucial for the understanding of atomic properties, matter properties, properties of nuclei
and even properties of elementary particles.

9.1 General Rules for Describing Several Identical

Particles

Analogous to classical mechanics, a quantum mechanical system ofN particles is described
by a set of fundamental observables for each particle. In non-relativistic physics, those
are

position ~Xi

momentum ~Pi

spin ~Si

(9.1)

where i describes the corresponding particle, i = 1, 2, · · · , N . The states of each particle
are elements of a Hilbert space, in which the operators act. The total system has in
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addition

total momentum ~P =
∑

i

~Pi

total spin ~S =
∑

i

Si .

(9.2)

Those operators act in the product space

H = H1 ⊗H2 ⊗ · · · ⊗ HN =

N
∏

i=1

⊗Hi . (9.3)

For additive observables (9.2), the eigenvalues are obtained by adding the single eigenval-
ues. Thus, for distinguishable particles, the following axiom holds:

The Hilbert space for a system of particles is given by the product of the

single Hilbert space.

However, for identical particles, restrictions may apply. Let us consider as simple appli-
cation of the axiom the hydrogen atom as two-particle system. The index 1 refers to the
electron of mass me and the index 2 to the proton of mass mp. The total energy is given
by the Hamiltonian

H =
1

2me

~P 2
1 +

1

2mp

~P 2
2 + V (| ~X1 − ~X2 |, ~L, ~S1, ~S2) . (9.4)

The potential V depends on the relative distance | ~X1 − ~X2 | := ~X , the orbital angular

momentum ~L with respect to the center-of-mass (c.m.) and the spins ~S1 and ~S2 of electron
and proton. It contains the following interaction terms:

• The Coulomb attraction − e2

|~x|

• The spin-orbit coupling of the electron VLS, ~S1 · ~L

• The coupling between the spins of the electron and the proton

2
µBµN

| ~X |3
[~S1 · ~S2 − 3

| ~X |2
~S1 · ~X ~S2 · ~X ]

− µBµN δ3( ~X) ~S1 · ~S2 8π .
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The first two contribute to the normal spectrum, the last to the hyperfine splitting. The
Hilbert space H1 ⊗H2 of the hydrogen atom is spanned by states

| ~r1, ~r2; ~S1, ~S2〉 = | ~r1~S1〉(1) | ~r2S2〉(2) . (9.5)

Since H is translation invariant, one introduces c.m. and relative coordinates

~R =
me~r1 +M~r2

me +M

~r = ~r1 − ~r2

(9.6)

and writes

| ~R,~r; ~S1
~S2〉

for the states. For the wave function

ψ(~R,~r, ~S1, ~S2) = 〈~R,~r, S1, S2 | ψ〉 , (9.7)

one introduces the ansatz

ψ(~R,~r, ~S1, ~S2) = φ(~R) ψ(~r, ~S1, ~S2) (9.8)

which separates the physical uninteresting c.m. motion off.

9.2 System of Two Identical Particles

As long as two electrons are separated by a macroscopic distance, they can be considered
as distinguishable. However, if they are separated by atomic distances, this is no longer
possible since due to the uncertainty principal one cannot follow the separate trajectories.

1

2 2 2

1 1 2

1

Fig. 9.1 Indistinguishability of Two Electrons
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Thus, in quantum mechanics of such systems, only observables A(1, 2) can be considered,
which are symmetric with respect to the permutation of the indices

A(1, 2) = A(2, 1) . (9.9)

The Hamiltonian for two electrons can be written as

H =
1

2me

~P 2
1 +

1

2me

~P 2
2 +

e2

| ~X1 − ~X2 |
(9.10)

which shows explicitly that H(1, 2) = H(2, 1). We introduce the permutation of two
objects as

τ :=





1 2
↓ ↓
2 1



 :=

(

1 2
2 1

)

. (9.11)

This ”transposition” τ is a symmetry operation and can be represented in a Hilbert space
by a unitary operator

P := U(τ) (9.12)

with the property

P 2 = 1 . (9.13)

Because of the unitary, we have P = P−1 = P †. According to the definition of a symmetry
operation, we have

A(2, 1) = P A(1, 2)P−1 , (9.14)

and with (9.9) follows

[P,A(1, 2)] = 0 . (9.15)

Thus, all observables of identical particles commute with the permutation operator, es-
pecially the Hamiltonian.

Since the preparation of a two-particle state is only possible via observables (which are
symmetric with respect to a transposition of the particles), the states | ψ(1, 2)〉 and
P | ψ(1, 2)〉 cannot be distinguished. However, this does not mean that one always has a
two-fold degeneracy. According to (9.13) P has the eigenvalues +1 and −1. Thus each
state | ψ(1, 2)〉 can be decomposed into a symmetric piece and an antisymmetric piece:

√
2 | ψ(1, 2)〉 =

1√
2
(1+ P ) | ψ(1, 2)〉 +

1√
2
(1− P ) | ψ(1, 2)〉

=: | ψS(1, 2)〉 + | ψA(1, 2)〉
(9.16)
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with

P | ψS〉 = + | ψS〉
P | ψA〉 = − | ψA〉 .

(9.17)

The two components of the decomposition are orthogonal

〈ψS | ψA〉 =
1

2
〈ψ | (1+ P )(1− P ) | ψ〉

=
1

2
〈ψ | 1− P 2 | ψ〉

= 0 .

(9.18)

Thus (9.16) provides an orthogonal decomposition of the product Hilbert space of the two
particles

H1 ⊗H2 = HS ⊗HA . (9.19)

Furthermore, the symmetry character of such as a state can neither be changed through
measurement (due to (9.15)) nor through time development since

| ψS,A〉t = e−
i
~

Ht | ψS,A〉t=0 .

