
Chapter 8

Differential equations

If God has made the world a perfect mechanism, he has at least conceded so much to our imperfect
intellect that in order to predict little parts of it, we need not solve innumerable differential equations,
but can use dice with fair success.Max Born, quoted in H. R. Pagels, The Cosmic Code [40]

Abstract This chapter aims at giving an overview on some of the most used methods to
solve ordinary differential equations. Several examples of applications to physical systems
are discussed, from the classical pendulum to the physics of Neutron stars.

8.1 Introduction

We may trace the origin of differential equations back to Newton in 16871 and his treatise on
the gravitational force and what is known to us as Newton’s second law in dynamics.

Needless to say, differential equations pervade the sciences and are to us the tools by which
we attempt to express in a concise mathematical language the laws of motion of nature. We
uncover these laws via the dialectics between theories, simulations and experiments, and we
use them on a daily basis which spans from applications in engineering or financial engineer-
ing to basic research in for example biology, chemistry, mechanics, physics, ecological models
or medicine.

We have already met the differential equation for radioactive decay in nuclear physics.
Other famous differential equations are Newton’s law of cooling in thermodynamics. the
wave equation, Maxwell’s equations in electromagnetism, the heat equation in thermody-
namic, Laplace’s equation and Poisson’s equation, Einstein’s field equation in general relativ-
ity, Schrödinger equation in quantum mechanics, the Navier-Stokes equations in fluid dynam-
ics, the Lotka-Volterra equation in population dynamics, the Cauchy-Riemann equations in
complex analysis and the Black-Scholes equation in finance, just to mention a few. Excellent
texts on differential equations and computations are the texts of Eriksson, Estep, Hansbo and
Johnson [41], Butcher [42] and Hairer, Nørsett and Wanner [43].

There are five main types of differential equations,

• ordinary differential equations (ODEs), discussed in this chapter for initial value problems
only. They contain functions of one independent variable, and derivatives in that variable.
The next chapter deals with ODEs and boundary value problems.

• Partial differential equations with functions of multiple independent variables and their
partial derivatives, covered in chapter 10.

1 Newton had most of the relations for his laws ready 22 years earlier, when according to legend he was
contemplating falling apples. However, it took more than two decades before he published his theories, chiefly
because he was lacking an essential mathematical tool, differential calculus.

243

244 8 Differential equations

• So-called delay differential equations that involve functions of one dependent variable,
derivatives in that variable, and depend on previous states of the dependent variables.

• Stochastic differential equations (SDEs) are differential equations in which one or more of
the terms is a stochastic process, thus resulting in a solution which is itself a stochastic
process.

• Finally we have so-called differential algebraic equations (DAEs). These are differential
equation comprising differential and algebraic terms, given in implicit form.

In this chapter we restrict the attention to ordinary differential equations. We focus on
initial value problems and present some of the more commonly used methods for solving such
problems numerically. The physical systems which are discussed range from the classical
pendulum with non-linear terms to the physics of a neutron star or a white dwarf.

8.2 Ordinary differential equations

In this section we will mainly deal with ordinary differential equations and numerical methods
suitable for dealing with them. However, before we proceed, a brief remainder on differential
equations may be appropriate.

• The order of the ODE refers to the order of the derivative on the left-hand side in the
equation

dy
dt

= f (t,y).

This equation is of first order and f is an arbitrary function. A second-order equation goes
typically like

d2y
dt2

= f (t,
dy
dt

,y).

A well-known second-order equation is Newton’s second law

m
d2x
dt2

=−kx, (8.1)

where k is the force constant. ODE depend only on one variable, whereas
• partial differential equations like the time-dependent Schrödinger equation

ih̄
∂ψ(x, t)

∂ t
=

h̄2

2m

(
∂ 2ψ(r , t)

∂x2 +
∂ 2ψ(r , t)

∂y2 +
∂ 2ψ(r , t)

∂z2

)
+V(x)ψ(x, t),

may depend on several variables. In certain cases, like the above equation, the wave func-
tion can be factorized in functions of the separate variables, so that the Schrödinger equa-
tion can be rewritten in terms of sets of ordinary differential equations.

• We distinguish also between linear and non-linear differential equation where e.g.,

dy
dt

= g3(t)y(t),

is an example of a linear equation, while

dy
dt

= g3(t)y(t)−g(t)y2(t),

is a non-linear ODE. Another concept which dictates the numerical method chosen for
solving an ODE, is that of initial and boundary conditions. To give an example, in our study

8.3 Finite difference methods 245

of neutron stars below, we will need to solve two coupled first-order differential equations,
one for the total mass m and one for the pressure P as functions of ρ

dm
dr

= 4πr2ρ(r)/c2,

and
dP
dr

=−Gm(r)
r2 ρ(r)/c2.

where ρ is the mass-energy density. The initial conditions are dictated by the mass being
zero at the center of the star, i.e., when r = 0, yielding m(r = 0) = 0. The other condition is
that the pressure vanishes at the surface of the star. This means that at the point where
we have P = 0 in the solution of the integral equations, we have the total radius R of the
star and the total mass m(r = R). These two conditions dictate the solution of the equations.
Since the differential equations are solved by stepping the radius from r = 0 to r = R, so-
called one-step methods (see the next section) or Runge-Kutta methods may yield stable
solutions.
In the solution of the Schrödinger equation for a particle in a potential, we may need to
apply boundary conditions as well, such as demanding continuity of the wave function and
its derivative.

• In many cases it is possible to rewrite a second-order differential equation in terms of two
first-order differential equations. Consider again the case of Newton’s second law in Eq.
(8.1). If we define the position x(t) = y(1)(t) and the velocity v(t) = y(2)(t) as its derivative

dy(1)(t)
dt

=
dx(t)

dt
= y(2)(t),

we can rewrite Newton’s second law as two coupled first-order differential equations

m
dy(2)(t)

dt
=−kx(t) =−ky(1)(t), (8.2)

and
dy(1)(t)

dt
= y(2)(t). (8.3)

8.3 Finite difference methods

These methods fall under the general class of one-step methods. The algoritm is rather sim-
ple. Suppose we have an initial value for the function y(t) given by

y0 = y(t = t0).

