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0.1.1. Introduction

Nucleon scattering on very light nuclei is an ideal
laboratory to test nuclear forces and reaction the-
ory. The �rst nontrivial system consists of three nu-
cleons (3N) and is of speci�c interest, since it can
be solved exactly on todays supercomputers1. Addi-
tionally, here three-nucleon forces (3NF) appear for
the �rst time. Knowledge about nature and size of
the 3NF is of fundamental importance for nuclear
physics. The next step to the system with four nucle-
ons has not yet been fully accomplished. While the
4N bound state can already be solved exactly2;3;4,
4N scattering has not yet been mastered. However,
investigations within limited energy ranges as well
as based in part on simpli�ed nuclear forces exist5.
When considering todays modern 3N calculations,
where realistic nuclear forces in all their complexi-
ties can be handled numerically exactly, one has to
remember that there was a long evolution from the
�rst model calculations23 of three-body systems to
today's standards1. We would like to refer to the
review article1 for more detailed information about
the many intermediate steps.

Here we concentrate on 3N scattering formulated
in the Faddeev scheme6. In Section 0.1.2 the ba-
sic formalism is laid out. The speci�c form of Fad-
deev equations most suited for numerical investiga-
tions in momentum space is derived in Section 0.1.3.
A closely related formalism illustrating the variety
of possible approaches is displayed in Section 0.1.4.
The rich set of spin observables is described in Sec-

tion 0.1.5. A brief insight into the actual algebraic
preparations necessary for the numerical implemen-
tation is given in Section 0.1.6. The dynamical in-
put for 3N-calculations is presented in Section 0.1.7.
Very recent results based on modern NN and 3NF's
are shown in Section 0.1.8. This illustrates successes
and failures in our present day understanding of nu-
clear dynamics in the 3N system. We conclude with
an outlook in Section 0.1.9.

0.1.2. Basic scattering formalism

In 3N scattering there are two asymptotic geometri-
cal con�gurations: two- and three-body fragmenta-
tions. In the usual experimental set up the scattering
process is initiated by a two-body fragmentation, i.e.
a nucleon hits a deuteron. This particular fragmen-
tation is governed by the channel Hamiltonian

Hi = H0 + Vi; (1)

where H0 is the kinetic energy operator. The pair
interaction is denoted by the convenient \odd man
out" notation

Vi � Vjk ; j; k 6= i: (2)

The initial con�guration shall be described by the
wavepacket

j�i(t)i =

Z
d~qj�~qiie�iEqt f(~q); (3)

which is a solution of the time-dependent Schr�odinger
equation

Hij�i(t)i =
1

i

@

@t
j�i(t)i (4)

The state entering Eq.(3) is given by

j �~qii = j �dijk j ~qii (5)

and is an eigenstate to Hi:

Hij�~qii = E~qi j�~qii: (6)

The indices at the ket vectors in Eq.(5) refer to the
particle numbers. Thus the two-nucleon bound state,
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the deuteron, is composed of nucleons j and k and
the projectile nucleon i is described by its Jacobi
momentum ~q. One has

E~q = Ed +
3

4m
~q 2 (7)

where Ed < 0 is the deuteron binding energy and
m the nucleon mass. The Jacobi momenta will be
de�ned in Eqs.(44 - 45). Finally f(~q) is a square
integrable momentum distribution, which provides
the shape of the free wavepacket in the distant past.

The full scattering state 	
(+)
i (t) develops out of

the state �i(t). As is well known, the matching con-
dition has to be chosen to be

lim
t!�1

k 	
(+)
i (t) � �i(t) k = 0 (8)

This is equivalent to

lim
t!�1

k 	
(+)
i (0) � eiHt e�iHit �i(0) k = 0 (9)

where H is the full Hamiltonian

H = H0 +

3X
i=1

Vi + V4 (10)

It is composed of the kinetic energy H0, the three
pair interactions Vi and the 3NF V4. Eq.(9) leads
to the explicit expression for the scattering state at
time t = 0

	
(+)
i (0) = lim

�!�1
eiH� e�iHi� �i(0) (11)

For strong interactions, which are short ranged, this
limit exists. The proof follows closely the one for po-
tential scattering7. In a well known manner Eq.(11)
can be reformulated using Eqs.(3) and (6) as

	
(+)
i (0) = lim

"!0
"

Z 0

�1

d�e"� eiH�e�iHi��i(0)

= lim
"!0

"

Z 0

�1

d�

Z
d~qei(H�E~q�i")��~q f(~q)

= lim
"!0

Z
d~q

i"

Eq + i"�H
�~qf(~q) (12)

We de�ne the state

	
(+)

~q
� lim

"!0

i"

Eq + i"�H
�~q; (13)

which is a solution of the stationary 3N Schr�odinger
equation

Hj	(+)

~q
i = Eqj	(+)

~q
i (14)

It should be noted that the expression given in
Eq.(13) incorporates all the boundary conditions,
though not yet in a manifest form. When insert-
ing the de�nition given in Eq.(13) into Eq.(12) one
yields the transparent form

	
(+)
i (0) =

Z
d~q 	

(+)
~q

f(~q) (15)

which describes the time-dependent scattering state
(at time t = 0) as a superposition of the speci�c

eigenstates 	
(+)
~q of H according to the initial mo-

mentum distribution. It follows that at an arbitrary
time 	

(+)
i (t) is given as

	
(+)
i (t) = e�iHt 	

(+)
i (0) =

Z
d~q e�iEqt 	

(+)

~q
f(~q) (16)

In order to keep the notation concise it is advisable
to introduce at an early stage the indistinguishabil-
ity of the nucleons by using the isospin formalism.
Equipped with the isospin label the nucleons can be
considered to be identical. The state 	

(+)
i (t) given

in Eq.(16) is antisymmetric only under exchange of
nucleons j and k. This follows from Eq.(13) if the
deuteron state in �~q is chosen to be antisymmetric.
The Hamiltonian H is a symmetric operator, thus
the antisymmetrization in the nucleons numbered j
and k carries over to the state 	

(+)
q . We now intro-

duce cyclic and anticyclic permutation and de�ne

1 + P � 1 + Pij Pjk + Pik Pjk (17)

This applied onto 	
(+)
i (t) gives

j 	
(+)
a (t)i � (1 + P ) j 	

(+)
i (t)i

=

Z
d~q f(~q)e�iEqt j 	

(+)
~q

ia; (18)

where

j 	
(+)

~q
ia � (1 + P ) j 	

(+)

~q
i

� j 	
(+)
~q

i1 + j 	
(+)
~q

i2 + j 	
(+)
~q

i3 (19)

We introduced indices on the ket vectors. Their ob-
vious meaning is that for instance j 	

(+)
~q i1 denotes

the scattering state, in which the asymptotic initial
momentum ~q is carried by nucleon 1, and the initial
asymptotic deuteron is formed out of nucleons 2 and
3. The two other states result by a cyclic and an
anticyclic permutation of the three nucleons. It is a
simple exercise to verify that j 	

(+)
a (t)i is antisym-

metric under all transpositions Pkl.
After the scattering process the three nucleons

separate again into three two-body fragmentations
(one elastic and two rearrangement scatterings) and
a three-body fragmentation (breakup scattering). A
two-body fragmentation with a sharp relative mo-
mentum ~qf is described by

�~qf (t) = e�iEqf t�~qf (20)
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and the 3-body fragmentation with sharp relative
momenta ~pf and ~qf by

�~pf~qf (t) = e
�iE~pf ~qf

t
�~pf ~qf � e

�iE~pf~qf
t j ~pf~qf i (21)

The transition amplitudes at time t from the two-
body fragmentation de�ned by the initial momentum
distribution f(~q) into the states �~qf (t) or �~pf~qf (t) are
given as

A~qf
(t) � h�~qf (t) j 	

(+)
a (t)i (22)

A~pf~qf
(t) � h�~pf ~qf

(t) j 	
(+)
a (t)i (23)

The stationary scattering state j 	
(+)
~q i1 de�ned

by Eq.(13) obeys the triad of Lippmann Schwinger
(L.S.) equations7;8

j	(+)

~q
i1

= j �~qi1 +
1

E~q + i��H1
(V2 + V3 + V4) j 	

(+)