Thus we can say that the states of a system of two identical particles are either all
symmetric or all antisymmetric. When considering a system of identical particles, we
are either in HS or in HA. Which of the symmetry properties are realized can only be
determined by the initial conditions. W. Pauli showed 1940 via means of quantum field
theory that there is a connection between the symmetry properties of a system of identical
particles and their spins:

• Identical particles with integer spin (e.g., mesons, photons, α-particles) are described
by symmetric state vectors (Bosons).

• Identical particles with half-integer spin (e.g., electrons, nucleons, neutrinos) are
described by antisymmetric state vectors (Fermions).

Remark: ForN ≥ 3, Pauli’s proof had apart from the principles of quantum field theory
to make the additional assumption that the states in either case are either symmetric or
antisymmetric.
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9.3 Permutation Group for Three Particles

A transposition is given as the interchange of two items in a group. As example take
three elements, g1, g2, and g3. There are 3!=6 possible transpositions in the ordering of
these items:

e : g1 g2 g3 → g1 g2 g3 (no change)
p : g1 g2 g3 → g2 g3 g1 (all one up)
q : g1 g2 g3 → g3 g1 g2 (last to front)
r : g1 g2 g3 → g1 g3 g2 (interchange 2 and 3)
s : g1 g2 g3 → g3 g2 g1 (interchange 1 and 3)
t : g1 g2 g3 → g2 g1 g3 (interchange 1 and 2) (9.20)

This group is called the symmetric group S3 and has 3! elements. In general, the sym-
metric group SN has N ! elements. The standard representation of the elements of S3 can
be written as

e ≡
(

g1 g2 g3
g1 g2 g3

)

p ≡
(

g1 g2 g3
g2 g3 g1

)

q ≡
(

g1 g2 g3
g3 g1 g2

)

r ≡
(

g1 g2 g3
g1 g3 g2

)

s ≡
(

g1 g2 g3
g3 g2 g1

)

t ≡
(

g1 g2 g3
g2 g1 g3

)

(9.21)

Note: The ordering of the items in the e.g the first row is unimportant as long as the
type of permutation is preserved, i.e.

r =

(

g1 g2 g3
g1 g3 g2

)

and r =

(

g2 g1 g3
g2 g3 g1

)

(9.22)

are the same element of the permutation group, namely r interchanges elements 2 and 3,
and leaves 1 alone.

We can consider “multiplication” of permutations, e.g.

p · r =
(

g1 g2 g3
g2 g3 g1

)

⊙
(

g2 g1 g3
g2 g3 g1

)

=

(

g1 g2 g3
g2 g1 g3

)

= t (9.23)

which shows that the set of 6 elements in S3 is not independent. In fact, one obtains

p · p =

(

g1 g2 g3
g2 g3 g1

)

⊙
(

g1 g2 g3
g2 g3 g1

)

=

(

g1 g2 g3
g3 g1 g2

)

= q

p · p · r = q · r =
(

g1 g2 g3
g3 g1 g2

)

⊙
(

g1 g2 g3
g3 g2 g1

)

= s . (9.24)

This means, S3 has only three independent elements. The set of elements {e, p, q} forms
a sub-group, with the inverse elements q−1 = p and p−1 = q.
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9.4 Matrix Representation of a Group

According to Cayley’s theorem, every finite group is isomorphic to a sub-group of the
permutation group. Thus by discussing matrix representations of a the elements of the
permutation group, we investigate matrix representations of finite groups in general.

As example, we consider the matrix representation of S3. Consider the column vector

v =





g1
g2
g3



 . (9.25)

Now construct a matrix such that the multiplication of v with this matrix gives the
reordering of a given element of S3:

M1(e) ≡





1 0 0
0 1 0
0 0 1



 M1(p) ≡





0 1 0
0 0 1
1 0 0





M1(q) ≡





0 0 1
1 0 0
0 1 0



 M1(r) ≡





1 0 0
0 0 1
0 1 0





M1(s) ≡





0 0 1
0 1 0
1 0 0



 M1(t) ≡





0 1 0
1 0 0
0 0 1



 (9.26)

The matrices M1 under ordinary matrix multiplication form a group that is isomorphic
to S3. This group is known as the matrix representation of S3. Pay attention to the order
of the matrix multiplication:

p · r = t → M1(p · r)v = M1(r)M1(p)v . (9.27)

In general, a set of matrices under matrix multiplication that is either isomorphic or
homomorphic to a group G is a matrix representation of G denoted by Γ. If the matrices
of the representation are of dimension N × N , then the matrix representation is said to
be N -dimensional.

There are many possible matrix representations of a group G, e.g. from a representation
Γ one can generate a representation Γ′ by similarity transformations U , i.e.

M′(gi) ≡ U−1M(gi)U (9.28)

for every gi ∈ G forms a representation Γ′ of the same dimension. The group rep-
resentations of Γ and Γ′ are identical. As such, Γ and Γ′ are said to be equivalent

representations.
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In the representation Γ(G) the character of a group element χ(a) of a group element
a is defined as the trace of the representation matrix Γ,

χ(a) = Tr(Γ) =
n
∑

i

Γii(a). (9.29)

The character of the unit element e is given by the dimension n of the representation,
χ(e) = n. Since the trace of a matrix is invariant under similarity transformations, the
group element a has the same character for equivalent representations. For the characters
of the representation M1 of S3 are given by:

χ(e) = 3
χ(r) = χ(s) = χ(t) = 1
χ(p) = χ(q) = 0 . (9.30)

9.5 Important Results About Representations of the

Permutation Group

In order to generalize the results of the previous section to systems of N particles, we
formulate the results in the view of group theory. Let us consider the permutation of two
objects:

1 :=

(

1 2
1 2

)

; Identity

τ :=

(

1 2
2 1

)

; Transposition

(9.31)

Furthermore, one has τ 2 = 1; τ−1 = τ . Thus, the set {1, τ} forms an Abelian group, the
symmetric group S2.