We are interested in solving a differential equation in a region in space [a,b]. We define a step
h by splitting the interval in N sub intervals, so that we have

h=
b−a

N
.

With this step and the derivative of y we can construct the next value of the function y at

y1 = y(t1 = t0+h),

246 8 Differential equations

and so forth. If the function is rather well-behaved in the domain [a,b], we can use a fixed step
size. If not, adaptive steps may be needed. Here we concentrate on fixed-step methods only.
Let us try to generalize the above procedure by writing the step yi+1 in terms of the previous
step yi

yi+1 = y(t = ti +h) = y(ti)+h∆(ti,yi(ti))+O(hp+1),

where O(hp+1) represents the truncation error. To determine ∆ , we Taylor expand our function
y

yi+1 = y(t = ti +h) = y(ti)+h

(
y′(ti)+ · · ·+ y(p)(ti)

hp−1

p!

)
+O(hp+1), (8.4)

where we will associate the derivatives in the parenthesis with

∆(ti ,yi(ti)) = (y′(ti)+ · · ·+ y(p)(ti)
hp−1

p!
). (8.5)

We define
y′(ti) = f (ti ,yi)

and if we truncate ∆ at the first derivative, we have

yi+1 = y(ti)+h f(ti,yi)+O(h2), (8.6)

which when complemented with ti+1 = ti + h forms the algorithm for the well-known Euler
method. Note that at every step we make an approximation error of the order of O(h2), how-
ever the total error is the sum over all steps N = (b−a)/h, yielding thus a global error which
goes like NO(h2) ≈ O(h). To make Euler’s method more precise we can obviously decrease h
(increase N). However, if we are computing the derivative f numerically by e.g., the two-steps
formula

f ′2c(x) =
f (x+h)− f (x)

h
+O(h),

we can enter into roundoff error problems when we subtract two almost equal numbers f (x+
h)− f (x) ≈ 0. Euler’s method is not recommended for precision calculation, although it is
handy to use in order to get a first view how a solution may look like. As an example, consider
Newton’s equation rewritten in Eqs. (8.2) and (8.3). We define y0 = y(1)(t = 0) an v0 = y(2)(t = 0).
The first steps in Newton’s equations are then

y(1)1 = y0+hv0+O(h2)

and
y(2)1 = v0−hy0k/m+O(h2).

The Euler method is asymmetric in time, since it uses information about the derivative at

the beginning of the time interval. This means that we evaluate the position at y(1)1 using the

velocity at y(2)0 = v0. A simple variation is to determine y(1)n+1 using the velocity at y(2)n+1, that is
(in a slightly more generalized form)

y(1)n+1 = y(1)n +hy(2)n+1+O(h2)

and
y(2)n+1 = y(2)n +han+O(h2).

The acceleration an is a function of an(y
(1)
n ,y(2)n , t) and needs to be evaluated as well. This is the

Euler-Cromer method.
Let us then include the second derivative in our Taylor expansion. We have then

8.3 Finite difference methods 247

∆(ti ,yi(ti)) = f (ti)+
h
2

d f(ti ,yi)

dt
+O(h3).

The second derivative can be rewritten as

y′′ = f ′ =
d f
dt

=
∂ f
∂ t

+
∂ f
∂y

∂y
∂ t

=
∂ f
∂ t

+
∂ f
∂y

f

and we can rewrite Eq. (8.4) as

yi+1 = y(t = ti +h) = y(ti)+h f(ti)+
h2

2

(
∂ f
∂ t

+
∂ f
∂y

f

)
+O(h3),

which has a local approximation error O(h3) and a global error O(h2). These approximations
can be generalized by using the derivative f to arbitrary order so that we have

yi+1 = y(t = ti +h) = y(ti)+h(f (ti,yi)+ . . . f (p−1)(ti ,yi)
hp−1

p!
)+O(hp+1).

These methods, based on higher-order derivatives, are in general not used in numerical com-
putation, since they rely on evaluating derivatives several times. Unless one has analytical
expressions for these, the risk of roundoff errors is large.

8.3.1 Improvements of Euler’s algorithm, higher-order methods

The most obvious improvements to Euler’s and Euler-Cromer’s algorithms, avoiding in addi-
tion the need for computing a second derivative, is the so-called midpoint method. We have
then

y(1)n+1 = y(1)n +
h
2

(
y(2)n+1+ y(2)n

)
+O(h2)

and
y(2)n+1 = y(2)n +han+O(h2),

yielding

y(1)n+1 = y(1)n +hy(2)n +
h2

2
an+O(h3)

implying that the local truncation error in the position is now O(h3), whereas Euler’s or Euler-
Cromer’s methods have a local error of O(h2). Thus, the midpoint method yields a global error
with second-order accuracy for the position and first-order accuracy for the velocity. However,
although these methods yield exact results for constant accelerations, the error increases in
general with each time step.

One method that avoids this is the so-called half-step method. Here we define

y(2)n+1/2 = y(2)n−1/2+han+O(h2),

and
y(1)n+1 = y(1)n +hy(2)n+1/2+O(h2).

Note that this method needs the calculation of y(2)1/2. This is done using for example Euler’s
method

y(2)1/2 = y(2)0 +
h
2

a0+O(h2).

248 8 Differential equations

As this method is numerically stable, it is often used instead of Euler’s method. Another
method which one may encounter is the Euler-Richardson method with

y(2)n+1 = y(2)n +han+1/2+O(h2), (8.7)

and
y(1)n+1 = y(1)n +hy(2)n+1/2+O(h2). (8.8)

8.3.2 Predictor-Corrector methods

Consider again the first-order differential equation

dy
dt

= f (t,y),

which solved with Euler’s algorithm results in the following algorithm

yi+1≈ y(ti)+h f(ti ,yi)

with ti+1 = ti +h. This means geometrically that we compute the slope at yi and use it to predict
yi+1 at a later time ti+1. We introduce k1 = f (ti ,yi) and rewrite our prediction for yi+1 as

yi+1≈ y(ti)+hk1.