~q
i1 (24)

=
1

E~q + i��H2
(V3 + V1 + V4) j 	

(+)
~q

i1 (25)

=
1

E~q + i��H3
(V1 + V2 + V4) j 	

(+)

~q
i1 (26)

This set of three Lippmann Schwinger equations
de�nes the scattering state j 	

(+)
~q i1 uniquely (see

Section 0.1.4). As a consequence j 	
(+)
~q i2 and

j 	
(+)
~q i3 will obey the homogeneous version of the

�rst L.S. equation given in Eq.(24), and therefore

j 	
(+)
~q ia de�ned in Eq.(19) is also a solution of that

�rst equation in the triad. Because of the antisym-
metrization of j 	

(+)
~q ia it does not matter how the

nucleons are numbered in the state �~qf (t) of Eq.(20).
It is convenient to choose j �~qf i1. Then it follows im-
mediately from Eqs.(22), (18), and (24) that

A~qf
(t) = f(~qf ) +

Z
d~q e

i(E~qf
�E~q)t 1

E~q + i�� E~qf

h�~qf j V2 + V3 + V4 j 	
(+)
~q

ia f(~q) (27)

The evaluation of the cross section requires the
knowledge of the transition rate d

dt j A~qf (t) j2 for

t ! 1. Since j 	
(+)
a (t)i for t ! 1 separates into

free motions of two- and three-body fragmentations
A~qf (t) has to go towards a time-independent limit for
t ! 1, and consequently the transition rate has to
vanish in that limit. Only together with an increas-
ingly sharper initial wave packet centered around an
initial momentum ~q0the ratio of the transition rate to
the incoming ux approaches a nonzero value, which
moreover will be independent of the shape f(~q) of
the initial momentum distribution. This last prop-
erty is of course a necessary requirement to gain in-
formation on the dynamics in the scattering process
without disturbance through the initial form of the
wavepacket (which would be anyhow uncontrollable).

Since the form of f(~q) should and does not matter
we can use e.g. a Gaussian distribution, which has
a simple connection to a sequence of functions fÆ(~q)
de�ning a Æ-function in the limit b! 0:

f(~q) = b3=4(2�)3=4fÆ(~q) (28)

fÆ(~q) =
1

b3
1

(�)3=2
e(~q�~q0)

2=b2 (29)

Note that f(~q) should not tend towards a delta func-
tion, since it should be square integrable. The choice
(28) and (29) guarantees for b 6= 0

Z
d~q j f(~q) j2= 1; (30)

and

fÆ(~q) ���!
b!0

Æ(~q � ~q0) (31)

Simple algebra1 leads then in the limit b! 0 to

lim
b!0

1

b3(2�)3=2
d

dt
j A~qf

(t) j2

= 2Imh�~qf j U j �~q0 iÆ(~qf � ~q0) (32)

+2� Æ(E~q0 �E~qf
) j h�~qf j U j �~q0 i j2

with

h�~qf j U j �~q0 i (33)

� 1h�~qf j V2 + V3 + V4 j 	
(+)
~q0

ia

The initial current j ~j j carries the same factor
b3(2�)3=2 in the limit b ! 0 as follows from Eq.(3),
and one has

j ~j j = b3(2�)3=2
3

2m

j ~q0 j
(2�)3

(34)

� b3(2�)3=2 j ~j0 j (35)

As a consequence the di�erential cross section for
elastic nucleon-deuteron scattering turns out to be

d� =
1

j ~j0 j

Z
d~qf2�Æ(E~q0 �E~qf

) j h�~qf j U j �~q0 i j2(36)

or

d�

dq̂f
= (

2

3
m)2 (2�)4 j h�~qf j U j �~q0 i j2 (37)

Thus Eq.(33) de�nes the operator U for elastic scat-
tering acting between the \channel states" �~q given
in Eq.(5)

The derivation of the break-up cross section fol-
lows similar steps, and starts with the transition am-
plitude given in Eq.(23). Here we use the fact that
every stationary scattering state initiated in a two-
body fragmentation channel obeys the homogeneous
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equation, where the free 3N propagator enters the
integral kernel. Therefore we can use

j 	
(+)
~q

ia =
1

E~q + i��H0
(V1 + V2 + V3 + V4) j 	

(+)
~q

ia

(38)

in Eq.(18) and Eq.(23) and obtain the result

A~pf~qf
(t) =

Z
d~q

e
i(E~pf~qf

�E~q)t

E~q �E~pf ~qf
+ i�

(39)

h�~pf ~qf j V1 + V2 + V3 + V4 j 	
(+)

~q
ia f(~q)

Similar steps to those for obtaining A~qf (t) lead to

lim
b!o

1

b3(2�)3=2
d

dt
j A~pf~qf

(t) j2 (40)

= 2� Æ(E~q0 � E~pf~qf
) j h�~pf ~qf j U0 j �~q0 i j2

where

h �~pf ~qf j U0 j �~q0i (41)

� h�~pf ~qf j V1 + V2 + V3 + V4 j 	
(+)
~q0

ia

The result is the breakup cross section

d� =
1

j ~j0 j

Z
d~pfd~qf 2�(E~q0 �E~pf ~qf

)

j h�~pf ~qf j U0 j �~q0 i j2 (42)

We now rewrite this expression into laboratory
momenta ~ki = 1; 2; 3 and the initial projectile mo-
mentum ~klab:

d� =
m

klab
(2�)4

Z
d~k1 d~k2 d~k3

Æ(~klab � ~k1 � ~k2 � ~k3)

Æ(Elab + Ed �
3X

i=1

~k2i
2m

) j h�~pf ~qf j U0 j �~q0 i j2 (43)

The Jacobi momenta entering the nuclear matrix el-
ement are de�ned as

~p =
1

2
(~k2 � ~k3) (44)

~q =
2

3
(~k1 � 1

2
(~k2 + ~k3)) (45)

This is one particular choice. The other two possi-
ble choices simply follow by a cyclic and anticyclic
permutation.

The most detailed break-up cross section results
by measuring two nucleons in coincidence. This leads
to a �vefold di�erential cross section

d5�

dk̂1dk̂2dE1

= (2�)4m3
p

2mE1k
2
2 (46)

j h�~pf ~qf j U0 j �~q0 i j2

klab j 2k2 � (~klab � ~k1) � k̂2 j

The energy conserving Æ-function connects the
momentum k2 of particle 2 to E1 for given direc-
tions k̂1 and k̂2 of the two detected nucleons. This
connection de�nes the kinematical locus on which all
events have to be located. In order to avoid the sin-
gularity of the denominator in Eq.(46) one replaces
the E1-variable by an arclength S along that kine-
matical locus which leads to

d5�

dk̂1dk̂2dS
=

(2�)4 j h�~pf ~qf j U0 j �~q0 i j2 m3k21k
2
2=klabp

k21(2k2 � k̂2 � (~klab � ~k1))2 + k22(2k1 � k̂1 � (~klab � ~k2))2
(47)

In this form the break-up data of Section 0.1.8 will
be presented.

Up to now we neglected in the notation spin mag-
netic quantum numbers. For unpolarized cross sec-
tions all the expressions, speci�cally the �nal ones of
Eqs.(37) and (46) have to be averaged over the ini-
tial state and summed over the �nal state magnetic
quantum numbers (see Section 0.1.5).

