
Chapter 4

Non-linear Equations

Abstract In physics we often encounter the problem of determining the root of a function
f (x). Especially, we may need to solve non-linear equations of one variable. Such equations
are usually divided into two classes, algebraic equations involving roots of polynomials and
transcendental equations. When there is only one independent variable, the problem is one-
dimensional, namely to find the root or roots of a function. Except in linear problems, root
finding invariably proceeds by iteration, and this is equally true in one or in many dimensions.
This means that we cannot solve exactly the equations at hand. Rather, we start with some
approximate trial solution. The chosen algorithm will in turn improve the solution until some
predetermined convergence criterion is satisfied. The algoritms we discuss below attempt to
implement this strategy. We will deal mainly with one-dimensional problems.

In chapter 6 we will discuss methods to find for example zeros and roots of equations. In
particular, we will discuss the conjugate gradient method.

4.1 Particle in a Box Potential

You may have encountered examples of so-called transcendental equations when solving the
Schrödinger equation (SE) for a particle in a box potential. The one-dimensional SE for a
particle with mass m is

− h̄2

2m
d2u
dx2 +V(x)u(x) = Eu(x), (4.1)

and our potential is defined as

V(r) =

{
−V0 0≤ x< a

0 x> a
(4.2)

Bound states correspond to negative energy E and scattering states are given by positive
energies. The SE takes the form (without specifying the sign of E)

d2u(x)
dx2 +

2m

h̄2 (V0+E)u(x) = 0 x< a, (4.3)

and
d2u(x)

dx2 +
2m

h̄2 Eu(x) = 0 x> a. (4.4)

If we specialize to bound states E < 0 and implement the boundary conditions on the wave
function we obtain

u(r) = Asin(
√

2m(V0−|E|)r/h̄) r < a, (4.5)

95

96 4 Non-linear Equations

and
u(r) = Bexp(−

√
2m|E|r/h̄) r > a, (4.6)

where A and B are constants. Using the continuity requirement on the wave function at r = a
one obtains the transcendental equation

√
2m(V0−|E|)cot(

√
2ma2(V0−|E|)/h̄) =−

√
2m|E|. (4.7)

This equation is an example of the kind of equations which could be solved by some of the
methods discussed below. The algorithms we discuss are the bisection method, the secant
and Newton-Raphson’s method.

In order to find the solution for Eq. (4.7), a simple procedure is to define a function

f (E) =
√

2m(V0−|E|)cot(
√

2ma2(V0−|E|)/h̄)+
√

2m|E|. (4.8)

and with chosen or given values for a and V0 make a plot of this function and find the ap-
proximate region along the E−axiswhere f (E) = 0. We show this in Fig. 4.1 for V0 = 20MeV,
a= 2 fm and m= 938MeV. Fig. 4.1 tells us that the solution is close to |E| ≈ 2.2 (the binding

-100

-50

0

50

100

0 1 2 3 4 5

f (E) [MeV]

|E| [MeV]

f(x)

Fig. 4.1 Plot of f (E) in Eq. (4.8) as function of energy |E| in MeV. Te function f (E) is in units of megaelectron-
volts MeV. Note well that the energy E is for bound states.

energy of the deuteron). The methods we discuss below are then meant to give us a numer-
ical solution for E where f (E) = 0 is satisfied and with E determined by a given numerical
precision.

4.2 Iterative Methods

To solve an equation of the type f (x) = 0 means mathematically to find all numbers s1 so that
f (s) = 0. In all actual calculations we are always limited by a given precision when doing

1 In the following discussion, the variable s is reserved for the value of x where we have a solution.

4.2 Iterative Methods 97

numerics. Through an iterative search of the solution, the hope is that we can approach,
within a given tolerance ε, a value x0 which is a solution to f (s) = 0 if

|x0− s|< ε, (4.9)

and f (s) = 0. We could use other criteria as well like

∣∣∣∣
x0− s

s

∣∣∣∣< ε, (4.10)

and | f (x0)| < ε or a combination of these. However, it is not given that the iterative process
will converge and we would like to have some conditions on f which ensures a solution. This
condition is provided by the so-called Lipschitz criterion. If the function f , defined on the
interval [a,b] satisfies for all x1 and x2 in the chosen interval the following condition

| f (x1)− f (x2)| ≤ k|x1− x2| , (4.11)

with k a constant, then f is continuous in the interval [a,b]. If f is continuous in the interval
[a,b], then the secant condition gives

f (x1)− f (x2) = f ′(ξ)(x1− x2), (4.12)

with x1,x2 within [a,b] and ξ within [x1,x2]. We have then

| f (x1)− f (x2)| ≤ | f ′(ξ)| |x1− x2| . (4.13)

The derivative can be used as the constant k. We can now formulate the sufficient conditions
for the convergence of the iterative search for solutions to f (s) = 0.