We can then use the prediction yi+1 to compute a new slope at ti+1 by defining k2 = f (ti+1,yi+1).
We define the new value of yi+1 by taking the average of the two slopes, resulting in

yi+1≈ y(ti)+
h
2
(k1+ k2).

The algorithm is very simple,namely

1. Compute the slope at ti , that is define the quantity k1 = f (ti ,yi).
2. Make a predicition for the solution by computing yi+1≈ y(ti)+hk1 by Euler’s method.
3. Use the predicition yi+1 to compute a new slope at ti+1 defining the quantity k2 =

f (ti+1,yi+1).
4. Correct the value of yi+1 by taking the average of the two slopes yielding yi+1≈ y(ti)+

h
2(k1+ k2).

It can be shown [24] that this procedure results in a mathematical truncation which goes
like O(h2), to be contrasted with Euler’s method which runs as O(h). One additional function
evaluation yields a better error estimate.

This simple algorithm conveys the philosophy of a large class of methods called predictor-
corrector methods, see chapter 15 of Ref. [36] for additional algorithms. A simple extension
is obviously to use Simpson’s method to approximate the integral

yi+1 = yi +

∫ ti+1

ti
f (t,y)dt,

8.4 More on finite difference methods, Runge-Kutta methods 249

when we solve the differential equation by successive integrations. The next section deals
with a particular class of efficient methods for solving ordinary differential equations, namely
various Runge-Kutta methods.

8.4 More on finite difference methods, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield in general bet-
ter algorithms for solutions of an ODE. The basic philosophy is that it provides an intermedi-
ate step in the computation of yi+1.

To see this, consider first the following definitions

dy
dt

= f (t,y),

and

y(t) =
∫

f (t,y)dt,

and

yi+1 = yi +

∫ ti+1

ti
f (t,y)dt.

To demonstrate the philosophy behind RK methods, let us consider the second-order RK
method, RK2. The first approximation consists in Taylor expanding f (t,y) around the cen-
ter of the integration interval ti to ti+1, i.e., at ti +h/2, h being the step. Using the midpoint
formula for an integral, defining y(ti +h/2) = yi+1/2 and ti +h/2= ti+1/2, we obtain

∫ ti+1

ti
f (t,y)dt≈ h f(ti+1/2,yi+1/2)+O(h3).

This means in turn that we have

yi+1 = yi +h f(ti+1/2,yi+1/2)+O(h3).

However, we do not know the value of yi+1/2. Here comes thus the next approximation, namely,
we use Euler’s method to approximate yi+1/2. We have then

y(i+1/2) = yi +
h
2

dy
dt

= y(ti)+
h
2

f (ti ,yi).

This means that we can define the following algorithm for the second-order Runge-Kutta
method, RK2.

k1 = h f(ti ,yi),

k2 = h f(ti+1/2,yi + k1/2),

with the final value
yi+1≈ yi + k2+O(h3).

The difference between the previous one-step methods is that we now need an intermedi-
ate step in our evaluation, namely ti +h/2= t(i+1/2) where we evaluate the derivative f . This
involves more operations, but the gain is a better stability in the solution. The fourth-order
Runge-Kutta, RK4, which we will employ in the solution of various differential equations be-
low, is easily derived. The steps are as follows. We start again with the equation

250 8 Differential equations

yi+1 = yi +

∫ ti+1

ti
f (t,y)dt,

but instead of approximating the integral with the midpoint rule, we use now Simpson’s rule
at ti +h/2, h being the step. Using Simpson’s formula for an integral, defining y(ti +h/2)= yi+1/2

and ti +h/2= ti+1/2, we obtain

∫ ti+1

ti
f (t,y)dt ≈ h

6

[
f (ti ,yi)+4 f (ti+1/2,yi+1/2)+ f (ti+1,yi+1)

]
+O(h5).

This means in turn that we have

yi+1 = yi +
h
6

[
f (ti ,yi)+4 f (ti+1/2,yi+1/2)+ f (ti+1,yi+1)

]
+O(h5).

However, we do not know the values of yi+1/2 and yi+1. The fourth-order Runge-Kutta method
splits the midpoint evaluations in two steps, that is we have

yi+1≈ yi +
h
6

[
f (ti ,yi)+2 f (ti+1/2,yi+1/2)+2 f (ti+1/2,yi+1/2)+ f (ti+1,yi+1)

]
,

since we want to approximate the slope at yi+1/2 in two steps. The first two function evalua-
tions are as for the second order Runge-Kutta method. The algorithm is as follows

1. We compute first
k1 = h f(ti ,yi), (8.9)

which is nothing but the slope at ti .If we stop here we have Euler’s method.
2. Then we compute the slope at the midpoint using Euler’s method to predict yi+1/2, as

in the second-order Runge-Kutta method. This leads to the computation of

k2 = h f(ti +h/2,yi + k1/2). (8.10)

3. The improved slope at the midpoint is used to further improve the slope of yi+1/2 by
computing

k3 = h f(ti +h/2,yi + k2/2). (8.11)

4. With the latter slope we can in turn predict the value of yi+1 via the computation of

k4 = h f(ti +h,yi + k3). (8.12)

5. The final algorithm becomes then

yi+1 = yi +
1
6
(k1+2k2+2k3+ k4) . (8.13)

Thus, the algorithm consists in first calculating k1 with ti , y1 and f as inputs. Thereafter, we
increase the step size by h/2 and calculate k2, then k3 and finally k4. With this caveat, we can
then obtain the new value for the variable y. It results in four function evaluations, but the
accuracy is increased by two orders compared with the second-order Runge-Kutta method.
The fourth order Runge-Kutta method has a global truncation error which goes like O(h4).
Fig. 8.1 gives a geometrical interpretation of the fourth-order Runge-Kutta method.