0.1.3. Dynamical equations in Faddeev

form

Equations in which NN forces for each pair of nu-
cleons are summed up to in�nite order into NN t-
operators can be written down in various forms. Sim-
ilarly, 3NFs can be incorporated in di�erent manners.
Here we present a speci�c form, which turned out
to be most convenient for a numerical treatment in
momentum space9. The antisymmetrized stationary
scattering state given in Eq.(19) obeys the homoge-
neous equation

j 	
(+)

~q
ia = G0

4X
i=1

Vi j 	
(+)

~q
ia (48)

It is convenient to separate V4, the 3NF, into three
di�erent parts, which is for the currently employed
forces quite a natural decomposition, namely

V4 �
3X

i=1

V
(i)
4 (49)

The decomposition is such that V
(i)
4 is symmetric un-

der the exchange of nucleons j and k. In the case of
the 2�-exchange 3NF V

(i)
4 is that part, where the nu-

cleon i undergoes ��N (o�-the-mass-shell) scatter-
ing (see Section 0.1.6). Using Eq.(49) we can rewrite
Eq.(48) as

j 	
(+)

~q
ia = G0

3X
i=1

(Vi + V
(i)
4 ) j 	

(+)

~q
ia (50)
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This de�nes three Faddeev components,

j 	
(+)
~q

ia �
3X

i=1

 i (51)

with

 i � G0(Vi + V
(i)
4 ) j 	

(+)

~q
ia (52)

Because of the identity of the nucleons the three com-
ponents  i are identical in their functional form, only
the particles are permuted. Thus with the help of the
permutation operators given in Eq.(17) one obtains

j 	
(+)
~q

ia = (1 + P ) 1 (53)

It follows

 1 = G0 V1(1 + P ) 1 +G0 V
(1)
4 (1 + P ) 1 (54)

or

(1 �G0 V1) 1 = G0 V1 P 1 + G0 V
(1)
4 (1 + P ) 1 (55)

The boundary condition for the initial channel state
�1 �j �~q0i1 can be naturally incorporated noting
that according to Eq.(6)

(1 �G0 V1)�1 = 0 (56)

Further we introduce the NN t-operator through

(1 �G0 V1)�1G0 V1 � G0 t1; (57)

which is equivalent to the standard Lippmann
Schwinger equation

t1 = V1 + V1 G0 t1 (58)

The resulting Faddeev equation is given by

 1 = �1 +G0 t1P 1 + (1 +G0 t1)G0 V
(1)
4 (1 + P ) 1(59)

The homogeneous version thereof is the one Faddeev
equation for the 3N bound state10, which is most con-
venient if one includes a 3NF. For the scattering pro-
cess this integral equation incorporates all boundary
conditions. Using the analytically known form for
the free 3N propagator G0 one obtains11 the tran-
sition amplitude into the 3N breakup con�guration
as

f0 � h�~p~q j tP j  i (60)

+ h�~p~q j (1 + t G0)V
(1)
4 (1 + P ) j  i

� h�~p~q j T j �~q0 i (61)

Here and henceforth we shall drop the index 1 and re-
fer always to this particular choice of the two-nucleon

subsystem, (23). Using Eq.(59) in the de�nition for
T leads immediately to the central Faddeev-like in-
tegral equation12 for T j �i:

T j �i = tP j �i + (1 + t G0)V
(1)
4 (1 + P ) j �i (62)

+ tP G0T j �i + (1 + t G0)V
(1)
4 (1 + P )G0 T j �i

This form underlies our numerical treatment. Ac-
cording to Eq.(53) the full breakup amplitude is
given by

h�~p~q j U0 j �~q0i = h�~p~q j (1 + P )T j �~q0 i (63)

We refer to Ref. 12 for the algebraic steps verifying
that the form given in Eq.(63) is identical to the one
given in Eq.(41).

It is illustrative to iterate Eq.(62) and thus gener-
ate the part of the multiple scattering series for the
break-up process which ends with one and the same
last t-operator. (In our notation acting between nu-
cleons 2 and 3). The remaining two other pieces for
U0 are given by PT j �i according to Eq.(63).

Eq.(59) also provides the asymptotic behaviour in
the deuteron channel. To see this one rewrites G0t1
into G1V1 and notes that (1 + G0t1)G0 = G1. Here
G1 is the channel resolvent operator (E+ i��H1)

�1.
Using the analytically known form of G1 in the
deuteron channel11 one extracts the elastic ampli-
tude as

f = h�0 j V P j  i + h�0 j V (1)
4 (1 + P ) j  i

= h�0 j V P j fj �i +G0T j �ig + (64)

+ h�0 j V (1)
4 (1 + P )fj �i +G0T j �ig

The second equality results from Eqs.(59) and (61).
Using Eq.(56) one arrives at the more concise form

f � h�0 j U j �i (65)

with the operator for elastic scattering given as

U = PG�10 + PT + V
(1)
4 (1 + P )(1 +G0 T ): (66)

Again the connection to the standard form is laid
out in Ref. 12. Eq.(63) for the break-up amplitude
and Eqs. (65) and (66) for the elastic amplitude are
central to our numerical treatment.

0.1.4. Connection to the Triad of Lipp-

mann Schwinger Equations

It has been known for a long time13 that the Lipp-
mann Schwinger (L.S.) equations for more than 2
particles in general do not de�ne scattering states
uniquely. However, supplemented by suitably cho-
sen additional L.S. equations one can form a set
of equations, which de�nes the various scattering
states uniquely. This was formulated for the 3-body
system in Ref. 8 and later was generalized to N
particles14. Since L.S. equations allow simple access
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to the various asymptotic behaviours of 3-body scat-
tering states and in addition a very simple approach
to Faddeev equations of various types, we briey dis-
play this formalism. The scattering state j 	

(+)
~q i1

introduced in Eq.(13) obeys the L.S. equation

j 	
(+)
~q

i1 = �1 +G1(V2 + V3 + V4) j 	
(+)
~q

i1 (67)

This follows from the identity

G = G1 +G1(V2 + V3 + V4)G (68)

for the full resolvent operator

G � (E + i��H)�1: (69)

If, however, we relate G to G2 or G3 we encounter
relations

lim
�!0

i� G2;3 �1 = 0 (70)

known as Lippmann identities15. The simple argu-
ments for the validity of Eq.(70) can be found in
Ref. 7. More rigorous investigations are given in
Ref. 16.

As a consequence of Eq.(70) the stationary scat-

tering state j 	
(+)
~q i1 also obeys the two homogeneous

equations

j 	
(+)

~q
i1 = G2(V3 + V1 + V4) j 	

(+)

~q
i1 (71)

j 	
(+)
~q

i1 = G3(V1 + V2 + V4) j 	
(+)
~q

i1 (72)

Without V4 this set of equations has been shown8

to uniquely de�ne j 	
(+)
~q i1. The proof remains valid

if V4 is present. The argument for a 3N system is
simply the following. Besides j 	

(+)
~q i1 there are two

more scattering states j 	
(+)
~q i2 and j 	

(+)
~q i3, which

are also initiated in a nucleon-deuteron con�gura-
tion. As j 	

(+)
~q i1 obeys Eqs.(71) and (72) so do

j 	
(+)
~q i2 and j 	

(+)
~q i3 obey the homogeneous equa-

tion related to Eq.(67). Therefore, Eq.(67) by it-

self allows an arbitrary admixture of j 	
(+)
~q i2 and

j 	
(+)
~q i3 on top of j 	

(+)
~q i1. If we require in addi-

tion j 	
(+)
~q i1 to obey Eq.(71), then the admixture

of j 	
(+)
~q i2 is excluded and likewise Eq.(72) excludes

the admixture of j 	
(+)
~q i3. Since every solution of

the triad given in Eqs.(24) - (26) is a solution of the
3N Sch�odinger equation to the energy E, it remains
to verify that the only remaining scattering states
initiated by three free nucleons do not obey this set
of three equations. Such a state - there is an in�n-
ity of them due to the arbitrary choice how the total
energy E is distributed over the two relative motions
- is de�ned by

	
(+)

~p~q
= lim

�!0
i� G �~p~q (73)

Using again the resolvent identities of the type given
in Eq.(68) one can easily show7 that 	

(+)
~p~q obeys inho-

mogeneous equations with the driving terms �
(+)
~p~q �j

~pi(+) j ~qi. Here j ~pi(+) is a two-nucleon scattering
state. Thus the set of Eqs.(67), (71) and (72) is nec-

essary and suÆcient to de�ne j 	
(+)
~q i1 uniquely.