1. We assume that f is defined in the interval [a,b].
2. f satisfies the Lipschitz condition with k< 1.

With these conditions, the equation f (x) = 0 has only one solution in the interval [a,b] and it
converges after n iterations towards the solution s irrespective of choice for x0 in the interval
[a,b]. If we let xn be the value of x after n iterations, we have the condition

|s− xn| ≤
k

1− k
|x1− x2| . (4.14)

The proof can be found in the text of Bulirsch and Stoer. Since it is difficult numerically to
find exactly the point where f (s) = 0, in the actual numerical solution one implements three
tests of the type

1.
|xn− s|< ε, (4.15)

and
2.

| f (s)| < δ , (4.16)

3. and a maximum number of iterations Nmaxiter in actual calculations.

98 4 Non-linear Equations

4.3 Bisection

This is an extremely simple method to code. The philosophy can best be explained by choosing
a region in e.g., Fig. 4.1 which is close to where f (E) = 0. In our case |E| ≈ 2.2. Choose a region
[a,b] so that a= 1.5 and b= 3. This should encompass the point where f = 0. Define then the
point

c=
a+b

2
, (4.17)

and calculate f (c). If f (a) f (c) < 0, the solution lies in the region [a,c] = [a,(a+b)/2]. Change
then b← c and calculate a new value for c. If f (a) f (c) > 0, the new interval is in [c,b] =
[(a+ b)/2,b]. Now you need to change a← c and evaluate then a new value for c. We can
continue to halve the interval till we have reached a value for c which fulfills f (c) = 0 to a
given numerical precision. The algorithm can be simply expressed in the following program

......

fa = f(a);

fb = f(b);

// check if your interval is correct, if not return to main

if (fa*fb > 0) {

cout << ``\n Error, root not in interval'' << endl;

return;

}

for (j=1; j <= iter_max; j++) {

c=(a+b)/2;

fc=f(c)

// if this test is satisfied, we have the root c

if ((abs(a-b) < epsilon) || fc < delta); return to main

if (fa*fc < 0){

b=c ; fb=fc;

}

else{

a=c ; fa=fc;

}

}

......

Note that one needs to define the values of δ , ε and iter_max when calling this function.
The bisection method is an almost foolproof method, although it may converge slowly to-

wards the solution due to the fact that it halves the intervals. After n divisions by 2 we have a
possible solution in the interval with length

1
2n |b−a| , (4.18)

and if we set x0 = (a+ b)/2 and let xn be the midpoints in the intervals we obtain after n
iterations that Eq. (4.14) results in

|s− xn| ≤
1

2n+1 |b−a| , (4.19)

since the nth interval has length |b−a|/2n. Note that this convergence criterion is independent
of the actual function f (x) as long as this function fulfils the conditions discussed in the
conditions discussed in the previous subsection.

As an example, suppose we wish to find how many iteration steps are needed in order to
obtain a relative precision of 10−12 for xn in the interval [50,63], that is

4.4 Newton-Raphson’s Method 99

|s− xn|
|s| ≤ 10−12. (4.20)

It suffices in our case to study s≥ 50, which results in

|s− xn|
50

≤ 10−12, (4.21)

and with Eq. (4.19) we obtain
13

2n+150
≤ 10−12, (4.22)

meaning n≥ 37. The code for the bisection method can look like this

/*

** This function

** calculates a root between x1 and x2 of a function

** pointed to by (*func) using the method of bisection

** The root is returned with an accuracy of +- xacc.

*/

double bisection(double (*func)(double), double x1, double x2, double xacc)

{

int j;

double dx, f, fmid, xmid, rtb;

f = (*func)(x1);

fmid = (*func)(x2);

if(f*fmid >= 0.0) {

cout << "\n\nError in function bisection():" << endl;

cout << "\nroot in function must be within" << endl;

cout << "x1 ='' << x1 << ``and x2 `` << x2 << endl;

exit(1);