In the Hilbert space H1 ⊗ H2 of two particles, 1 and τ are represented by the unitary
operators 1 and P = U(τ). Starting from an arbitrary state | ψ(1, 2)〉 from this Hilbert
space, the states

| ψ(1, 2)〉 and | ψ(2, 1)〉 = P | ψ(1, 2)〉 (9.32)

span the two-dimensional representation of S2. This space gives only a reducible represen-
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tation, which can be reduced by building the symmetric and antisymmetric combinations

| ψS〉 =
1√
2
(| ψ(1, 2)〉 + | ψ(2, 1)〉)

=
1√
2
(1+ P ) | ψ(1, 2)〉

| ψA〉 =
1√
2
(| ψ(1, 2)〉 − | ψ(2, 1)〉)

=
1√
2
(1− P ) | ψ(1, 2)〉 .

(9.33)

Each of these vectors spans a one-dimensional space, constituting a representation of S2.
These spaces are completely described by giving

(1, τ) 7−→ (+1,+1) for | ψS〉
(1, τ) 7−→ (+1,−1) for | ψA〉 .

(9.34)

We encounter here a special case of the general theorem, stating that irreducible repre-
sentations of Abelian groups are one-dimensional. For the generalization to N particle
systems, we need information about the irreducible representations of the permutation
group of N objects, the symmetric group SN . Only results are given. For details, see,
e.g., A. Messiah, Quantum Mechanics, Vol. II, Appendix D.

The group SN consists of N ! permutations of N objects

(

1 2 3 · · · N

ν1 ν2 ν3 · · · νN

)

. (9.35)

Especially important are transpositions, which permute only two objects, e.g.,

τ :=

(

1 2 3 · · · N

2 1 3 · · · N

)

=: (1 2) (9.36)

and cyclic permutations

σ :=

(

1 2 3 4 · · · N − 1 N

2 3 4 5 · · · N 1

)

=: (1 2 · · · N) . (9.37)

One can see immediately that

τ 2 = 1 ; σN = 1 . (9.38)
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One can further show that any permutation P can be obtained by successive transposi-
tions. A permutation P is called even or odd corresponding to the number of transposi-
tions necessary to obtain P , and one defines

(−1)P := +1 , if P is even

(−1)P := −1 , if P is odd .

(9.39)

The set AN of all even permutations defines a subgroup of SN . As example we consider
the group S3 with 3! = 6 elements. All even permutations can be achieved by cyclic
permutations:

1 =

(

1 2 3
1 2 3

)

; σ =

(

1 2 3
2 3 1

)

; σ2 =

(

1 2 3
3 1 2

)

. (9.40)

If one denotes with Pij the permutation of the ith object with the jth object, then

P12P23 =









1 2 3
1 3 2
− − −
2 3 1









⇒ P12P23 =

(

1 2 3
2 3 1

)

= σ (9.41)

and

P13P23 =









1 2 3
1 3 2
− − −
3 1 2









⇒ P13P23 =

(

1 2 3
3 1 2

)

= σ2 . (9.42)

The odd elements can be generated by σ and a transposition τ , e.g., τ = P12. Then

στ = P12P23P12 =

(

1 2 3
3 2 1

)

= P13 (9.43)

σ2τ = P13P23P12 =

(

1 2 3
1 3 2

)

= P23 . (9.44)

Obviously we have

AN = {1, σ, σ2} . (9.45)

Thus, in calculations of three-body systems, it is sufficient to use the operators 1, σ, σ2 to
describe all possible permutations.
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In order to construct irreducible representations of SN , one needs further schemes and
definitions.
An additive decomposition of the number N into natural numbers λi

N = λ1 + λ2 + · · · λr; λi ∈ N (9.46)

with

λ1 ≥ λ1 ≥ · · · ≥ λr (9.47)

is called partition of N . Obviously, one has for the number r of components r ≤ N .

Each partition can be represented by a Young diagram, which is built up by N squares,
ordered in r subsequent rows. The first row consists of λ1, the second row of λ2 · · · the
rth row of λr squares:

= 6

= 4

= 3

= 2

= 1

λ

λ

λ

λ

λ
5

4

3

2

1

Fig. 9.2 Young-Diagram for

the Partition 16 = 6 + 4 + 3 + 2 + 1

The most important result from the theory of representations of the permutation group
can be formulated as follows:

• For each partition ofN , i.e., for each Young diagram built out ofN squares, there ex-
ists an irreducible representation of SN . Non-equivalent representations correspond
to different Young diagrams.

The procedure for constructing the representation is such that first one distributes the
N numbers 1, 2, · · · , N in an arbitrary way across the squares of a Young diagram. Each
distribution of numbers obtained this way is called Young Tableau.
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5 13 4 15 2 16

12 10 1 14

7 6 3

8 9

11
Fig. 9.3 Young Tableau for 16 =

6 + 4 + 3 + 2 + 1.

Especially important are the standard tableaux. In those the numbers in each row and
column are in ascending order. Fig. 9.3 does not show a standard tableau but Fig. 9.4
does.

1 3 5 7 16

2 8 11 15

4 12 14

6 13

9

10

Fig. 9.4 Possible Standard Tableau

for 16 = 6 + 4 + 3 + 2 + 1.

The number of all distinguishable standard tableaux, which can be found for a partition
of N , gives the dimension of the irreducible representation, which belongs to this partition
and its Young diagram.