8.5 Physics examples 251

✲

y

t

✻

ti

yi and k1

yi+1 and k4

yi+1/2 and k2

yi+1/2 and k3

ti +h/2 ti +h
Fig. 8.1 Geometrical interpretation of the fourth-order Runge-Kutta method. The derivative is evaluated at
four points, once at the intial point, twice at the trial midpoint and once at the trial endpoint. These four
derivatives constitute one Runge-Kutta step resulting in the final value for yi+1 = yi +1/6(k1+2k2+2k3+k4).

8.5 Physics examples

8.5.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonic oscillations, namely a block sliding
on a horizontal frictionless surface. The block is tied to a wall with a spring, portrayed in e.g.,
Fig. 8.2. If the spring is not compressed or stretched too far, the force on the block at a given
position x is

F =−kx.

The negative sign means that the force acts to restore the object to an equilibrium position.
Newton’s equation of motion for this idealized system is then

m
d2x
dt2

=−kx,

or we could rephrase it as
d2x
dt2

=− k
m

x=−ω2
0x, (8.14)

with the angular frequency ω2
0 = k/m.

The above differential equation has the advantage that it can be solved analytically with
solutions on the form

x(t) = Acos(ω0t +ν),

252 8 Differential equations

x

k
m v

Fig. 8.2 Block tied to a wall with a spring tension acting on it.

where A is the amplitude and ν the phase constant. This provides in turn an important test for
the numerical solution and the development of a program for more complicated cases which
cannot be solved analytically.

As mentioned earlier, in certain cases it is possible to rewrite a second-order differential
equation as two coupled first-order differential equations. With the position x(t) and the ve-
locity v(t) = dx/dt we can reformulate Newton’s equation in the following way

dx(t)
dt

= v(t),

and
dv(t)

dt
=−ω2

0x(t).

We are now going to solve these equations using the Runge-Kutta method to fourth order
discussed previously. Before proceeding however, it is important to note that in addition to
the exact solution, we have at least two further tests which can be used to check our solution.

Since functions like cosare periodic with a period 2π , then the solution x(t) has also to be
periodic. This means that

x(t +T) = x(t),

with T the period defined as

T =
2π
ω0

=
2π√
k/m

.

Observe that T depends only on k/m and not on the amplitude of the solution or the con-
stant ν.

In addition to the periodicity test, the total energy has also to be conserved.
Suppose we choose the initial conditions

x(t = 0) = 1 m v(t = 0) = 0 m/s,

meaning that block is at rest at t = 0 but with a potential energy

E0 =
1
2

kx(t = 0)2 =
1
2

k.

8.5 Physics examples 253

The total energy at any time t has however to be conserved, meaning that our solution has to
fulfill the condition

E0 =
1
2

kx(t)2+
1
2

mv(t)2.

An algorithm which implements these equations is included below.

1. Choose the initial position and speed, with the most common choice v(t = 0) = 0 and
some fixed value for the position. Since we are going to test our results against the
periodicity requirement, it is convenient to set the final time equal t f = 2π , where we
choose k/m= 1. The initial time is set equal to ti = 0. You could alternatively read in
the ratio k/m.

2. Choose the method you wish to employ in solving the problem. In the enclosed pro-
gram we have chosen the fourth-order Runge-Kutta method. Subdivide the time in-
terval [ti , t f] into a grid with step size

h=
t f − ti

N
,

where N is the number of mesh points.
3. Calculate now the total energy given by

E0 =
1
2

kx(t = 0)2 =
1
2

k.

and use this when checking the numerically calculated energy from the Runge-Kutta
iterations.

4. The Runge-Kutta method is used to obtain xi+1 and vi+1 starting from the previous
values xi and vi ..

5. When we have computed x(v)i+1 we upgrade ti+1 = ti +h.
6. This iterative process continues till we reach the maximum time t f = 2π .
7. The results are checked against the exact solution. Furthermore, one has to check

the stability of the numerical solution against the chosen number of mesh points N.

8.5.1.1 Program to solve the differential equations for a sliding block

The program which implements the above algorithm is presented here, with a corresponding

http://folk.uio.no/mhjensen/compphys/programs/chapter08/cpp/program1.cpp

/* This program solves Newton's equation for a block

sliding on a horizontal frictionless surface. The block

is tied to a wall with a spring, and Newton's equation

takes the form

m d^2x/dt^2 =-kx

with k the spring tension and m the mass of the block.

The angular frequency is omega^2 = k/m and we set it equal

1 in this example program.

Newton's equation is rewritten as two coupled differential

equations, one for the position x and one for the velocity v

dx/dt = v and

dv/dt = -x when we set k/m=1

http://folk.uio.no/mhjensen/compphys/programs/chapter08/cpp/program1.cpp

254 8 Differential equations

We use therefore a two-dimensional array to represent x and v

as functions of t

y[0] == x

y[1] == v

dy[0]/dt = v

dy[1]/dt = -x

The derivatives are calculated by the user defined function

derivatives.

The user has to specify the initial velocity (usually v_0=0)

the number of steps and the initial position. In the programme

below we fix the time interval [a,b] to [0,2*pi].