}

rtb = f < 0.0 ? (dx = x2 - x1, x1) : (dx = x1 - x2, x2);

for(j = 0; j < max_iterations; j++) {

fmid = (*func)(xmid = rtb + (dx *= 0.5));

if (fmid <= 0.0) rtb=xmid;

if(fabs(dx) < xacc || fmid == 0.0) return rtb;

}

cout << "Error in the bisection:" << endl; // should never reach this point

cout "Too many iterations!" << endl;

}

// End: function bisection

In this function we transfer the lower and upper limit of the interval where we seek the
solution, [x1,x2]. The variable xacc is the precision we opt for. Note that in this function the test
f (s)< δ is not implemented. Rather, the test is done through f (s) = 0, which is not necessarily
a good option.

Note also that this function transfer a pointer to the name of the given function through
double(*func)(double).

4.4 Newton-Raphson’s Method

Perhaps the most celebrated of all one-dimensional root-finding routines is Newton’s method,
also called the Newton-Raphson method. This method is distinguished from the previously
discussed methods by the fact that it requires the evaluation of both the function f and its
derivative f ′ at arbitrary points. In this sense, it is taylored to cases with e.g., transcendental

100 4 Non-linear Equations

equations of the type shown in Eq. (4.8) where it is rather easy to evaluate the derivative. If
you can only calculate the derivative numerically and/or your function is not of the smooth
type, we discourage the use of this method.

The Newton-Raphson formula consists geometrically of extending the tangent line at a
current point until it crosses zero, then setting the next guess to the abscissa of that zero-
crossing. The mathematics behind this method is rather simple. Employing a Taylor expansion
for x sufficiently close to the solution s, we have

f (s) = 0= f (x)+ (s− x) f ′(x)+
(s− x)2

2
f ′′(x)+ (4.23)

For small enough values of the function and for well-behaved functions, the terms beyond
linear are unimportant, hence we obtain

f (x)+ (s− x) f ′(x)≈ 0, (4.24)

yielding

s≈ x− f (x)
f ′(x)

. (4.25)

Having in mind an iterative procedure, it is natural to start iterating with

xn+1 = xn−
f (xn)

f ′(xn)
. (4.26)

This is Newton-Raphson’s method. It has a simple geometric interpretation, namely xn+1 is
the point where the tangent from (xn, f (xn)) crosses the x−axis. Close to the solution, Newton-
Raphson converges fast to the desired result. However, if we are far from a root, where the
higher-order terms in the series are important, the Newton-Raphson formula can give grossly
inaccurate results. For instance, the initial guess for the root might be so far from the true
root as to let the search interval include a local maximum or minimum of the function. If an
iteration places a trial guess near such a local extremum, so that the first derivative nearly
vanishes, then Newton-Raphson may fail totally. An example is shown in Fig. 4.2

It is also possible to extract the convergence behavior of this method. Assume that the
function f has a continuous second derivative around the solution s. If we define

en+1 = xn+1− s= xn−
f (xn)

f ′(xn)
− s, (4.27)

and using Eq. (4.23) we have

en+1 = en+
−en f ′(xn)+e2

n/2 f ′′(ξ)
f ′(xn)

=
e2

n/2 f ′′(ξ)
f ′(xn)

. (4.28)

This gives
|en+1|
|en|2

=
1
2
| f ′′(ξ)|
| f ′(xn)|2

=
1
2
| f ′′(s)|
| f ′(s)|2 (4.29)

when xn→ s. Our error constant k is then proportional to | f ′′(s)|/| f ′(s)|2 if the second derivative
is different from zero. Clearly, if the first derivative is small, the convergence is slower. In
general, if we are able to start the iterative procedure near a root and we can easily evaluate
the derivative, this is the method of choice. In cases where we may need to evaluate the
derivative numerically, the previously described methods are easier and most likely safer to
implement with respect to loss of numerical precision. Recall that the numerical evaluation
of derivatives involves differences between function values at different xn.

We can rewrite the last equation as

4.4 Newton-Raphson’s Method 101

-5

0

5

10

15

20

0 2 4 6 8 10

f (x)

x

f (x) = x−2cos(x)
c= x1
c= x2

Fig. 4.2 Example of a case where Newton-Raphson’s method does not converge. For the function f (x) =
x−2cos(x), we see that if we start at x= 7, the first iteration gives us that the first point where we cross the
x−axis is given by x1. However, using x1 as a starting point for the next iteration results in a point x2 which
is close to a local minimum. The tangent here is close to zero and we will never approach the point where
f (x) = 0.

|en+1|=C|en|2, (4.30)

with C a constant. If we assume that C∼ 1 and let en ∼ 10−8, this results in en+1 ∼ 10−16, and
demonstrates clearly why Newton-Raphson’s method may converge faster than the bisection
method.