Example: N = 3
The possible partitions and the Young diagrams:
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Partition abbrev. notation Young diagram

3 = 3 [ 3 ]

3 = 2 + 1 [ 2 , 1 ]

3 = 1 + 1 + 1 [ 1 , 1 , 1] = [ 1   ]

Standard - Tableaux  for  N = 3

1 2 3

2

3

1 3

2

1

3

2

1

[ 3 ]

[ 1 , 1 , 1 ]

[ 2 , 1 ]

3

Fig.

9.5 Tableaux for N = 3.

As can be seen, there is only one diagram for [3] and [13]. In both cases the irreducible
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representations are one-dimensional. For [2, 1], there are two standard tableaux, thus the
irreducible representation is two-dimensional.

Standard - Tableaux  for  N = 4

1 2 3 4

1 2 3 1 2 4 1 3 4

4 3 2

1 2

3 4

1 3

2 4

1 2

3

4

1 3

2

4

1 4

2

3

1

2

3

4

[ 4 ]

[ 3 1 ]

[ 2 2 ]

[ 2 1 1 ]

[ 1 1 1 1 ]

Fig.

9.6 Tableaux for N = 4.

The procedure for entering the numbers is to put the number n into that square which,
when removed from αn, gives the Young diagram αn−1. The number (n−1) is put in that
square which, when removed, gives the Young diagram αn−2, and so on. By the manner of
construction, it is clear that the numbers in the squares of a Young tableau must decrease
to the left and upwards. Because of the completeness of this labeling system, it follows
immediately that the dimension of the irreducible representation is equal to the number
of different tableaux obtainable from the Young diagram αn.

The explicit construction of a specific representation in the N -particle product Hilbert
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space of (9.3) has a general state | ψ(1, 2, · · · , N)〉 from this space and a specific standard
tableau. For this tableau, one considers all horizontal permutations P , in which only
objects in a specific row are permuted, and all vertical permutations Q, in which only
objects in a column are permuted. The set of all P and the set of all Q form a subgroup
of SN . For the specific tableau, one defines the operator

E :=

(

∑

Q

(−1)Q Q

) (

∑

P

P

)

=
∑

PQ

(−1)Q QP , (9.48)

where the sum is taken over all horizontal and vertical permutations. Those are already
to be understood as operators in the product Hilbert space. It can be shown that E is a
projection operator, i.e.,

E2 = αE E , αE ∈ R . (9.49)

In addition, one can show that operators E and E ′ defined from different standard
tableaux are orthogonal:

E ′E = EE ′ = 0 . (9.50)

The state

| ψE〉 := E | ψ(1, 2, · · · , N)〉 (9.51)

belongs to the corresponding irreducible representation. A complete basis can be obtained
by building the linear combination

∑

R

aR R ; aR ∈ C , (9.52)

where R runs over all elements of SN and a subsequent application on | ψE〉:
∑

R

aR R | ψE〉 =
∑

R

aR R E | ψ(1, 2, · · · , N)〉 . (9.53)

However, not every state obtained this way is linear independent. The number of lin-
ear independent vectors, the dimension of the representation, is given by the number of
different standard tableaux of the considered partition.

As examples, we consider the two most simple cases, N = 2 and N = 3.

For N = 2 we have to recover the results given in (9.32) - (9.34). The partitions, Young
diagrams, standard tableaux and the operators of (9.48) are given below:
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1 2

1

2

[ 2 ]

[ 1 1 ]

E  =  1 + P

E  =  1 - P

Fig.

9.7 Young diagrams and standard tableau for N = 2.

For the partition [2], the vector constructed according to (9.51) gives the symmetric state
| ψS〉, and for [1 1] we obtain the antisymmetric state | ψA〉. If we form operators
according to (9.52), we only obtain multiples of the starting vectors, since either R = 1

or R = P , and those operators change at most the sign.

For N = 3 we obtain all Young diagrams and standard tableaux already given in Fig.
9.5. From the tableau corresponding to [3], one obtains via (9.48) the symmetrization
operator (”symmetrizer”)

ES :=
∑

P

P (9.54)

and from [1 1 1], the anti-symmetrization operator (”anti-symmetrizer”)

EA :=
∑

Q

(−1)Q Q . (9.55)

In both cases, one has to sum over all elements of S3. The states | ψS〉 and | ψA〉 calculated
with ES and EA, according to (9.48) are

√
6 | ψS〉 := ES | (1, 2, 3)〉

= | ψ(1, 2, 3)〉 + | ψ(2, 3, 1)〉 + | ψ(3, 1, 2)〉
+ | ψ(2, 1, 3)〉 + | ψ(3, 2, 1)〉 + | ψ(1, 3, 2)〉

(9.56)

and
√
6 | ψA := EA | ψ(1, 2, 3)〉

= | ψ(1, 2, 3)〉 + | ψ(2, 3, 1)〉 + | ψ(3, 1, 2)〉
− | ψ(2, 1, 3)〉 − | ψ(3, 2, 1)〉 − | ψ(1, 3, 2)〉 .

(9.57)
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Here | ψS〉 is totally symmetric and applying a permutation P gives

P | ψS〉 = | ψS〉 , (9.58)

whereas | ψA〉 is totally antisymmetric and applying P gives

P | ψA〉 = (−1)P | ψA〉 . (9.59)

In their generic properties, | ψS〉 and | ψA〉 correspond to the equivalent states for N =
2. New features are obtained from the partition [2 1] and the corresponding standard
tableaux. We consider only the first one as given in Fig. 9.5 and obtain from (9.48)

EM := (1− P13)(1+ P12) = 1+ P12 − P13 − P13P12 . (9.60)

The index M denotes mixed symmetry. (Remember Q are the vertical permutations in
(9.48) which enter with (−1)Q.) Applying EM gives

| ψM
1 〉 := EM | ψ(1, 2, 3)〉

= | ψ(1, 2, 3)〉+ | ψ(2, 1, 3)〉− | ψ(3, 2, 1)〉− | ψ(2, 3, 1)〉 .
(9.61)

Using (9.40), (9.43) and (9.44), it is relatively easy to construct the operators of (9.52).
We use the transposition τ = P12 and the cyclic permutation σ = P13P12. Every other
operator is obtained by multiple application of these two:

| ψM
2 〉 := τ | ψM

1 〉
= | ψ(2, 1, 3)〉+ | ψ(1, 2, 3)〉− | ψ(3, 1, 2)〉− | ψ(1, 3, 2)〉 .