*/

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

// output file as global variable

ofstream ofile;

// function declarations

void derivatives(double, double *, double *);

void initialise (double&, double&, int&);

void output(double, double *, double);

void runge_kutta_4(double *, double *, int, double, double,

double *, void (*)(double, double *, double *));

int main(int argc, char* argv[])

{

// declarations of variables

double *y, *dydt, *yout, t, h, tmax, E0;

double initial_x, initial_v;

int i, number_of_steps, n;

char *outfilename;

// Read in output file, abort if there are too few command-line arguments

if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);

}

else{

outfilename=argv[1];

}

ofile.open(outfilename);

// this is the number of differential equations

n = 2;

// allocate space in memory for the arrays containing the derivatives

dydt = new double[n];

y = new double[n];

yout = new double[n];

// read in the initial position, velocity and number of steps

initialise (initial_x, initial_v, number_of_steps);

// setting initial values, step size and max time tmax

h = 4.*acos(-1.)/((double) number_of_steps); // the step size

tmax = h*number_of_steps; // the final time

y[0] = initial_x; // initial position

y[1] = initial_v; // initial velocity

t=0.; // initial time

8.5 Physics examples 255

E0 = 0.5*y[0]*y[0]+0.5*y[1]*y[1]; // the initial total energy

// now we start solving the differential equations using the RK4 method

while (t <= tmax){

derivatives(t, y, dydt); // initial derivatives

runge_kutta_4(y, dydt, n, t, h, yout, derivatives);

for (i = 0; i < n; i++) {

y[i] = yout[i];

}

t += h;

output(t, y, E0); // write to file

}

delete [] y; delete [] dydt; delete [] yout;

ofile.close(); // close output file

return 0;

} // End of main function

// Read in from screen the number of steps,

// initial position and initial speed

void initialise (double& initial_x, double& initial_v, int& number_of_steps)

{

cout << "Initial position = ";

cin >> initial_x;

cout << "Initial speed = ";

cin >> initial_v;

cout << "Number of steps = ";

cin >> number_of_steps;

} // end of function initialise

// this function sets up the derivatives for this special case

void derivatives(double t, double *y, double *dydt)

{

dydt[0]=y[1]; // derivative of x

dydt[1]=-y[0]; // derivative of v

} // end of function derivatives

// function to write out the final results

void output(double t, double *y, double E0)

{

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << setprecision(8) << t;

ofile << setw(15) << setprecision(8) << y[0];

ofile << setw(15) << setprecision(8) << y[1];

ofile << setw(15) << setprecision(8) << cos(t);

ofile << setw(15) << setprecision(8) <<

0.5*y[0]*y[0]+0.5*y[1]*y[1]-E0 << endl;

} // end of function output

/* This function upgrades a function y (input as a pointer)

and returns the result yout, also as a pointer. Note that

these variables are declared as arrays. It also receives as

input the starting value for the derivatives in the pointer

dydx. It receives also the variable n which represents the

number of differential equations, the step size h and

the initial value of x. It receives also the name of the

function *derivs where the given derivative is computed

*/

void runge_kutta_4(double *y, double *dydx, int n, double x, double h,

double *yout, void (*derivs)(double, double *, double *))

{

int i;

double xh,hh,h6;

256 8 Differential equations

double *dym, *dyt, *yt;

// allocate space for local vectors

dym = new double [n];

dyt = new double [n];

yt = new double [n];

hh = h*0.5;

h6 = h/6.;

xh = x+hh;

for (i = 0; i < n; i++) {

yt[i] = y[i]+hh*dydx[i];

}

(*derivs)(xh,yt,dyt); // computation of k2, eq. 3.60

for (i = 0; i < n; i++) {

yt[i] = y[i]+hh*dyt[i];

}

(*derivs)(xh,yt,dym); // computation of k3, eq. 3.61

for (i=0; i < n; i++) {

yt[i] = y[i]+h*dym[i];

dym[i] += dyt[i];

}

(*derivs)(x+h,yt,dyt); // computation of k4, eq. 3.62

// now we upgrade y in the array yout

for (i = 0; i < n; i++){

yout[i] = y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);

}

delete []dym;

delete [] dyt;

delete [] yt;

} // end of function Runge-kutta 4

In Fig. 8.3 we exhibit the development of the difference between the calculated energy and
the exact energy at t = 0 after two periods and with N = 1000and N = 10000mesh points. This
figure demonstrates clearly the need of developing tests for checking the algorithm used. We
see that even for N = 1000 there is an increasing difference between the computed energy
and the exact energy after only two periods.

8.5.2 Damping of harmonic oscillations and external forces

Most oscillatory motion in nature does decrease until the displacement becomes zero. We call
such a motion for damped and the system is said to be dissipative rather than conservative.
Considering again the simple block sliding on a plane, we could try to implement such a
dissipative behavior through a drag force which is proportional to the first derivative of x,
i.e., the velocity. We can then expand Eq. (8.14) to

d2x
dt2

=−ω2
0x−ν

dx
dt

, (8.15)

where ν is the damping coefficient, being a measure of the magnitude of the drag term.
We could however counteract the dissipative mechanism by applying e.g., a periodic exter-

nal force
F(t) = Bcos(ωt),

and we rewrite Eq. (8.15) as
d2x
dt2

=−ω2
0x−ν

dx
dt

+F(t). (8.16)

8.5 Physics examples 257

-3e-11

-2.5e-11

-2e-11

-1.5e-11

-1e-11

-5e-12

0

0 2 4 6 8 10 12 14

∆E(t)

T

N = 1000

-3e-15

-2.5e-15

-2e-15

-1.5e-15

-1e-15

-5e-16

0

5e-16

0 2 4 6 8 10 12 14

∆E(t)

T

N = 10000

Fig. 8.3 Plot of ∆E(t) = E0−Ecomputed for N = 1000 and N = 10000 time steps up to two periods. The initial
position x0 = 1 m and initial velocity v0 = 0 m/s. The mass and spring tension are set to k= m= 1.

Although we have specialized to a block sliding on a surface, the above equations are
rather general for quite many physical systems.