Summarizing, this method has a solution when f ′′ is continuous and s is a simple zero of f .
Then there is a neighborhood of s and a constant C such that if Newton-Raphson’s method is
started in that neighborhood, the successive points become steadily closer to s and satisfy

|s− xn+1| ≤C|s− xn|2,

with n≥ 0. In some situations, the method guarantees to converge to a desired solution from
an arbitrary starting point. In order for this to take place, the function f has to belong to
C2(R), be increasing, convex and having a zero. Then this zero is unique and Newton’s method
converges to it from any starting point.

As a mere curiosity, suppose we wish to compute the square root of a number R, i.e.,
√

R.
Let R> 0 and define a function

f (x) = x2−R.

The variable x is a root if f (x) = 0. Newton-Raphson’s method yields then the following itera-
tive approach to the root

xn+1 =
1
2

(
xn+

R
xn

)
, (4.31)

a formula credited to Heron, a Greek engineer and architect who lived sometime between
100 B.C. and A.D. 100.

Suppose we wish to compute
√

13= 3.6055513and start with x0 = 5. The first iteration gives
x1 = 3.8, x2 = 3.6105263, x3 = 3.6055547and x4 = 3.6055513. With just four iterations and a not
too optimal choice of x0 we obtain the exact root to a precision of 8 digits. The above equation,

102 4 Non-linear Equations

together with range reduction , is used in the intrisic computational function which computes
square roots.

Newton’s method can be generalized to systems of several non-linear equations and vari-
ables. Consider the case with two equations

f1(x1,x2) = 0
f2(x1,x2) = 0

, (4.32)

which we Taylor expand to obtain

0= f1(x1+h1,x2+h2) = f1(x1,x2)+h1∂ f1/∂x1+h2∂ f1/∂x2+ . . .

0= f2(x1+h1,x2+h2) = f2(x1,x2)+h1∂ f2/∂x1+h2∂ f2/∂x2+ . . .
. (4.33)

Defining the Jacobian matrix Ĵ we have

Ĵ =

(
∂ f1/∂x1 ∂ f1/∂x2

∂ f2/∂x1 ∂ f2/∂x2

)
, (4.34)

we can rephrase Newton’s method as

(
xn+1

1
xn+1

2

)
=

(
xn

1
xn

2

)
+

(
hn

1
hn

2

)
, (4.35)

where we have defined (
hn

1
hn

2

)
=−Ĵ−1

(
f1(xn

1,x
n
2)

f2(xn
1,x

n
2)

)
. (4.36)

We need thus to compute the inverse of the Jacobian matrix and it is to understand that
difficulties may arise in case Ĵ is nearly singular.

It is rather straightforward to extend the above scheme to systems of more than two non-
linear equations.

The code for Newton-Raphson’s method can look like this

/*

** This function

** calculates a root between x1 and x2 of a function pointed to

** by (*funcd) using the Newton-Raphson method. The user-defined

** function funcd() returns both the function value and its first

** derivative at the point x,

** The root is returned with an accuracy of +- xacc.

*/

double newtonraphson(void (*funcd)(double, double *, double *), double x1, double x2,

double xacc)

{

int j;

double df, dx, f, rtn;

rtn = 0.5 * (x1 + x2); // initial guess

for(j = 0; j < max_iterations; j++) {

(*funcd)(rtn, &f, &df);

dx = f/df;

rtn -= dx;

if((x1 - rtn) * (rtn - x2) < 0.0) {

cout << "\n\nError in function newtonraphson:" << endl ;

cout << "Jump out of interval bracket" << endl;

}

if (fabs(dx) < xacc) return rtn;

}

4.5 The Secant Method 103

cout << "Error in function newtonraphson:" << endl;

cout << "Too many iterations!" << endl;

}

// End: function newtonraphson

We transfer again the lower and upper limit of the interval where we seek the solution, [x1,x2]

and the variable xacc. Firthermore, it transfers a pointer to the name of the given function
through double(*func)(double).