(9.62)

The states | ψM
1 〉 and | ψM

2 〉 are linear independent and span a two-dimensional space.
Because of τ 2 = 1, one has

τ | ψM
2 〉 = | ψM

1 〉 . (9.63)

Furthermore, one finds

σ | ψM
1 〉 = P13P12[| ψ(1, 2, 3)〉+ | ψ(2, 1, 3)〉− | ψ(3, 2, 1)〉− | ψ(2, 3, 1)〉]

= [| ψ(2, 3, 1)〉+ | ψ(3, 2, 1)〉− | ψ(1, 3, 2)〉− | ψ(3, 1, 2)〉]
= | ψM

2 〉− | ψM
1 〉

(9.64)

and

σ | ψM
2 〉 = P13P12[| ψ(2, 1, 3)〉+ | ψ(1, 2, 3)〉− | ψ(3, 1, 2)〉− | ψ(1, 3, 2)〉

= [| ψ(3, 2, 1)〉+ | ψ(2, 3, 1)〉− | ψ(1, 2, 3)〉− | ψ(2, 1, 3)〉]
= − | ψM

1 〉 .
(9.65)
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Since all other permutations can be built from σ and τ , the application of the general
operator (9.52) will always give a linear combination of | ψM

1 〉 and | ψM
2 〉. Thus the

permutations of S3 mix both these states and leads to the name ”mixed symmetry”.

A major disadvantage for practical applications in the fact that | ψM
1 〉 and | ψM

2 〉 are not
orthogonal. One can find orthogonal states by finding eigenstates | ψM

± 〉 of the operator
τ with eigenvalues ±1:

τ | ψM
± 〉 = ± | ψM

± 〉 . (9.66)

One finds

| ψM
± 〉 = | ψM

1 〉± | ψM
2 〉 (9.67)

or explicitly

| ψM
+ 〉 = (2− σ−1 − σ)(1 + τ) | ψ(1, 2, 3)〉

| ψM
− 〉 = (σ−1 − σ)(1 + τ) | ψ(1, 2, 3)〉

(9.68)

(See R.P. Feynman, M. Kislinger and R. Ravndal, Phys. Rev. D3, 2706 (1971): Current
Matrix Elements from a Relativistic Quark Model.)

Starting from the second tableaux for the partition [2 1] in Fig. 9.5, one can analogously
construct states | ψM

1,2〉′ and | ψM
± 〉′. Those give a further representation of S3, which is

equivalent to the above one. Thus, starting from a general state | ψ(1, 2, 3)〉, one can
construct the following representations

S d = 1

M with dimension d = 2

M ′ d = 2

A d = 1

With these representations, obtained by applying the permutation operators on | ψ(1, 2, 3)〉,
the six-dimensional space of S3 is decomposed according to its irreducible representations.

For a general N -particle system, the manifold of possible representations of SN , the
”symmetry classes” becomes quite large. Only two of the irreducible representations are
simple and direct generalizations of the previous considerations. These two cases are
represented by tableaux of one row and one column:
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9.8 One-Dimensional Representations of SN .

The operators constructed according to (9.48) are generalizations of symmetrization op-
erator ES (9.54) and the anti-symmetrization operator EA (9.55) for the case of N ! per-
mutations. The two spaces are given by the vectors

| ψS(1, 2, · · · , N)〉 :=
1√
N !

∑

P∈SN

P | ψ(1, 2, · · · , N)〉

| ψA(1, 2, · · · , N)〉 :=
1√
N !

∑

Q∈SN

(−1)Q Q | ψ(1, 2, · · · , N)〉 ,

(9.69)

where | ψS〉 is a totally symmetric and | ψA〉 a totally anti-symmetric state. They are the
only one-dimensional representation of SN , since for every other Young diagram there are
several standard tableaux. For this reason those two states play a fundamental role in
physics.

9.6 Fermi-, Bose- and Para-Particles

Let us consider a system of N identical particles. According to the considerations of
Section 9.2, all observables A(1, 2, · · · , N) of this system have to be totally symmetric,
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i.e., have to commute with all permutations of SN :

[P,A(1, 2, · · · , N)] = 0 , P ∈ SN . (9.70)

This has to be true especially for the Hamiltonian of the system. Therefore, if the state
| ψ〉 of a system is at some arbitrary time in a particular representation of SN , then this
statement is true for all times. If one introduces the physical hypothesis, that one can
fix via the measurement of all commuting observables the state of a system – up to a
phase factor – then one has, according to the results of the proceeding section, only the
symmetric or anti-symmetric representation available to characterize the state. All other
symmetry classes are excluded, since they contain permutations which have results other
than the multiplication with a factor.

Identical particles with a totally symmetric state vector are called bosons and identical
particles with a totally anti-symmetric state vector are called fermions. W. Pauli
could prove, with means of quantum field theory, the general connection between spin
and permutation symmetry:

• Particles with integer spin are bosons.

• Particles with half-integer spin are fermions.

Modern proofs of this statement use the so-called micro-causality (field operators either
commute or anti-commute for space like distances). (See R.F. Streaker and A.S. Wight-
man: PCT, Spin and Statistics and All That.)