If we replace x by the charge Q, ν with the resistance R, the velocity with the current I ,
the inductance L with the mass m, the spring constant with the inverse capacitanceC and the
force F with the voltage drop V, we rewrite Eq. (8.16) as

L
d2Q
dt2

+
Q
C
+R

dQ
dt

=V(t). (8.17)

The circuit is shown in Fig. 8.4.
How did we get there? We have defined an electric circuit which consists of a resistance R

with voltage drop IR, a capacitor with voltage drop Q/C and an inductor L with voltage drop
LdI/dt. The circuit is powered by an alternating voltage source and using Kirchhoff’s law,

258 8 Differential equations

V

L

C

R

Fig. 8.4 Simple RLC circuit with a voltage source V.

which is a consequence of energy conservation, we have

V(t) = IR+LdI/dt+Q/C,

and using

I =
dQ
dt

,

we arrive at Eq. (8.17).
This section was meant to give you a feeling of the wide range of applicability of the

methods we have discussed. However, before leaving this topic entirely, we’ll dwelve into the
problems of the pendulum, from almost harmonic oscillations to chaotic motion!

8.5.3 The pendulum, a nonlinear differential equation

Consider a pendulum with mass m at the end of a rigid rod of length l attached to say a fixed
frictionless pivot which allows the pendulum to move freely under gravity in the vertical plane
as illustrated in Fig. 8.5.

The angular equation of motion of the pendulum is again given by Newton’s equation, but
now as a nonlinear differential equation

ml
d2θ
dt2

+mgsin(θ) = 0,

with an angular velocity and acceleration given by

v= l
dθ
dt

,

and

a= l
d2θ
dt2

.

For small angles, we can use the approximation

sin(θ)≈ θ .

and rewrite the above differential equation as

8.5 Physics examples 259

mg

mass m

length l

pivot

θ

Fig. 8.5 A simple pendulum.

d2θ
dt2

=−g
l

θ ,

which is exactly of the same form as Eq. (8.14). We can thus check our solutions for small
values of θ against an analytical solution. The period is now

T =
2π√
l/g

.

We do however expect that the motion will gradually come to an end due a viscous drag
torque acting on the pendulum. In the presence of the drag, the above equation becomes

ml
d2θ
dt2

+ν
dθ
dt

+mgsin(θ) = 0,

where ν is now a positive constant parameterizing the viscosity of the medium in question.
In order to maintain the motion against viscosity, it is necessary to add some external driving
force. We choose here, in analogy with the discussion about the electric circuit, a periodic
driving force. The last equation becomes then

ml
d2θ
dt2

+ν
dθ
dt

+mgsin(θ) = Acos(ωt), (8.18)

with A and ω two constants representing the amplitude and the angular frequency respec-
tively. The latter is called the driving frequency.

If we now define the natural frequency

ω0 =
√

g/l ,

the so-called natural frequency and the new dimensionless quantities

t̂ = ω0t,

260 8 Differential equations

with the dimensionless driving frequency

ω̂ =
ω
ω0

,

and introducing the quantity Q, called the quality factor,

Q=
mg
ω0ν

,

and the dimensionless amplitude

Â=
A

mg

we can rewrite Eq. (8.18) as

d2θ
dt̂2 +

1
Q

dθ
dt̂

+ sin(θ) = Âcos(ω̂ t̂).

This equation can in turn be recast in terms of two coupled first-order differential equations
as follows

dθ
dt̂

= v̂,

and
dv̂
dt̂

=− v̂
Q
− sin(θ)+ Âcos(ω̂ t̂).

These are the equations to be solved. The factor Q represents the number of oscillations
of the undriven system that must occur before its energy is significantly reduced due to the
viscous drag. The amplitude Â is measured in units of the maximum possible gravitational
torque while ω̂ is the angular frequency of the external torque measured in units of the
pendulum’s natural frequency.

8.6 Physics Project: the pendulum

8.6.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum can only be obtained through nu-
merical efforts, it is always useful to check our numerical code against analytic solutions. For
small angles θ , we have sin(θ)≈ θ and our equations become

dθ
dt̂

= v̂,

and
dv̂
dt̂

=− v̂
Q
−θ + Âcos(ω̂ t̂).

These equations are linear in the angle θ and are similar to those of the sliding block or the
RLC circuit. With given initial conditions v̂0 and θ0 they can be solved analytically to yield

θ (t) =
[
θ0− Â(1−ω̂2)

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qcos(

√
1− 1

4Q2 τ)

+
[
v̂0+

θ0
2Q−

Â(1−3ω̂2)/2Q
(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qsin(

√
1− 1

4Q2 τ)+
Â(1−ω̂2)cos(ω̂τ)+ ω̂

Q sin(ω̂τ)
(1−ω̂2)2+ω̂2/Q2 ,

and

8.6 Physics Project: the pendulum 261

v̂(t) =
[
v̂0− Âω̂2/Q

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qcos(

√
1− 1

4Q2 τ)

−
[
θ0+

v̂0
2Q−

Â[(1−ω̂2)−ω̂2/Q2]
(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qsin(

√
1− 1

4Q2 τ)+
ω̂Â[−(1−ω̂2)sin(ω̂τ)+ ω̂

Q cos(ω̂τ)]
(1−ω̂2)2+ω̂2/Q2 ,

with Q > 1/2. The first two terms depend on the initial conditions and decay exponentially
in time. If we wait long enough for these terms to vanish, the solutions become independent
of the initial conditions and the motion of the pendulum settles down to the following simple
orbit in phase space

θ (t) =
Â(1− ω̂2)cos(ω̂τ)+ ω̂

Qsin(ω̂τ)
(1− ω̂2)2+ ω̂2/Q2 ,

and

v̂(t) =
ω̂Â[−(1− ω̂2)sin(ω̂τ)+ ω̂

Qcos(ω̂τ)]
(1− ω̂2)2+ ω̂2/Q2 ,

tracing the closed phase-space curve

(
θ
Ã

)2

+

(
v̂

ω̂Ã

)2

= 1

with

Ã=
Â√

(1− ω̂2)2+ ω̂2/Q2
.