The transition amplitudes from the initial channel
with particle 1 as projectile to the two-body frag-
mentation with the single nucleon i can be read o�
immediately from the proper equation in that set as

h�i j Ui1 j �1i � h�i j Vj + Vk + V4 j 	
(+)
~q

i1 (74)

Now we split the 3NF V4 into three parts as given in
Eq.(49). This leads to

Ui1 j �1i = ( ~Vj + ~Vk + V
(i)
4 ) j 	

(+)
~q

i1 (75)

with the de�nition

~Vl � Vl + V
(l)
4 : (76)

Then we use the triad such that ~Vl and V
(i)
4 act on

the equations with the resolvent operator Gl and Gi,
respectively. It follows that

Ui1 j �1i = V
(1)
4 j �1i + �Æi1 V1 j �1i (77)

+
X
k 6=i

~Vk Gk Uk1 j �1i + V
(i)
4 GiUi1 j �1i;

or for any of the three possible two-body fragmenta-
tions in the initial state

Uij j �ji = V
(j)
4 j �ji + �ÆijVj j �ji (78)

+
X
k 6=i

~Vk Gk Ukj j �ji + V
(i)
4 GiUij j �ji

Here we used the symbol �Æij � 1� Æij . In the driv-
ing term of Eq.(78) one can replace Vj�j by G�1

0 �j .
Without the 3NF contribution this set is known as
the Alt-Grassberger-Sandhas (AGS) equations17.

According to Eqs.(19) and (75) the fully antisym-
metrized transition amplitudes into a two-body frag-
mentation with single nucleon i are given by

Ui j �i1 �
X
j

Uij j �ji (79)

= ( ~Vj + ~Vk + V
(i)
4 ) j 	

(+)

~q
ia (80)

It follows that the three amplitudes Ui j �i1; i =
1; 2; 3 have the same functional form, and one has

U2 j �i1 = P12P23 U1 j �1i (81)

U3 j �i1 = P13P23 U1 j �1i (82)
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Furthermore, using the three sets of coupled equa-
tions given in Eq.(78) and the de�nition in Eq.(79)
one obtains immediately

U1 j �i1 =
X
j

V
(j)
4 j �ji +

X
j

�ÆijVj j �ji (83)

+
X
k 6=i

~Vk Gk Uk j �i1 + V
(i)
4 GiUi j �i1

With the help of Eqs.(17),(76), (81), (82), and (58)
setting U1 � U , one obtains the operator relation

U = (1 + P )V
(1)
4 + P G�10 (84)

+ (1 + P )V
(1)
4 G1 U + Pt G0 U

This form of the Faddeev equation without 3NF is
the standard starting point, when t-operators of �-
nite rank are used18. For general t-operators they
are not convenient9 and it is advisable to separate
the right hand side of Eq.(84) into two parts, one
without and with P to the left:

U � V
(1)
4 + V

(1)
4 G0(1 + tG0)U + PG�10 (85)

+PT

where

T = V
(1)
4 + V

(1)
4 G0(1 + tG0)U + tG0 U (86)

The comparison of Eq.(86) and Eq.(84) reveals im-
mediately the relation

(1 + P )T + P G�10 = (1 + t G0)U (87)

Inserting U from Eq.(85) into Eq.(86) and using the
relation given in Eq.(87), one �nds easily the integral
equation for T , which reads

T = tP + tPG0T + (1 + tG0)V
(1)
4 (1 + P )

+ (1 + tG0)V
(1)
4 G0(1 + P )T (88)

Furthermore, the relation of Eq.(87) yields, when in-
serted into Eq.(85),

U = V
(1)
4 (1 + P ) + PG�10 + V

(1)
4 G0(1 + P )T

+ PT (89)

The two equations, Eq. (88) and Eq. (89) are iden-
tical to Eqs.(62) and (66) from Section 0.1.3.

0.1.5. Spin Observables

Besides the cross sections a very rich set of spin ob-
servables is the decisive source of information on the
spin dependencies of nuclear interactions including
3NF's. As will be exempli�ed in Section 0.1.8 one
can expect that the 3N continuum will play a very
important role to determine properties of 3NF's. The

natural language for spin observables is the one of
density matrices , which takes into account the sta-
tistical nature of the spin directions for beam and
target particles. We refer to1;19 for the formulation
of the spin states of spin 1/2 and spin 1 particles in
terms of cartesian polarization vectors and tensors.
Here we briey outline the formulation20 in terms of
nonhermitian tensor operators

�kq k = 0; 1; � � � ; 2s; q = �k;�k + 1; � � � ; k (90)

for particles of arbitrary spin s. They are de�ned by
their matrix elements with respect to standard spin
states j s�i; � = �s; � � � ; s as

hs�0 j �kq j s�i =
p

2s+ 1(�1)s��C(ssk; �0;��; q) (91)

In the following these matrices of dimension (2s+
1)� (2s+ 1) will be also denoted by �kq . They have
the properties

Tr(�kq�
+
k0q0

) = (2s+ 1)Ækk0 Æqq0 (92)

and

�+
kq

= (�)q�k;�q (93)

Their number is apparently (2s + 1)2, which is
suÆcient to expand the hermitian density matrix %
for particles of spin s in terms of them:

% � 1

2s+ 1

X
kq

tkq�
+
kq

(94)

As a consequence of Eq.(92) and assuming
Tr(%) = 1 it follows for the coeÆcients tkq

tkq = Tr(%�kq) � h�kqi (95)

The expectation values h�kqi and consequently the
density matrix % can be expressed in terms of the
observables19. The advantage of working with the
set of complex numbers tkq is that they transform
simply under rotations, which are often required in
the description of polarizations. For a rotation of one
coordinate system into another one through Euler
angles �; �;  one obtains

t0kq =
X
q0

D
(k)

q0q
(�; �; )tkq0 (96)

The Madison convention21 recommends coordi-
nate systems, which turn out to be in order to avoid
misunderstandings.

We now express the density matrix of the initial
spin states for two independent particles in a dif-
ferent way. Using the complete basis of spin states
describing two particles with spins s1 and s2,

j �ii � fj s1m1i; j s2m2ig (97)
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one can represent any pure spin state j ni by

j ni =
X
i

ani j �ii (98)

and the density operator as

%̂ �
X
n

j nipnhn j (99)

Here the normalized numbers pn denote the proba-
bilities to �nd the pure spin state j ni in the mixed
state of beam and target particles. Obviously for the
density matrix the result is

%ij � h�i j %̂ j �ji =
X
n

ani pna
n�
j (100)

Now let us assume a reaction leading from two incom-
ing particles with spins s1 and s2 to a certain number
of outgoing particles with spins sj . This process is

described by the transition amplitude T
fs1m1s2m2g
fsj�j ���g

.

The elastic and break-up amplitudes of Eqs.(33) and
(41) are examples thereof. Of course they depend
in addition on initial and �nal momenta, and in our
case of three nucleons also on the type of nucleons
involved. The quantities

bnfsj�j ���g
�
X

fm1m2g

T
fs1m1s2m2g

fsj�j ���g
anfs1m1s2m2g

(101)

describe the coeÆcients of the various spin states
in the �nal state analogously to ani � anfs1m1s2m2g

for the initial state ( see Eq.(98)). This is obvious1

from the asymptotic behaviour in Eqs.(48) and (67).
Here an overall normalization factor for T is irrele-
vant since it will cancel out for spin observables as
shown below. As a consequence the density matrix
for the �nal state is given analogously to Eqs.(99) as

%out
f�j ���gf�

0

j
���g

=
X
n

bnf�j ���g
pn bn�

f�0
j
���g

=
X
m1m2

X
m0

1
m0

2

T
fmig

f�jg

X
n

anfmig

pna
n�

fmi0g
T
fmi0g

�

f�j 0g

=
X
m1m2

X
m0

1
m0

2

T
fmig

f�jg
%in
fmigfm

0

i
g
T
fm0

i
g�

f�0
j
g

(102)

The density matrix for the initial state occurring
in Eq.(102) has been denoted by %in. Thus we end up
in obvious matrix notation with the well known form
for the density matrix of the �nal state expressed in
terms of %in and the transition amplitude T:

%out = T %in T+ (103)

As a �rst example we express the cross section
summed over the �nal spin states in terms of %out.
It is given as

� =
X
n

X
f�jg

j
X
fmig

T
fmig

f�jg
anfmig

j2

=
X
f�jg

%outf�jgf�jg
= Tr(%out) (104)

Note that in this case the transition amplitude has
to incorporate the proper kinematical factors, which
for spin observables will play no role. A special case
thereof is for an unpolarized initial state

%in � 1

(2s1 + 1)(2s2 + 1)
� 1 (105)