4.5 The Secant Method

For functions that are smooth near a root, the methods known respectively as false position
(or regula falsi) and secant method generally converge faster than bisection but slower than
Newton-Raphson. In both of these methods the function is assumed to be approximately linear
in the local region of interest, and the next improvement in the root is taken as the point
where the approximating line crosses the axis.

The algorithm for obtaining the solution for the secant method is rather simple. We start
with the definition of the derivative

f ′(xn) =
f (xn)− f (xn−1)

xn− xn−1

and combine it with the iterative expression of Newton-Raphson’s

xn+1 = xn−
f (xn)

f ′(xn)
,

to obtain

xn+1 = xn− f (xn)

(
xn− xn−1

f (xn)− f (xn−1)

)
, (4.37)

which we rewrite to

xn+1 =
f (xn)xn−1− f (xn−1)xn

f (xn)− f (xn−1)
. (4.38)

This is the secant formula, implying that we are drawing a straight line from the point
(xn−1, f (xn−1)) to (xn, f (xn)). Where it crosses the x− axis we have the new point xn+1. This
is illustrated in Fig. 4.3.

In the numerical implementation found in the program library, the quantities xn−1,xn,xn+1

are changed to a, b and c respectively, i.e., we determine c by the point where a straight line
from the point (a, f (a)) to (b, f (b)) crosses the x−axis, that is

c=
f (b)a− f (a)b
f (b)− f (a)

. (4.39)

We then see clearly the difference between the bisection method and the secant method. The
convergence criterion for the secant method is

|en+1| ≈ A|en|α , (4.40)

with α ≈ 1.62. The convergence is better than linear, but not as good as Newton-Raphson’s
method which converges quadratically.

While the secant method formally converges faster than bisection, one finds in practice
pathological functions for which bisection converges more rapidly. These can be choppy, dis-
continuous functions, or even smooth functions if the second derivative changes sharply near

104 4 Non-linear Equations

-100

-50

0

50

100

0 1 2 3 4 5

f (E) [MeV]

|E| [MeV]

f (E)
Eq. ()

Fig. 4.3 Plot of f (E) Eq. (4.8) as function of energy |E|. The point c is determined by where the straight line
from (a, f (a)) to (b, f (b)) crosses the x−axis.

the root. Bisection always halves the interval, while the secant method can sometimes spend
many cycles slowly pulling distant bounds closer to a root. We illustrate the weakness of this
method in Fig. 4.4 where we show the results of the first three iterations, i.e., the first point
is c = x1, the next iteration gives c = x2 while the third iterations ends with c = x3. We may
risk that one of the endpoints is kept fixed while the other one only slowly converges to the
desired solution.

-20

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1 1.2 1.4

f (x)

x

f (x) = 25x4−x2/2−2
c= x1
c= x2
c= x3

Fig. 4.4 Plot of f (x) = 25x4−x2/2−2. The various straight lines correspond to the determination of the point
c after each iteration. c is determined by where the straight line from (a, f (a)) to (b, f (b)) crosses the x−axis.
Here we have chosen three values for c, x1, x2 and x3 which refer to the first, second and third iterations
respectively.

4.5 The Secant Method 105

The search for the solution s proceeds in much of the same fashion as for the bisection
method, namely after each iteration one of the previous boundary points is discarded in favor
of the latest estimate of the root. A variation of the secant method is the so-called false
position method (regula falsi from Latin) where the interval [a,b] is chosen so that f (a) f (b)<
0, else there is no solution. This is rather similar to the bisection method. Another possibility
is to determine the starting point for the iterative search using three points (a, f (a)), (b, f (b))
and (c, f (c)). One can thenuse Lagrange’s interpolation formula for a polynomial, see the
discussion in the previous chapter.

4.5.1 Broyden’s Method

Broyden’s method is a quasi-Newton method for the numerical solution of nonlinear equations
in k variables.

Newton’s method for solving the equation f (x) = 0 uses the Jacobian matrix and deter-
minant J, at every iteration. However, computing the Jacobian is a difficult and expensive
operation. The idea behind Broyden’s method is to compute the whole Jacobian only at the
first iteration, and to do a so-called rank-one update at the other iterations.

The method is a generalization of the secant method to multiple dimensions. The secant
method replaces the first derivative f ′(xn) with the finite difference approximation

f ′(xn)≃
f (xn)− f (xn−1)

xn− xn−1
,

and proceeds using Newton’s method

xn+1 = xn−
1

f ′(xn)
f (xn).