This curve forms an ellipse whose principal axes are θ and v̂. This curve is closed, as we will
see from the examples below, implying that the motion is periodic in time, the solution repeats
itself exactly after each period T = 2π/ω̂. Before we discuss results for various frequencies,
quality factors and amplitudes, it is instructive to compare different numerical methods. In
Fig. 8.6 we show the angle θ as function of time τ for the case with Q = 2, ω̂ = 2/3 and
Â = 0.5. The length is set equal to 1 m and mass of the pendulum is set equal to 1 kg. The
inital velocity is v̂0 = 0 and θ0 = 0.01. Four different methods have been used to solve the
equations, Euler’s method from Eq. (8.6), Euler-Richardson’s method in Eqs. (8.7)-(8.8) and
finally the fourth-order Runge-Kutta scheme RK4. We note that after few time steps, we obtain
the classical harmonic motion. We would have obtained a similar picture if we were to switch
off the external force, Â = 0 and set the frictional damping to zero, i.e., Q = 0. Then, the
qualitative picture is that of an idealized harmonic oscillation without damping. However, we
see that Euler’s method performs poorly and after a few steps its algorithmic simplicity leads
to results which deviate considerably from the other methods. In the discussion hereafter
we will thus limit ourselves to present results obtained with the fourth-order Runge-Kutta
method.

The corresponding phase space plot is shown in Fig. 8.7, for the same parameters as
in Fig. 8.6. We observe here that the plot moves towards an ellipse with periodic motion.
This stable phase-space curve is called a periodic attractor. It is called attractor because,
irrespective of the initial conditions, the trajectory in phase-space tends asymptotically to
such a curve in the limit τ → ∞. It is called periodic, since it exhibits periodic motion in
time, as seen from Fig. 8.6. In addition, we should note that this periodic motion shows
what we call resonant behavior since the the driving frequency of the force approaches the
natural frequency of oscillation of the pendulum. This is essentially due to the fact that we
are studying a linear system, yielding the well-known periodic motion. The non-linear system
exhibits a much richer set of solutions and these can only be studied numerically.

In order to go beyond the well-known linear approximation we change the initial conditions
to say θ0 = 0.3 but keep the other parameters equal to the previous case. The curve for θ
is shown in Fig. 8.8. The corresponding phase-space curve is shown in Fig. 8.9. This curve

262 8 Differential equations

-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30 35

θ

t/2π

RK4
Euler

Halfstep
Euler-Richardson

Fig. 8.6 Plot of θ as function of time τ with Q= 2, ω̂ = 2/3 and Â= 0.5. The mass and length of the pendulum
are set equal to 1. The initial velocity is v̂0 = 0 and θ0 = 0.01. Four different methods have been used to solve
the equations, Euler’s method from Eq. (8.6), the half-step method, Euler-Richardson’s method in Eqs. (8.7)-
(8.8) and finally the fourth-order Runge-Kutta scheme RK4. Only N = 100 integration points have been used
for a time interval t ∈ [0,10π].

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

v̂

θ

Fig. 8.7 Phase-space curve of a linear damped pendulum with Q= 2, ω̂ = 2/3 and Â= 0.5. The inital velocity
is v̂0 = 0 and θ0 = 0.01.

8.6 Physics Project: the pendulum 263

-1

-0.5

0

0.5

1

0 10 20 30 40 50

θ

t̂

Fig. 8.8 Plot of θ as function of time τ with Q= 2, ω̂ = 2/3 and Â= 0.5. The mass of the pendulum is set equal
to 1 kg and its length to 1 m. The inital velocity is v̂0 = 0 and θ0 = 0.3.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

v̂

θ

Fig. 8.9 Phase-space curve with Q= 2, ω̂ = 2/3 and Â= 0.5. The mass of the pendulum is set equal to 1 kg
and its length l = 1 m.. The inital velocity is v̂0 = 0 and θ0 = 0.3.

264 8 Differential equations

demonstrates that with the above given sets of parameters, after a certain number of periods,
the phase-space curve stabilizes to the same curve as in the previous case, irrespective of
initial conditions. However, it takes more time for the pendulum to establish a periodic motion
and when a stable orbit in phase-space is reached the pendulum moves in accordance with
the driving frequency of the force. The qualitative picture is much the same as previously.
The phase-space curve displays again a final periodic attractor.

If we now change the strength of the amplitude to Â= 1.35 we see in Fig. 8.10 that θ as
function of time exhibits a rather different behavior from Fig. 8.8, even though the initial
conditions and all other parameters except Â are the same. The phase-space curve is shown

-4

-3

-2

-1

0

1

2

3

4

0 20 40 60 80 100

θ

t̂

Fig. 8.10 Plot of θ as function of time τ with Q= 2, ω̂ = 2/3 and Â = 1.35. The mass of the pendulum is set
equal to 1 kg and its length to 1 m. The inital velocity is v̂0 = 0 and θ0 = 0.3. Every time θ passes the value ±π
we reset its value to swing between θ ∈ [−π , pi]. This gives the vertical jumps in amplitude.

in Fig. 8.11.
We will explore these topics in more detail in Exercise 8.2 below, where we extend our

discussion to the phenomena of period doubling and its link to chaotic motion.

8.6.2 The pendulum code

The program used to obtain the results discussed above is presented here. The enclosed code
solves the pendulum equations for any angle θ with an external force Acos(ωt). It employes
several methods for solving the two coupled differential equations, from Euler’s method to
adaptive size methods coupled with fourth-order Runge-Kutta. It is straightforward to apply
this program to other systems which exhibit harmonic oscillations or change the functional
form of the external force.

