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Astrophysics: 
Stellar Evolution 

Nuclear Physics: 
Nuclear Synthesis 



Why Reactions? 

Elastic:    
Traditionally used to extract optical potentials,  
 rms radii, density distributions 

Inlastic: 
Traditionally used to extract  
 electromagnetic transitions  
 or nuclear deformations.  

Transfer: Traditionally used to extract spin, parity, spectroscopic factors 
    example:  132Sn(d,p)133Sn 

Traditionally used to study two-nucleon correlations and pairing 
    example: 11Li(p,t)9Li 

Breakup: 



Challenge: 
In the continuum, theory can solve the few-body problem exactly. 

Reaction theories need to map onto the many-body problem! 

It is not easy to develop effective field theories in reactions: 

There is not always a clear 
separation of scales. 

Direct Reactions with Nuclei: 
• Elastic & inelastic scattering 
• Few-particle transfer (stripping, pick-up) 
• Charge exchange 
• Knockout  

World of few-body methods 



Faddeev Ansatz in Nuclear Reactions 

Nuclear reactions study e.g. 
Cluster structure in nuclei: 

Single particle motion of the “last” nucleon in a nucleus near the dripline 

Many-body 
problem Few-body 

problem 



Example: (d,p) Reactions:  
Reduce Many-Body to Few-Body Problem 

• Isolate important degrees of freedom in a reaction 
• Keep track of important channels 
• Connect back to the many-body problem 

Task: 

Hamiltonian for effective few-body poblem:   

        H = H0 + Vnp + VnA + VpA 

Effective (optical) potentials  
    p+A and n+A  

 np interaction  

Effective Three-Body Problem 



 (d,p) Reactions as three-body problem 

Elastic, breakup, rearrangement channels are included and fully coupled 
(compared to e.g. CDCC calculations) 

Issues:  
current momentum 
space implementation 
of Coulomb interaction 
(shielding) does not 
converge for Z ≥ 20 

Courtesy: F.M. Nunes 

CDCC and Faddeev do 
not always agree in 
breakup up channels 

Momentum space solution pioneered by: 

Faddeev equations: Exact solution of the three-body problem 



(d,p) Reactions: Reduce Many-Body to Few-Body Problem 

Hamiltonian for effective few-body poblem:   

        H = H0 + Vnp + VnA + VpA 

“Shadow” ? 

Nucleon-nucleon interaction well known: 
   today: chiral interactions, ‘high precision’ potentials  

Effective proton (neutron) interactions: 
•  purely phenomenological optical potentials fitted to data 
•  optical potentials with theoretical guidance  
•  microscopic optical potentials 
•  ab initio derivation of effective interaction being attempted  
  



Solving the effective few-body problem  

Faddeev equations:  

Expand three-body wave function in three Jacobi systems 

Each sub-system specifies particular boundary conditions: 
 e.g. elastic scattering, transfer reaction  

Momentum space: no difference if interactions are local or nonlocal 



Solving Faddeev equations 

Cross sections: 



Considerations for two-body subsystems 

Are described in momentum space by solutions of LS integral equations: 

ti (E) = V + V G0 (E) ti (E)  

Two-body potential V :          V(p’,p)    ≡  non-separable 

�ℎ𝑛 𝑝′  𝜆𝑚𝑛 ℎ𝑚(𝑝)
𝑛𝑚

 V(p’,p) =  ≡ separable 

EST scheme: basis expansion of potential in scattering wave functions 

= VP (PVP)-1 PV  Vseparable  

With  and 

 t-matrix  

EST: PRC 8, 46 (1973) 
         PRC 9, 1780 (1974) 

In two-body system identical observables, PRC 88,  064608 (2013) 



Why separable expansion? 

Explicit inclusion of Coulomb interaction in momentum space 
(without screening): 
 
Formulation of Faddeev equations in Coulomb basis instead of plane 
wave basis (separable interactions needed) 
A.M. Mukhamedzhanov, V.Eremenko and A.I. Sattarov, 
 Phys.Rev. C86 (2012) 034001   

Target excitations:   
Including specific excited states → separable interactions preferred  



Faddeev-AGS equations with separable interactions 

Matrix representation 

Three components for three different subsystems 

Radial part of  
 transition operators 

𝜏𝑖  generalized propagators  

Z(ij)  generalized transition amplitudes 

Bound state Faddeev equations have similar structure but are  
 a set of homogeneous integral equations 



‘transition amplitudes’ Z(ij) (qi,qj’) 

Contains three-
body dynamics  

Describes 
transition between 
channels (j) and (i) 



Suitable nucleus for development work:  
6Li as  n+p+α system 

Alpha tightly bound:   E4[α]   = -28.3 MeV 
 n & p loosely bound: E3[6Li] = -3.7 MeV 

Several Faddeev type calculations exist → ideal for benchmarking 



Two-body interactions 
Deuteron channel:   CD-Bonn Potential (χ2/N ≈ 1) 

n/p – α channel  (S1/2, P1/2, P3/2 ):  Bang Potential 



Projecting out Pauli-forbidden state 

Can be generalized to arbitrary number of Pauli-forbidden states 

Particularly well suited for momentum space Faddeev equations 

(unphysical) 



Projecting out Pauli-forbidden state 



Convergence of the 6Li binding energy 
we developed 2 codes for our benchmark  (Phys.Rev. C96 (2017) no.6, 064003)  



Elastic scattering: d+α  
Benchmark our code with Deltuva’s code: 

Coulomb force not included 



 n+p+α system at low energy 

Reminder: ≡  n+n+α system  ≡  2 neutron halo system  

many studies on 
universal behavior 



 n+p+α system at low energy 

Reminder: ≡  n+n+α system  ≡  2 neutron halo system  

many studies on 
universal behavior 

6Li ≡ n+p+α system 

`deuteron’ halo ? 

universal behavior at low energies? 



 n+n+p system: 

n+d scattering 

well known 
phenomenon 
in low energy 
n+d system: 
 
Phillips line 
 

Many studies using conventional forces or EFT methods see this 

What about the n+p+α system 



 n+p+α system at low energy 6Li 
Binding energy vs scattering length in 6Li channel 

one parameter curve 
independent of 
•  np interaction 
•  nα interaction 

http://arxiv.org/abs/arXiv:1809.06351 



Summary 
Benchmark of Faddeev equations for bound states and elastic scattering 
 for n+p+α system directly 
 with separable expansion of interactions successfully completed. 
 

Projecting out Pauli-forbidden states: 
 Procedure easily implemented in momentum space Faddeev equations 
 For non-separable and separable forces alike 
 Straightforward generalization for systems with several Pauli-forbidden states 

(heavy nuclei) 

Benchmark of Faddeev equations for breakup scattering in progress 

Next:  Faddeev-AGS equations in Coulomb basis 

Universal behavior of the low energy n+p+α system 



Outlook and Challenges 

Can we test this picture? 

Scattering  d+α can be calculated as many body problem by NCSM+RGM  

Our approach can solve the effective   
three-body problem for (d,p) reactions for nuclei 
across the nuclear chart  

Is this too simple? 

Nucleus can be 
 deformed 

Heavier nuclei: 

Better? 
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