Phys 2053: Homework XII

due April 20, 2016

1. (1 pts) Estimate the sizes of the nuclei ${ }_{2}^{4} \mathrm{He},{ }_{8}^{16} \mathrm{O},{ }_{26}^{56} \mathrm{Fe}$, and ${ }_{82}^{208} \mathrm{~Pb}$.
2. (4 pts)
(a) Using the mass of the neutron given in Appendix A and the atomic masses from Appendix B, calculate the total binding energy and the binding energy per nucleon of the following nuclei: ${ }_{2}^{4} \mathrm{He},{ }_{8}^{16} \mathrm{O},{ }_{26}^{56} \mathrm{Fe}$, and ${ }_{82}^{208} \mathrm{~Pb}$.
(b) Use the semi-empirical mass formula (Morrison 14.6) to calculate the total binding energy and the binding energy per nucleon of the above nuclei.
3. (2 pts) Using the semi-empirical mass formula without the pairing term, derive an explicit expression for the binding energy per nucleon of a nucleus with atomic mass number A and atomic number $Z=N=A / 2$. Show that the expression for the binding energy per nucleon you obtain has a maximum for $Z=A / 2=26$.
4. (2 pts) Tritium $\left({ }_{1}^{3} \mathrm{H}\right)$ has a half-life of 12.3 years. What fraction of the tritium atoms would remain after 40 years?
5. (4 pts) The carbon isotope $\left({ }_{6}^{14} \mathrm{C}\right)$ is continuously produced in the atmosphere by the reaction

$$
\begin{equation*}
n+{ }_{7}^{14} \mathrm{~N} \rightarrow p+{ }_{6}^{14} \mathrm{C} \tag{1}
\end{equation*}
$$

where the neutron is due to cosmic rays. ${ }_{6}^{14} \mathrm{C}$ decays back to ${ }_{7}^{14} \mathrm{~N}$ by the reaction

$$
\begin{equation*}
{ }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} \mathrm{~N}+e^{-}+\bar{\nu}_{e}, \tag{2}
\end{equation*}
$$

with a half-life of 5730 years. Since living organisms continually exchange carbon with the atmosphere, they have the same amount of the ${ }_{6}^{14} \mathrm{C}$ isotope in a given sample of carbon as does the atmosphere.

- Using the fact that a gram of carbon in the atmosphere or in a living organism on the average emits 15.3 beta rays every minute, calculate proportion of $\left({ }_{6}^{14} \mathrm{C}\right.$ in carbon.
- What rate count would you expect from one gram of carbon extracted from a bone fragment that was 20,000 years old?