Then using Eq.(104) and Eq.(103) one �nds

�0 =
1

(2s1 + 1)(2s2 + 1)

X
fmigf�jg

jT fmig

f�jg
j2

=
1

(2s1 + 1)(2s2 + 1)
Tr(TT+) (106)

Let us now regard examples for spin observables.
Assume one particle is polarized in the initial state.
Then

%in =
1

(2s1 + 1)(2s2 + 1)

X
kq

tkq �
+
kq

(i) (107)

describes the initial density matrix, where particle i
is polarized. ( The unit matrix for the other particle
is not shown). The cross section is given according
to Eq.(104) as

� =
Tr(TT+)

(2s1 + 1)(2s2 + 1)

X
kq

tkqTr(T�
(+)
kq

(i)T+)

Tr(TT+)
(108)

The factors multiplying the di�erent initial state
polarizations tkq contain the dynamical information

and de�ne the analyzing powers T
(i)
kq :

T
(i)�

kq
�
Tr(T�

(+)
kq

(i)T+)

Tr(TT+)
(109)

Using Eq.(105) and Eq.(108) the cross section takes
the form

� = �0
X
kq

tkqT
(i)�

kq
(110)

The analyzing powers T
(i)
kq are determined by mea-

suring cross sections for di�erent 'polarizations' tkq
in such a way, that a closed set of equations results
from which the T

(i)
kq can be obtained algebraically.

Apparently the analysing powers do not depend on
the overall normalisation of T . This is true for all
spinobservables.

Later on in Section 0.1.8 we shall encounter nu-
cleon analyzing powers Ay(p), deuteron vector ana-
lyzing powers Ay(d) and deuteron tensor analyzing
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powers like T20. For the connection of those spin ob-
servables in cartesian notation to the nonhermitian
tensor notation see19;20.

Spin correlation coeÆcients occur if beam and tar-
get particles are polarized. Thus

%in =
1

(2s1 + 1)(2s2 + 1)

X
k1q1k2q2

tk1q1 tk2q2 �
+
k1q1

�+
k2q2

(111)

where the quantities with indices 1 and 2 refer to
particles 1 and 2. The resulting cross section is

� = �0

X
k1q1k2q2

tk1q1 tk2q2 T
�
k1q1k2q2

(112)

with the spin correlation coeÆcients given as

T �k1q1k2q2 =
Tr(T�+

k1q1
�+
k2q2

T+)

Tr(TT+)

(113)

We skip the case where the initial state is polarized
and the polarization of the outgoing particle(s) is
(are) measured.

Finally we mention polarization transfer coeÆ-
cients. Here one of the initial particles is polarized
and the polarization of one of the outgoing particles
is measured. The initial density matrix is given as in
Eq.(107), and we call now this polarized particle a.
The measurable polarization tensors of one outgoing
particle, e.g. particle c, are then given by

tckcqc =
Tr(%out�kcqc )

Tr(%out)
=
�0

�

X
kaqa

tkaqa
Tr(T�+

kaqa
T+�kcqc )

Tr(TT+)

(114)

If the polarization transfer coeÆcients are de�ned as

tkaqa
kcqc

�
Tr(T�+

kaqa
T+�kcqc )

Tr(TT+)
(115)

one obtains

�tckcqc = �0
X
kaqa

tkaqa t
kaqa
kcqc

(116)

The term with kaqa = 00 describes the polariza-
tion of particle c resulting from an initially unpolar-
ized state. The experimental determination requires
the measurement of cross sections and �nal polariza-
tions for di�erent sets of ftkaqag.

0.1.6. Actual Implementation

It was a long way to go to arrive at the present day
standards, where precise solutions ( in a numerical
sense) of the 3N Faddeev equations in the continuum

are feasible. First, limited computer resources en-
forced low rank approximations of the NN t-operator.
In addition only a severely truncated number of an-
gular momenta could be taken into account. Also,
the moving logarithmic singularities ( see below)
caused a substantial technical obstacle, which was
initially overcome by contour deformations and only
later by the use of suitable interpolation schemes al-
lowing for arbitrary NN forces. For information on
those developments we refer to22;17;23;24. An enor-
mous amount of work should be cited in addition.
Some of it can be traced back in1. Here we would
like to present our way to solve the central Faddeev
Eq.(62) for the ( partial) break-up operator T. Let
us �rst neglect the 3NF. Then Eq.(62) reduces to

T j�i = tP j�i + tP G0 T j�i (117)

In this equation the NN t-operator refers to an ar-
bitrary but �xed two-body subsystem. Let us choose
the particles 2 and 3 in agreement with the Jacobi
momenta given in Eqs.(44) and (45). The equation
is solved in a partial wave representation. We intro-
duce the notation

� � (ls)j(�
1

2
)I(jI)J (t

1

2
)T (118)

which describes the coupling of the angular momenta
l with the total spin s to the total angular momentum
j of the two-nucleon subsystem (23), further the cou-
pling of the angular momentum �, which is related to
~q with the spin 1/2 of particle 3 to its total angular
momentum I, �nally the coupling of the two angular
momenta j and I to the total conserved 3N angular
momentum J . The two-body isospin t is coupled
with the isospin 1/2 of the third particle to the total
isospin T. This set of discrete quantum numbers to-
gether with the magnitudes of the Jacobi momenta
p and q lead to a complete description of the space
of states for three nucleons. We denote the corre-
sponding basis states by jpq�i. They are chosen to
be orthonormal and satisfy the completeness relation

X
�

Z 1

0

dpp2
Z 1

0

dqq2jpq�ihpq�j = 1 (119)

The initial channel state

j�i � j'dij~q0i (120)

is composed of a deuteron state and the momentum
eigenstate of the projectile particle. The deuteron
state is antisymmetric under the exchange of parti-
cles 2 and 3. Since the permutation operator P, given
in Eq.(17), is symmetric under exchange of particles
2 and 3 like t, the driving term in Eq.(117) remains
antisymmetric in particles 2 and 3. The integral
operator in Eq.(117) is also symmetric and conse-
quently T will be antisymmetric in that pair. Conse-
quently only a subset of basis states jpq�i is needed,
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which is antisymmetric under exchange of particles
2 and 3. This is guaranteed by requiring

(�1)l+s+t = �1 (121)

The completeness relation given in Eq.(119) is meant
to run only over that subset of states. Let us now
project Eq.(117) onto jpq�i and insert the complete-
ness relation Eq.(119) two times into the kernel:

hpq�jT�i = hpq�jtP j�i (122)

+
PZ
�0

PZ
�00

hpq�jtjp0q0�0ihp0q0�0jP jp00q00�00i �

1

E + i�� p002

m
� 3

4m
q002

hp00q00�00jT j�i

Here we introduce obvious short hand summation
symbols and use the fact that the operator of the
kinetic energy, H0, is diagonal in this representation.
The kinetic energy related to the Jacobi momenta
has the well known form p2=m+ 3=4mq2. The total
c.m. 3N energy E related to the initial state � is
given by

E = Ed +
3

4m
q20 (123)

where Ed < 0 is the deuteron binding energy. Ob-
viously Eq.(122) represents an in�nite set of coupled
integral equations in two continuous variables. Note
that for each conserved total angular momentum J
there is an in�nite number of ways j and I can couple
to J .

The NN t-operator does not act on the quantum
numbers of the 'spectator' nucleon. Therefore cor-
responding diagonality conditions occur. Since t is
de�ned through a L.S.equation containing the free
3N propagator G0 the e�ective two-body subsystem
energy is E � 3

4mq
2 and we obtain

hpq�jtjp0q0�0i =
Æ(q � q0)

qq0
Æ��0 ÆII0 (124)

hp(ls)jtj�(E � 3

4m
q2)jp0(l0s)jtiÆss0Ætt0Æjj0

In Eq.(124) we took into account that s and t is
conserved( which we assume here and which is valid
to a high degree of accuracy) and where the NN � -
operator is acting in the two-nucleon space only. As
is well known l is not conserved in the states where
the tensor force is acting. That partial wave pro-
jected � -matrix can be gained numerically in an easy
manner by solving the L.S.equation, which is driven
by the NN force and which is correspondingly partial
wave projected.