The above introduced alternatives are, however, not mandatory. In 1953 H.S. Green
developed a theory, which is not restricted to one-dimensional representations, and thus
allows mixed symmetries (H.S. Green, Phys. Rev. 90, 270 (1953), A Generalized Method
of Field Quantization). This theory led to a long discussion and to so-called Para-

Particles. This term is used for particles for which multi-dimensional representations of
the permutation group can occur. For the multitude of possibilities, the following ordering
scheme can be used:

• Para-fermions of rank r are identical particles for which the state vector of the
system has symmetry properties, which are described by Young diagrams with a
maximum of r columns.

• Para-bosons of rank r are analogously described by Young diagrams with a max-
imum of r rows.
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Obviously, an ordinary fermion is a para-fermion of rank 1, and an ordinary boson a
para-boson of rank 1. A generalization of the Pauli Theorem could be proved, namely
that para-fermions have half-integer spin and para-bosons have integer spin (R. Haag,
Aix-en-Provence Conference 1973, pp. 107-110; The Super-Selection Structure of Particle
Physics).

The question is now which of the possible symmetries are realized in nature? To answer
this question, the most important physical consequences of the different symme-

tries have to be discussed. For this, we start with the assumption that we can neglect
interactions between the particles. (In many systems, this assumption is quite well real-
ized, e.g., for the electrons in an atom, where the Coulomb repulsion between the electrons
only leads to a correction term). The Hamiltonian H of such a system can be constructed
additively of the single particle Hamiltonians Hj of the N particles

H =

N
∑

j=1

Hj , (9.71)

where Hj only acts on the variables of the jth particle. We choose ~rj and sj and define

ξj := (~rj, sj) , j = 1, 2, · · · , N . (9.72)

If the index n stands for all eigenvalues, one can write the single particle eigenfunctions
of Hj as

φn | ξj〉 := 〈~rj, sj | n〉 . (9.73)

The product function

ψn1,n2,··· ,nN
(ξ1, ξ2, · · · , ξn) := φn1

(ξ1) · φn2
(ξ2) · · ·φnN

(ξN) (9.74)

is then eigenfunction of H and gives n basis for the product Hilbert space H given in (9.3).
This result is still valid if one adds to (9.71) an interaction term V (1, 2, · · · , N), and the
functions (9.74) are still a relative good approximation, which is the case for reasonably
weak interactions. However, in that case the eigenfunctions usually do not have the
desired symmetry properties. Those have to be obtained by applying the operators E
constructed according to (9.48). Thus, for fermions, one has to use the anti-symmetrizer
EA (9.55), and one obtains

ψA(ξ1, ξ2, · · · , ξN) :=
1√
N !

∑

Q

(−1)Q Q[φn1
(ξ1) · φn2

(ξ2) · · ·φnN
(ξN)] , (9.75)

where 1√
N !

is a normalization factor. One has to sum over all permutations of (ξ1, ξ2, · · · , ξN),
where sequence of indices n1, n2, · · · , nN remains fixed. According to the definition of a
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determinant, one can write

φA(ξ1, ξ2, · · · , ξN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

φn1
(ξ1) φn2

(ξ1) · · · φnN
(ξ1)

φn1
(ξ2) φn2

(ξ2) · · · φnN
(ξ2)

...
...

φn1
(ξN) φn2

(ξ2) · · · φnN
(ξN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (9.76)

The right-hand side is known as Slater determinant. If two columns are identical, the
determinant is zero. This is the case if two of the φni

are identical, i.e., two of the quantum
numbers ni are identical. From this follows the Pauli exclusion principle:

• Identical fermions cannot exist in the same single-particle state.

For bosons one has to create a totally symmetric state from (9.74) by applying the
symmetrizer ES (9.54)

ψS(ξ1, ξ2, · · · , ξN) :=
1√
N !

∑

p

P [φn1
(ξ1) · φn2

(ξ2) · · ·φnN
(ξN)] . (9.77)

The state vector remains unchanged when permitting the particles and

• Identical bosons can occupy the same single-particle state arbitrary many times.

The validity of the Pauli principle for electrons and nucleons has been shown with great
success in explaining the structure of atoms and nuclei. It is the main pillar for the periodic
system of the elements. The symmetry or anti-symmetry of the wave function plays also
an important role in the statistical behavior of the particles. A brief summary is given
in the following table:

particle distinguishable bosons fermions
wave function non-symmetric symmetric anti-symmetric
statistics Boltzmann Bose-Einstein Fermi-Dirac
number of

particles with Ae
E
kT

1
1

A
eE/kT−1

1
1

A
eE/kT +1

energy E
valid for E >> kT photons (Planck’s electrons

Law) 4He in a metal
metal

further Bose-Einstein Pauli-principle
consequences condensate periodic system

(super fluidity) nuclei
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For considering para-symmetries, we only want to consider para-fermions. Here a gen-

eralized Pauli principle is valid:

• For para-fermions of rank r, only a maximum of r particles can occupy the same
quantum state. To understand this, we consider the tableaux in Fig. 9.9.

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n1

2

N

1

2

3

4

5

1

2

3

1

2

1 1

2

r  colums

fermions para - fermions  of  rank  r Fig. 9.9

Explanation of the Generalized Pauli Principle for Para-Fermions.

The fermion wave function (9.76) can be represented by distributing the quantum num-
bers n1 · · ·nN into the squares of the Young diagram for fermions. Applying the anti-
symmetrizer EA makes the function vanish as soon as two ni are identical.

The tableau for para-fermions has r columns. The operator E (9.48) guarantees that the
wave function vanishes if quantum numbers are identical within a column. However, in a
row a quantum number ni can occur more than once. The r columns allow that the same
quantum number can occur r times, and thus the corresponding single-particle state can
be occupied r times.