Broyden gives a generalization of this formula to a system of equations F(x) = 0, replacing
the derivative f ′ with the Jacobian J. The Jacobian is determined using the secant equation
(using the finite difference approximation):

Jn · (xn− xn−1)≃ F(xn)−F(xn−1).

However this equation is underdetermined in more than one dimension. Broyden suggested
using the current estimate of the Jacobian Jn−1 and improving upon it by taking the solution to
the secant equation that is a minimal modification to Jn−1 (minimal in the sense of minimizing
the Frobenius norm ‖Jn− Jn−1‖F))

Jn = Jn−1+
∆Fn− Jn−1∆xn

‖∆xn‖2
∆xT

n ,

and then apply Newton’s method

xn+1 = xn− J−1
n F(xn).

In the formula above xn = (x1[n], ...,xk[n]) and Fn(x) = (f1(x1[n], ...,xk[n]), ..., fk(x1[n], ...,xk[n])) are
vector-columns with k elements for a system with k dimensions. We obtain then

∆xn =




x1[n]− x1[n−1]
...

xk[n]− xk[n−1]


 and ∆Fn =




f1(x1[n], ...,xk[n])− f1(x1[n−1], ...,xk[n−1])
...

fk(x1[n], ...,xk[n])− fk(x1[n−1], ...,xk[n−1])


 .

106 4 Non-linear Equations

Broyden also suggested using the Sherman-Morrison formula to update directly the inverse
of the Jacobian

J−1
n = J−1

n−1+
∆xn− J−1

n−1∆Fn

∆xT
n J−1

n−1∆Fn
(∆xT

n J−1
n−1)

This method is commonly known as the "good Broyden’s method". Many other quasi-Newton
schemes have been suggested in optimization, where one seeks a maximum or minimum by
finding the root of the first derivative (gradient in multi dimensions). The Jacobian of the
gradient is called Hessian and is symmetric, adding further constraints to its upgrade.

4.6 Exercises

4.1. Write a code which implements the bisection method, Newton-Raphson’s method and
the secant method.

Find the positive roots of
x2−4xsinx+(2sinx)2 = 0,

using these three methods and compare the achieved accuracy number of iterations needed
to find the solution. Give a critical discussion of the methods.

4.2. Make thereafter a class which includes the above three methods and test this class
against selected problems.

4.3. We are going to study the solution of the Schrödinger equation (SE) for a system with a
neutron and proton (the deuteron) moving in a simple box potential.

We begin our discussion of the SE with the neutron-proton (deuteron) system with a box
potential V(r). We define the radial part of the wave function R(r) and introduce the definition
u(r) = rR(R) The radial part of the SE for two particles in their center-of-mass system and with
orbital momentum l = 0 is then

− h̄2

m
d2u(r)

dr2 +V(r)u(r) = Eu(r),

with
m= 2

mpmn

mp+mn
,

where mp and mn are the masses of the proton and neutron, respectively. We use here m= 938
MeV. Our potential is defined as

V(r) =

{
−V0 0≤ r < a

0 r > a

Bound states correspond to negative energy E and scattering states are given by positive
energies. The SE takes the form (without specifying the sign of E)

d2u(r)
dr2 +

m

h̄2 (V0+E)u(r) = 0 r < a,

and
d2u(r)

dr2 +
m

h̄2 Eu(r) = 0 r > a.

We are now going to search for eventual bound states, i.e., E < 0. The deuteron has only one
bound state at energy E =−2.223MeV. Discuss the boundary conditions on the wave function
and use these to show that the solution to the SE is

4.6 Exercises 107

u(r) = Asin(kr) r < a,

and
u(r) = Bexp(−β r) r > a,

where A and B are constants. We have also defined

k=
√

m(V0−|E|)/h̄,

and
β =

√
m|E|/h̄.

Show then, using the continuity requirement on the wave function that at r = a you obtain the
transcendental equation

kcot(ka) =−β . (4.41)

Insert values of V0 = 60 MeV and a = 1.45 fm (1 fm = 10−15 m) and make a plot plotting
programs) of Eq. (4.41) as function of energy E in order to find eventual eigenvalues. See if
these values result in a bound state for E.

When you have localized on your plot the point(s) where Eq. (4.41) is satisfied, obtain a
numerical value for E using the class you programmed in the previous exercise, including the
Newton-Raphson’s method, the bisection method and the secant method. Make an analysis
of these three methods and discuss how many iterations are needed to find a stable solution.

What is smallest possible value of V0 which gives a bound state?