The permutation operator P turns out to be more
complicated and has the form

1hp0q0�0jP jpq�i1 = 1hp0q0�0jpq�i2 (125)

+ 1hp0q0�0jpq�i3;

where the index 2, for instance, indicates, that p
refers to the subsystem (31) and q to the specta-
tor nucleon 2. Clearly also the discrete quantum
numbers � are related to those particles in a simi-
lar fashion. The evaluation of the matrix elements
on the right hand side of Eq.(125) is a purely geo-
metrical problem and will not be discussed here. For
various versions thereof we refer to7;25;26. We obtain
for Eq.(125)

1hp0q0�0jP jpq�i1 (126)

=

Z 1

�1

dx
Æ(p0 � �1)

pl0+2
Æ(p � �2)

pl+2
G�0�(q0qx)

with

�1 =

r
q2 +

1

4
q02 + qq0x (127)

�2 =

r
q02 +

1

4
q2 + qq0x (128)

and where G�0� is composed of Legendre functions,
powers of q and q0 and geometrical quantities like
Clebsch Gordon coeÆcients, and 6j symbols. Using
Eqs.(124) and (126) in Eq.(122) we �nally obtain

hpq�jT j�i = hpq�jtP j�i (129)

+
X
�0

X
�00

Z 1

0

dq0q02
Z 1

�1

dx

hp(ls)jtj�(E � 3

4m
q2)j�1(l0s)jti �

Æ����0

1

�l
0

1 �
l00
2

G�0�00 (q; q0x)
1

E + i�� q2+q02+qq0x
m

�

h�2q0�00jT j�i

The Kronecker symbol Æ����0 means Æ��0 with the ex-
ception of l and l0. A glance at this set reveals
two immediate obstacles. The �rst argument �2 of
the unknown amplitude under the integral requires
interpolation26;27, since all the �2-values can not be
kept in a discretized grid. This can conveniently and
eÆciently be achieved by di�erent types of spline in-
terpolations. The same interpolations can be applied
to the argument �1 in the NN � -matrix. The second,
more serious problem are the moving singularities
occurring in the free propagator. They occur at lo-
cations

x = x0 � mE � q2 � q02

qq0
(130)

If jx0j � 1 they appear as Cauchy type singulari-
ties in the x-integral. We solve this problem by the
method of \subtraction". This leads to two terms,
one of which is no longer singular and another one,
where the x-integral can be carried through analyt-
ically leading to logarithmic singularities in the mo-
menta q and q0. Their positions are given byjx0j = 1.
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Those singularities in q0 move with the value q chosen
on the left. We handle this problem by expanding
the accompanying function in q0 into splines based
on a grid in the q-variable. The deuteron pole in the
3S1 �

3 D1 � -matrix is again treated by subtraction.
The inhomogeneous term in Eq.(129) requires only
interpolations and quadratures.

We end up with an algebraic set of inhomogenous
integral equations, whose dimension is given by the
product of grid points in p and q and the number of
discrete quantum numbers �. Fortunately with re-
spect to the latter, the short range nature of the NN
force helps. For energies E up to the pion threshold
two-nucleon states up to a maximal value j = 6 are
suÆcient to obtain a converged result. For lower en-
ergies around 20 MeV for instance fewer values of j
are needed. Thus the in�nite set of equations can be
truncated to a �nite one. Nevertheless one typically
needs 200 �-states for each total J . The total J can
be as large as 25/2 for higher energies.Because of the
huge dimension of the discretized kernel it is manda-
tory to use an iterative method to solve this coupled
set of equations. By iteration one generates directly
the multiple scattering series, a power series in the
NN-t-operator, which is present in the driving term
and the kernel. The series diverges for the quan-
tum numbers of the 3N bound state J � = 1=2+ and
converges only very slowly for many of the smaller
J -values. All those Neumann series are summed up
by the Pad�e technique, which is very eÆcient and
perfectly reliable. Typically 10-20 iterations are re-
quired for the smaller J -values. Needless to say this
requires powerful computers. Once the amplitudes
hpq�jT j�i are known, the transition amplitudes of
elastic nd scattering and the nd break up process can
be evaluated by quadratures according to Eqs.(63),
(65) and (66).

If one includes 3NF's further terms occur in the
central equation given in Eq.(62) and the techni-
cal challenge increases dramatically. In a partial
wave representation the matrices hpq�jV

(1)
4 jp0q0�0i

for each total angular momentum J and total par-
ity are of very high dimension and require extreme
storage resources. Moreover each matrix element re-
quires angular integrations28. This is immediately
obvious for instance in the case of the 2�-exchange,
since the two pion momenta are linear combinations
of the Jacobi momenta for initial and �nal states.
This introduces various angles, which have to be inte-
grated to arrive at speci�c angular momentum states.
Therefore after �rst attemps 28, a more eÆcient way
to evaluate the 3NF matrices had to be introduced26,
which has been realized up to now in the case of the
2� exchange, shown in Fig. 1.

The �rst diagram in Fig. 1, V
(1)
4 in our notation,

Figure 1 The 2�-exchange 3N force. The blob indicates the �N
(o�-shell) amplitude without the nucleon propagation. The �rst dia-

gram where nucleon 1 is singled out is V
(1)
4 .

V4 =

3 1 2 1 12 23 3

can be evaluated in the following fashion. For the
pion exchange between nucleons 1 and 3 one uses
the Jacobi momenta such that the pair (13) forms
the two-body subsystem and a corresponding other
set of Jacobi momenta is used for the pion exchange
between nucleons 1 and 2. The central blob in Fig.
1 is in the most simple case just a constant. Thus
at that point a recoupling of the two types of Ja-
cobi momenta occurs. This has basically the same
form as the matrix element of the permutation op-
erator P. The blob contains in addition momentum-
and spin-dependent quantities, which can be sepa-
rated into two parts and be combined and handled
together with the left or the right pion propagators.
In that sense the action of V

(1)
4 is like a sequence

of \pair forces" between di�erent pairs, now with no
free 3N propagator in between, but essentially only a
recoupling process. This way of treating V

(1)
4 turns

out to be very eÆcient. It is also the only way which
allowed us to evaluate V

(1)
4 for all angular momenta

needed for a full convergence. For this task massive
parallel supercomputers are extremely helpful if not
mandatory.

Finally we would like to mention that the charge-
independence and charge- symmetry breaking of the
NN forces lead to admixtures of total isospin T=3/2
in addition to the dominant T=1/2 states29. For
certain scattering observables it is suÆcient to keep
only T=1/2 but one has to use certain linear combi-
nations of np and nn(pp) t-matrices as prescribed by
Clebsch-Gordon coeÆcients. For other observables,
like speci�c con�gurations in the nd break-up process
T=3/2 admixtures are mandatory1.

0.1.7. Dynamical Input for Three-Nucleon

Calculations

The goal of exact 3N scattering calculations and their
comparison with experiment is the test of assump-
tions about the underlying nuclear Hamiltonian. The
strategy is to use the best NN potentials currently
available, which describe the NN data up to the pion
threshold with highest possible accuracy, and to de-
termine their predictions for observables in a 3N con-
text. Discrepancies between those predictions and
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3N data are candidates for 3NF e�ects. Of course
this may be a time-dependent result, since possible
future NN forces with di�erent physical ingredients
(especially with dynamical nonlocalities at short dis-
tances) may change predictions of 3N observables
given by NN forces only. One further candidate for
an explanation of possible discrepancies are relativis-
tic e�ects. Estimates for relativistic e�ects for 3N
bound states30;31 exist, which however have not yet
settled and right now there is no general agreement
how to control that diÆcult issue of relativity in few-
nucleon systems32.

One should also mention the formal insight33 that
a 3N Hamiltonian composed of NN and 3NF's can
be transformed into another one without 3NF's such
that neither the 3N binding energy nor the 3N S-
matrix change. Another important consequence of
such a transformation is that the NN forces remain
phase equivalent. However, here we take the point of
view that there is some physical framework under-
lying the construction of NN and 3N forces, which
makes a de�nite choice among the unitarily equiva-
lent representations.