According to this behavior, one can describe para-fermions in the following way: Introduce
a hidden quantum number λ, with λ = 1, 2, · · · , r. This allows to consider para-
fermions of rank r as ordinary fermions with respect to the quantum number (n, λ),
which has different values for each pair (n, λ).

The question remains if such particles are realized in nature. For an answer, the following
conservation law, which can be generally shown, is helpful:
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• Any particle reaction in which, apart from ordinary particles (fermions, bosons) on
both sides of the reaction equation only one para-particle appears, is forbidden.

This means a reaction

A + B −→ C + Para ,

with A,B,C being ordinary particles, is forbidden. The conservation law excludes that
any of the many particles in the particle data table (leptons, photons, hadrons) are para-
particles.
See O.W. Greenberg and A.M.L. Messiah, Phys. Rev. 138B, 1155 (1965): Selection
Rules for Para-Fields and the Absence of Para-Particles in Nature;
O.W. Greenberg in Conf. Math. Theory of Elementary Particles, 1965 (ed. by Goodman
& Segal).

For non-observed particles and objects, which are in principle not observable as free parti-
cle, a para-nature cannot be excluded. There are arguments that quarks are para-fermions
of rank 3. In order to explain the hadron spectrum, one has to assume that baryons (like
proton and neutron) are composed out of three quarks. The hidden parameter λ is in this
context denoted as color degree of freedom. Some references to para-symmetry:

• G. Gentile, Nuovo Cimento 17, 493 (1940)

• M. Dresden, Branders Lectures, 1963, p. 377

• S. Duplicher, R. Haag and J.E. Roberts, Comm. Math. Physics, 1973.

9.7 The Helium Atom

As demonstration of the important role played by symmetrization principles in the analysis
of ”two-particle” systems in nature, we consider the helium atom, which has two outer
electrons. The theoretical description of the spectrum of this atom was a task at which
the semi-classical Bohr description completely failed and only the quantum mechanics of
a two-electron system, including the Pauli principle, succeed. The Hamiltonian of helium,
in a frame where the nucleus is at rest, is given by

H =

(

~P 2
1

2me

− 2e2

| ~r1 |

)

+

(

~P 2
2

2me

− 2e2

| ~r2 |

)

+
e2

| ~r2 − ~r1 |
+ HSO

= H0(1) + H0(2) + V12 + HSO .

(9.78)
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The last term, HSO, stands for the spin-orbit interaction between the electrons and the
nucleus, while V12 is written for the electrostatic interaction between the two electrons.

+ 2 e

- e- e

r r
1 2

Fig. 9.10 The Coordinates of the Two

Electrons in He.

If the electrostatic, as well as spin-orbit terms, are neglected, H reduces to the sum of
two hydrogenic Hamiltonians (each with Z = 2)

H0 := H0(1) + H0(2) . (9.79)

H0, as well as H , are symmetric with respect to the interchange of the two electrons. For
calculating the energy levels, we start fromH and consider the other terms as perturbation
(actually perturbations in Chapter 10). The eigenvalues of H0 are sums of the form

E = εn + εn′ (9.80)

with the Coulomb energy

εn = − 1

2
4α2 mec

2 1

n2
. (9.81)

Due to the large energy difference between ε1 and ε2, the most important terms of zeroth
order are obtained by assuming that one electron is in the ground state and the other one
can occupy all states εn. Thus one obtains a level scheme similar to that of hydrogen;
however, the levels contain the factor Z2 = 4 and are shifted down by ε1. Every energy
level is occupied by two electrons, and the levels are given as
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9.11 Schematic Representation of the He-Spectrum (0th Order), Without

Taking the Pauli Principle into Consideration.

The total orbital angular momentum L is determined by the second electron with ℓ2 ≡ ℓ

so that the total L is given as

L = ℓ ; ℓ = 0, 1, 2, · · · . (9.82)

The corresponding terms are denoted as S(L = 0), P (L = 1), D(L = 2), · · · . The total
angular momentum J is composed of the orbital momenta and the spins of the electrons.
Since the two spins do not explicitly appear in (9.78), we first couple them separately and
obtain S = 0 and S = 1 for the total spin. From this, we obtain

J = L for S = 0

J = L± 1, L for S = 1 .

(9.83)

Every energy level can be characterized via the three quantum numbers L, S and J . The
conventional notation is

2S+1LJ , (9.84)

207



where the index 2S + 1 gives the spin multiplicity (singlet or triplet).

As next major step, we consider the Pauli principle, leading to an important qualitative
change: the 3S1-state cannot exist for the level (1S 1S). A qualitative argument is that in
the (1S 1S) state both electrons are in the same orbital state. If they were in the triplet
state, they would have to occupy, in addition, the same spin state, which is not allowed
due to the Pauli principle.

Formally we arrive at this result by considering that the eigenfunctions ofH0 are a product
of the spatial part φ1S,nℓm(~r1, ~r2) and the spin part χSMS

(1, 2). According to Section 7.32,
we have

χS=0,Ms=0 (1, 2) antisymmetric

χS=1,Ms = ±1, 0 (1, 2) symmetric .

(9.85)

For the spatial part, we have the product ansatz

φ1S,nℓm (~r1, ~r2) = φ1S (~r1) · φnℓm (~r2) (9.86)

from which we obtain the symmetrized (anti-symmetrized) and normalized expressions

φS
1S,nℓm (~r1, ~r2) :=

1√
2
[φ1S(~r1) φnℓm (~r2) + φ1S (~r2) φnℓm (~r1)]

φA
1S,nℓm (~r1, ~r2) :=

1√
2
[φ1S(~r1) φnℓm (~r2) − φ1S (~r2) φnℓm (~r1)] ,

(9.87)

which have to be combined with the corresponding spin parts χ. The general form of the
eigenfunctions of H0 is given by

2S+1ψn,JM(1, 2) :=
∑

J − S ≤ ℓ ≤ J + S

m+MS =M

φ
S,A
1S,nℓm(~r1, ~r2) χSMS

(1, 2) C(ℓSJ,mMSM) .

(9.88)
From this, one obtains for the singlet function (S = 0):

1ψn,JM(1, 2) = φS
1S,nJM (~r1, ~r2) χ00(1, 2) (9.89)

and for the triplet function (S = 1)

3ψn,JM(1, 2) =
∑

J − 1 ≤ ℓ ≤ J + 1
m+MS =M

φA
1S,nℓm (~r1, ~r2) χ1MS

(1, 2) C(ℓ1J,mMSM) .(9.90)
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In both cases, the total wave function is anti-symmetric. For the configuration (1s 1s),
φA
1s,nℓm (~r1, ~r2) = 0 in (9.87), so the triplet function vanishes and thus a 3S1 state cannot

exist. Further, from the symmetry properties (9.89) and (9.90), one can conclude

• There are no dipole transitions between the singlet and triplet levels.

The dipole moment

e(Q1 +Q2) (9.91)

does not depend on the spin and is a symmetric operator in the two electrons. We have
for the transition matrix element from singlet to triplet states:

〈3ψn,JM (1, 2) | e(Q1 +Q2) |1 ψn,JM(1, 2)〉
= 〈φA

1s,n′ℓ′m′(~r1, ~r2) | e(Q1 +Q2) | φS
1s,nℓm(~r1, ~r2)〉 〈χ1Ms(1, 2) | χ00(1, 2)〉

= 0 .

(9.92)

Thus, there are no transitions between singlet and triplet terms. Helium in antisymmetric
spin states (S = 0) is called parahelium, and helium in symmetric spin states (S = 1)
is called orthohelium. This distinction is historical since, when first observed, it was
thought that there are two different kinds of helium.
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Fig. 9.12 Energy Levels of Helium, Illustrating the Singlet and Triplet Series.

For the transition between the two different sets of levels, we have the selection rule

∆L = ±1 . (9.93)

To see this, we consider the matrix element

〈1ψn′,J ′M ′ | e(Q1 +Q2) |1 ψn,JM〉
= 〈φS

1s,n′,ℓ′m′ | e(Q1 +Q2) | φS
1s,nℓm〉 〈χ00 | χ00〉

(9.94)
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and

〈3ψn′,J ′M ′ | e(Q1 +Q2) |3 ψn,JM〉
=

∑

J ′ − 1 ≤ ℓ′ ≤ J ′ + 1
M ′ +M ′

s =M ′

∑

J − 1 ≤ ℓ ≤ J + 1
m+Ms =M

〈φA
1s,n′ℓ′m′ | e(Q1 +Q2) | φA

1s,nℓm〉

× 〈χ1M ′

s
| χ1Ms〉 C(ℓ′1J ′, m′MsM) C(ℓ1J,mMsM) .

(9.95)

According to (7.148), one has as allowed transitions

∆L = ∆ℓ = ±, 1, 0 .

However, when considering parity selection rules, ∆ℓ = 0 is not allowed. The consider-
ations concerning the additional terms in the Hamiltonian (9.78), one postponed to the
section on perturbative treatments.

9.8 General Construction of the Anti-SymmetricWave

Function from Spatial and Spin Parts

In the example in the previous section, we saw that the Pauli principle could be fulfilled
by combining a symmetric spatial wave function with an anti-symmetric spinor part,
and vice versa, to obtain a totally anti-symmetric wave function. The generalization
of this procedure to more than two particles is more difficult since complicated mixed
symmetries can occur. Using Young diagrams, one can derive rules for the construction
of totally anti-symmetric wave functions.

Definition: Given a Young diagram Y . Then the conjugate diagram Yc is obtained
from Y by interchanging rows and columns.

211



Y Y
c Fig. 9.13 Conjugate

Young Diagrams.

For example, the spatial part of a wave function obeys the permutation symmetry of
the diagram Y , then it must be multiplied by a spinor part that obeys the permutation
symmetry of Yc so that the total wave function is anti-symmetric. (A proof of this rule is
given in M. Hamermesh, Group Theory and Its Applications to Physical Problems.) For
a system of two fermions, one obtains the following combinations:

Singlett States

Fig. 9.14

Symmetric spatial part φs multiplied with an anti-symmetric spin part χ00

gives the singlet wave function.

Triplett States

Fig. 9.15

Anti-symmetric spatial part φA multiplied with symmetric spin Parts gives

triplet wave functions.

For a system of three fermions, we obtain the possible symmetries of the spatial part of the
wave function from Fig. 9.5. The diagram for [1 1 1] describes a totally anti-symmetric
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spatial part and must be combined with the diagram for [3] for the spin part, i.e., the
spin part must be totally symmetric. This can only be the case if all spins are in the same
state (parallel), i.e., for total spin S = 3

2
. If the spatial part is of mixed symmetry, i.e.,

[2 1], then the spin part must also be of mixed symmetry. This can only be realized for
total spin S = 1

2
.

A totally symmetric spatial part, according to the diagram for [3], requires a totally anti-
symmetric spin part [1 1 1]. Since one has spin-1

2
particles, a system of three always has

to have two in the same state, and thus a totally anti-symmetric part [1 1 1] does not
exist.

The result of the above considerations can be formulated as:

• The spatial part of a system of three spin-1
2
particles must be either totally anti-

symmetric or of mixed symmetry.
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