Theoretical attempts to construct NN forces have
a long history. Yukawa initiated the idea of meson-
exchange, which found a successful and generalized
realization in the form of the one-boson-exchange34.
In this picture the isovector pseudoscalar pion, an ef-
fective isoscalar scalar �-meson, the isoscalar vector
meson ! and the isovector vector meson � give the
dominant contributions. Of course, the one-boson
exchange picture has been successfully extended to
include multi-meson exchanges. Parallel to this de-
velopment several phenomenological forms for NN
potentials have been proposed. In recent years a
few potentials have been created, which are �tted
to the individual partial wave NN phase shift pa-
rameters or directly to the NN data base, at the
price of a large number of parameters (of the or-
der 40). These are the interactions Nijm II and I35,
the �rst one being purely local, the second one hav-
ing weak nonlocalities in the form of 52 operators,
the AV18 potential 36 again weakly nonlocal and the
CD Bonn potential37, which is closest to a meson
exchange picture leading to more pronounced nonlo-
calities. All the latter potentials take into account
charge independence and charge symmetry breaking
and were at the time of their publication of high-
est quality with a �2 per data point very close to 1.
We refer the reader to the original articles for more
information. The meson exchange picture based on
standard Lagrangians has been pushed beyond the
one-boson exchange for instance in the form of the
so called full Bonn potential38, which is energy de-
pendent due to its derivation within the framework

of time-ordered perturbation theory. This energy de-
pendence makes it less suitable for use in a system
of more than 2 nucleons, since one has to integrate
over that two-body subsystem energy, which enters
as a parameter into the potential and runs from the
actual total energy towards minus in�nity. One ex-
pects that in such a formulation many- nucleon forces
are stronger than in a formulation with energy inde-
pendent NN forces39. In addition, this force has not
yet been tuned perfectly well to the NN data set.
More modern developments in the context of chiral
perturbation theory have also not yet been pushed
to that degree of accuracy in describing NN data40

that their use in 3N scattering would be justi�ed ex-
cept for qualitative insights. However, one can ex-
pect very important theoretical guidances41 in con-
structing nuclear forces ( including 3NF's) since for
the �rst time in nuclear physics one has a smallness
parameter in the low momentum region where chiral
perturbation theory is valid.

With respect to 3NF's the present status is in an
even earlier development stage than in the case of
NN forces. The old idea of Fujita-Miyazawa42 is still
very alive. This model generates a 3NF by the pro-
cess that one nucleon emits a pion, which is absorbed
by a second one and which then turns into a � isobar.
This intermediate � deexcites again into a nucleon
emitting a second pion, which is then absorbed by the
third nucleon. Since in the intermediate state one has
two nucleons and a � one leaves the 3N Hilbert space
and consequently the process can not be represented
as a sequence of pion exchanges between di�erent
pairs of nucleons. It is a 3NF. This model has been
re�ned43 by replacing the intermediate � by the fully
o�-the-mass-shell �N scattering amplitude (with the
forward propagating nucleon piece subtracted). This
amplitude is described theoretically in a low momen-
tum expansion. Several versions thereof exist44;45 in
the literature. In addition extensions to � � � and
��� exchanges have been proposed46. Chiral pertur-
bation theory can be expected to bring some order
into the large number of possible 3NF diagrams47.
Another often used 3NF model originated from the
Urbana-Argonne group48. This model incorporates
2�-exchanges at larger distances and a phenomeno-
logical short range structure. Last not least one
should mention the Ruhr Pot model49, which so far
has not yet been applied in 3N studies.

Our numerical results to be presented in Section
0.1.8 are based on the following temporary strat-
egy. It is well established by several groups that
3He and 3H is not correctly bound by the present
day NN forces. We show in Table 1 our fully con-
verged Faddeev results for the four presently most
accurate NN potentials. In case of 3He we also in-
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Table 1 Theoretical binding energies for 3He and 3H based on mod-
ern NN forces. We see underbinding with respect to the experimental
values.

Potential B(3He) [MeV] B(3H) [MeV]

CD-Bonn -7.29 -8.01

Nijm I -7.09 -7.74

Nijm II -7.01 -7.65

AV18 -6.96 -7.67

Experiment -7.72 -8.48

clude the Coulomb force and we always take charge
independence and charge symmetry breaking into ac-
count. We see some spread of the theoretical predic-
tions with the CD Bonn results being closest to the
experimental values, but in all cases a clear under-
binding. In relation to those NN forces additional
dynamics is needed, which most likely will be the
action of 3NF's. We have chosen the 2�-exchange
Tucson-Melbourne 3NF model (TMF)43 as the \ve-
hicle" to provide some �rst insights of possible 3NF
e�ects. Naturally other force models will follow and
we can expect a very exciting search41 in establishing
the strength and properties of 3NF's. A phenomeno-
logical way is to adjust one parameter in that TMF
such that together with a chosen NN force the cor-
rect 3N binding energy results. For this parameter
we have chosen the cut-o� value � of the strong form
factor entering into that force model. Since the in-
terplay of the four NN forces with the TMF model
depends on the choice of the force (in other words
NN forces and 3NFs are not consistent from a the-
oretical point of view), one has to expect that this
crude approach leads to cut-o� parameters �, which
depend on the NN force. This is indeed the case50.
For the standard monopole form factors employed in
this model the cut-o� values � range between 4:8 m�

and 5:2 m�; the smallest one is needed for CD Bonn
because of its smallest underbinding. In such a man-
ner we arrive at four 3N Hamiltonians including the
properly adjusted TMF, which by construction give
the correct 3N binding energy.

Finally we mention the approach to extend the
Hilbert space and to allow for the occurrence of one
� (or more) in the 3-body wavefunction. In such
a manner 3NF e�ects generated by the �-degree
of freedom are incorporated as transition potentials.
For the 3N bound state the most advanced calcu-
lation have been performed in 77. For the 3N scat-
tering only one �-admixture has been allowed so far.
Though this picture51 appears quite promising, right
now the �ne tuning to NN data is still missing and
therefore predictions in the 3N sector su�er some-
what from that uncertainty.

0.1.8. Comparison of Theory and Exper-

iments in Three-Nucleon Scatter-

ing

We use today's most modern NN forces and solve the
Faddeev equations exactly ( in a numerical sense).
There are no free parameters. Let us �rst consider
the NN force only predictions. The most simple
( fully integrated) observable is the total nd cross
section52, which is shown in Fig. 2. The calculation
is based on the CD BONN potential, however the
other NN forces (AV18, Nijm I and II) will give iden-
tical results53 (within about 1% ). This statement is
also valid for all cross sections shown in this section,
similarily for many spin observables. In such a case
of stability of the NN force predictions, discrepancies
to data can possibly be considered to be signatures
of 3NF's. However there are some spin-observables,
where di�erent NN force predictions show a spread
which is comparable in size to the one introduced by
adding a 3NF. Here we show only predictions from
CD Bonn and refer for results for other potentials to
the original literature, especially to Ref. 1. In Fig.2
we see a perfect agreement with experiment at low
energies, but a tendency towards a slight underpre-
diction of the data near 100 MeV (�4%).

Next we consider the angular distributions of the
di�erential cross section in elastic Nd scattering. We
are not yet able to include the pp Coulomb force into
our rigorous calculations. Therefore all our predic-
tions are for the nd system.Nevertheless we compare
to pd data, since they are more numerous and have
smaller error bars. There are �rst attemps in the
literature to include the pp Coulomb force54 above
the deuteron break-up threshold, however those are
still based on an approximate treatment of the strong
force. Thus those results are not yet de�nite enough
to allow for a reliable estimate of Coulomb force ef-
fects. For energies below the break-up threshold vari-
ational techniques formulated in con�guration space
and based on hyperspherical harmonic expansions
have mastered the pp Coulomb problem. We refer
the reader to65. We show in Figs. 3-5 di�erential
cross sections at three more or less arbitrarily se-
lected energies. At the two lower energies the agree-
ment is perfect except at the very forward angles,
where Rutherford scattering is obviously present,
and which is not included in our theory. At 65 MeV
in the minimum there is a clear underestimation of
the data by the theoretical prediction, which as we
shall argue below, is very likely a signature of 3NF
e�ects.

The �rst spin observable we consider next is the
nucleon analyzing power Ay in elastic nd scattering.
Figs. 6 and 7 show theory with respect to the data
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Figure 6 The analyzing power Ay
57 for elastic nd scattering at

Elab = 3MeV plotted against theory
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Figure 7 The same as in Fig. 6, now at Elab = 10MeV and with

nd data from 58
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in the minimum, which might be caused by Coulomb
force and/ or 3NF e�ects ( see below).

There are many more examples for spin observ-
ables in nd elastic scattering and we refer to the re-
view article1 for further cases.

In the break-up process there is a continuum of ob-
servables and up to now only special break-up con�g-
urations have been selected according to some \prej-
udices". We show a few and refer again to1 for more
information. We always display the �ve-fold di�er-

Figure 8 The same as in Fig. 6, now at Elab = 30MeV and with

nd data from 59.
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Figure 9 The same as in Fig. 6, now at Elab = 65MeV and with

pd data from 56.
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ential cross section from Eq.(46) as a function of the
arclength S on the kinematically allowed locus. The
quasi free scattering condition ( where one of the
three nucleon laboratory momenta is zero) has often
been investigated in the past. The simple idea here
is that one of the nucleons is a spectator. In a plane
wave impulse approximation one can see directly1

that this condition leads to a zero argument of the
deuteron wavefunction and thus to a peak. In re-
ality at least below about 100 MeV this picture is
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Figure 22 The nucleon analyzing power Ay(p) in elastic nd scat-
tering at a �xed deuteron recoil angle of �lab = 42:6Æ as a function
of energy without (solid curve) and with 3NF (dashed curve).pd data

from 64
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Figure 23 A spin correlation coeÆcient in elastic nd scattering
without (solid curve) and with 3N force (dashed curve) at Elab =
190MeV .
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will play an important role in the future to reveal the
structure of 3NF's.

We now consider higher energies and our �rst suf-
�ciently well converged calculations including a 3NF.
The results will be based on the TMF model, which
has been adjusted to the 3N binding energy as de-
scribed in Section 0.1.7. We begin with the total nd
cross section extended now up to about 300 MeV in

Figure 24 Same as in Fig. 23 for a spin transfer coeÆcient.
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Fig. 18. This is the continuation of Fig. 2 towards
higher energies. We see that the discrepancy between
theory based on NN forces only and data increases.
It reaches about 11 % at 300 MeV. In53 we included
the 3NF and found that about half of that discrep-
ancy could be removed. Relativistic e�ects have to
become also visible, and very �rst estimates are men-
tioned in53 which might add another shift of about
the right remaining amount.

Let us now turn �rst to elastic scattering. In
Figs. 19 and 20 we show the angular distributions for
pd elastic scattering at 65 and 135 MeV. The under-
prediction already seen in Fig. 5 is shown again. This
also occurs at 135 MeV. If one adds the 3NF (with-
out further adjustment) the theoretical prediction is
shifted upwards, especially in the minimum, directly
into the data. This can be fortuitous, but in any
case the result is beautiful. We �nd similar results
for the pd deuteron vector analyzing power Ay(d)
shown in Fig. 21 for Elab = 135 MeV. Again the
3NF pushes theory right into the data. However this
is only the beginning of investigating 3NF's, since a
serious counterexample is shown in Fig. 22. Here the
proton analyzing powers Ay(p) in their minima are
plotted against energy. While the NN force predic-
tion alone underestimates the data above about 100
MeV the inclusion of the 3NF pushes theory upwards
by far too much. A strong discrepancy can also be
seen in the full angular distribution of Ay(p) at the
higher energies70. Obviously the spin structure of
the 3NF is not yet understood. We hope that chi-
ral perturbation theory will provide important help
towards a systematic approach41 of that new dynam-
ical structure in the 3N Hamiltonian.
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At low energies 3NF e�ects are clearly visible for
scattering observables, which scale with the triton
binding energy. A �rst prominent example is the
doublet nd scattering length. It is strongly corre-
lated to the triton binding energy and both agree
with data in a similar fashion 71. This correlation
is known as Philipps line72. There are more observ-
ables which very likely scale with the triton binding
energy, see e.g. Ref.73, where it is shown that the spin
transfer coeÆcient Ky0

y shown in Fig. 11 scales with
the triton binding energy and all the NN force pre-
dictions together with the individually tuned 3NF's
coincide with each other and the data. More re-
cent predictions74 are the longitudinal and transver-
sal asymmetries of the ~n~d total cross section. Their
measurements would be important to test theory.

The e�ect of the TMF on Ay at low energies is
tiny and does not solve the Ay-puzzle. Presumably
we see 3NF e�ects of still unknown nature.

Finally we would like to show two examples of
3NF e�ects in spin observables for elastic nd scat-
tering. In Fig. 23 the correlation coeÆcient Cx;xy

and in Fig. 24 the spin transfer coeÆcient Kx0y0

z are
displayed. In both cases the same 3NF model as be-
fore was used. The �gures show that the e�ects are
strong and precise data are necessary to obtain in-
formation about the spin structure of the present as
well as newly developed 3NF's.

0.1.9. Outlook

Searching for a fundamental nuclear Hamiltonian has
been a longstanding issue since the early days of nu-
clear physics. With the advent of supercomputers
it is now possible to exactly solve the most simple
ansatz for such a Hamiltonian based on realistic NN
forces in light, bound nucleon systems and in three
nucleon scattering. In both cases it was found that
NN forces alone are not suÆcient to provide the cor-
rect binding energies and level spacings in light nu-
clei 2 nor to �nd agreement with all three-nucleon
scattering observables 1. Therefore together with
present day NN forces additional dynamical ingre-
dients are needed, the most obvious ones are 3NF's.
With respect to this new dynamical ingredient we
are at present still at an early stage of insights. The
3NF of longest range is the 2� - exchange, and was
formulated in the late 1970's43. Today modi�cations
thereof are still made and presumably necessary47.
This 2� - exchange force gives clear signals by im-
proving the theorectical description of data in several
cases. However, discrepancies still remain in other
cases, which indicate that strength as well as spin-
and isospin structure of 3NF's still need further ex-
ploration. Thereby very likely chiral perturbation
theory will be of signi�cant guidance 41. In test-

ing the nuclear Hamiltonian especially with respect
to 3NF's it is very natural to study �rst 3N observ-
ables. Especially the break-up process can be ex-
pected to be the important source of information. It
has the most detailed observables with three �nal nu-
cleon momenta.However, its systematic experimen-
tal exploration has not started yet. Clearly this has
to include the measurements of many spin observ-
ables. According to our present day insights energies
above 100 MeV nucleon laboratory energy would be
a promising place to perform the investigations.

At those higher energies relativistic e�ects will
be visible and a relativistic generalization of the
Schroedinger equation has to be developed 32. The
number of angular momenta increases rapidly in the
energy regime up to the pion threshold (and higher),
and it appears to us that proceeding without par-
tial wave decomposition seems more appealing, both
algebraically and in the numerical implementation.
First steps can be found in 75.

The reliable control of 3N scattering is of great im-
portance in the theoretical analysis of inelastic elec-
tron and photon scattering on 3He 76. The �nal state
interaction can play an important role and neglect-
ing it will obscure the view on the absorption process
of the photon in the nuclear system to such an ex-
tent that the central issues, extraction of the electro-
magnetic nucleon form factors in a nuclear medium
, probing mesonic exchange currents, testing wave-
function properties etc., can not be studied reliably.
Corresponding results apply to other processes on
3He like �-capture or photon induced K � ( K �)
production, where �nal state interactions are very
important. In the latter case the �nal state interac-
tion among a hyperon and two nucleons is the central
point of interest, since it will give information on the
YN forces.

It might turn out that four-nucleon scattering
probes nuclear dynamics even more sensitively. With
the rapid increase of computer resources �rst excit-
ing results found in 4N scattering 5 can be very likely
brought to a full convergence and one will also have
access to truly investigate the excited levels of the
4N systems, which are in reality resonances and thus
belong to the 4N continuum.

Last not least the still pending problem of cor-
rectly including the pp Coulomb forces in few-
nucleon scattering still sticks out and leaves a very
uncomfortable theoretical uncertainty in the analysis
of certain data. Right now a straight forward solu-
tion is not in sight.
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