We have also introduced a class where we define various methods for solving ordinary and
coupled first order differential equations. This is done via the . classpendulum. This methods
access variables which belong only to this particular class via the private declaration. As
such, the methods we list here can easily be reused by other types of ordinary differential

8.6 Physics Project: the pendulum 265

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-20 -15 -10 -5 0 5

v̂

θ

Fig. 8.11 Phase-space curve after 10 periods with Q= 2, ω̂ = 2/3 and Â= 1.35. The mass of the pendulum is
set equal to 1 kg and its length l = 1 m. The inital velocity is v̂0 = 0 and θ0 = 0.3.

equations. In the code below, we list only the fourth order Runge Kutta method, which was
used to generate the above figures. For the full code see programs/chapter08/program2.cpp.

http://folk.uio.no/mhjensen/compphys/programs/chapter08/cpp/program2.cpp

#include <stdio.h>

#include <iostream.h>

#include <math.h>

#include <fstream.h>

/*
Different methods for solving ODEs are presented

We are solving the following eqation:

m*l*(phi)'' + viscosity*(phi)' + m*g*sin(phi) = A*cos(omega*t)

If you want to solve similar equations with other values you have to

rewrite the methods 'derivatives' and 'initialise' and change the variables in the

private

part of the class Pendulum

At first we rewrite the equation using the following definitions:

omega_0 = sqrt(g*l)

t_roof = omega_0*t

omega_roof = omega/omega_0

Q = (m*g)/(omega_0*reib)

A_roof = A/(m*g)

and we get a dimensionless equation

(phi)'' + 1/Q*(phi)' + sin(phi) = A_roof*cos(omega_roof*t_roof)

This equation can be written as two equations of first order:

(phi)' = v

(v)' = -v/Q - sin(phi) +A_roof*cos(omega_roof*t_roof)

http://folk.uio.no/mhjensen/compphys/programs/chapter08/cpp/program2.cpp

266 8 Differential equations

All numerical methods are applied to the last two equations.

The algorithms are taken from the book "An introduction to computer simulation methods"

*/

class pendelum

{

private:

double Q, A_roof, omega_0, omega_roof,g; //

double y[2]; //for the initial-values of phi and v

int n; // how many steps

double delta_t,delta_t_roof;

// Definition of methods to solve ODEs

public:

void derivatives(double,double*,double*);

void initialise();

void euler();

void euler_cromer();

void midpoint();

void euler_richardson();

void half_step();

void rk2(); //runge-kutta-second-order

void rk4_step(double,double*,double*,double); // we need it in function rk4() and asc()

void rk4(); //runge-kutta-fourth-order

void asc(); //runge-kutta-fourth-order with adaptive stepsize control

};

// This function defines the particular coupled first order ODEs

void pendelum::derivatives(double t, double* in, double* out)

{ /* Here we are calculating the derivatives at (dimensionless) time t

'in' are the values of phi and v, which are used for the calculation

The results are given to 'out' */

out[0]=in[1]; //out[0] = (phi)' = v

if(Q)

out[1]=-in[1]/((double)Q)-sin(in[0])+A_roof*cos(omega_roof*t); //out[1] = (phi)''

else

out[1]=-sin(in[0])+A_roof*cos(omega_roof*t); //out[1] = (phi)''

}

// Here we define all input parameters.

void pendelum::initialise()

{

double m,l,omega,A,viscosity,phi_0,v_0,t_end;

cout<<"Solving the differential eqation of the pendulum!\n";

cout<<"We have a pendulum with mass m, length l. Then we have a periodic force with

amplitude A and omega\n";

cout<<"Furthermore there is a viscous drag coefficient.\n";

cout<<"The initial conditions at t=0 are phi_0 and v_0\n";

cout<<"Mass m: ";

cin>>m;

cout<<"length l: ";

cin>>l;

cout<<"omega of the force: ";

cin>>omega;

cout<<"amplitude of the force: ";

cin>>A;

cout<<"The value of the viscous drag constant (viscosity): ";

cin>>viscosity;

cout<<"phi_0: ";

cin>>y[0];

cout<<"v_0: ";

8.6 Physics Project: the pendulum 267

cin>>y[1];

cout<<"Number of time steps or integration steps:";

cin>>n;

cout<<"Final time steps as multiplum of pi:";

cin>>t_end;

t_end *= acos(-1.);

g=9.81;

// We need the following values:

omega_0=sqrt(g/((double)l)); // omega of the pendulum

if (viscosity) Q= m*g/((double)omega_0*viscosity);

else Q=0; //calculating Q

A_roof=A/((double)m*g);

omega_roof=omega/((double)omega_0);

delta_t_roof=omega_0*t_end/((double)n); //delta_t without dimension

delta_t=t_end/((double)n);

}

// fourth order Run

void pendelum::rk4_step(double t,double *yin,double *yout,double delta_t)

{

/*
The function calculates one step of fourth-order-runge-kutta-method

We will need it for the normal fourth-order-Runge-Kutta-method and

for RK-method with adaptive stepsize control

The function calculates the value of y(t + delta_t) using fourth-order-RK-method

Input: time t and the stepsize delta_t, yin (values of phi and v at time t)

Output: yout (values of phi and v at time t+delta_t)

*/

double k1[2],k2[2],k3[2],k4[2],y_k[2];

// Calculation of k1

derivatives(t,yin,yout);

k1[1]=yout[1]*delta_t;

k1[0]=yout[0]*delta_t;

y_k[0]=yin[0]+k1[0]*0.5;

y_k[1]=yin[1]+k1[1]*0.5;

/*Calculation of k2 */

derivatives(t+delta_t*0.5,y_k,yout);

k2[1]=yout[1]*delta_t;

k2[0]=yout[0]*delta_t;

y_k[0]=yin[0]+k2[0]*0.5;

y_k[1]=yin[1]+k2[1]*0.5;

/* Calculation of k3 */

derivatives(t+delta_t*0.5,y_k,yout);

k3[1]=yout[1]*delta_t;

k3[0]=yout[0]*delta_t;

y_k[0]=yin[0]+k3[0];

y_k[1]=yin[1]+k3[1];

/*Calculation of k4 */

derivatives(t+delta_t,y_k,yout);

k4[1]=yout[1]*delta_t;

k4[0]=yout[0]*delta_t;

/*Calculation of new values of phi and v */

yout[0]=yin[0]+1.0/6.0*(k1[0]+2*k2[0]+2*k3[0]+k4[0]);

yout[1]=yin[1]+1.0/6.0*(k1[1]+2*k2[1]+2*k3[1]+k4[1]);

}

void pendelum::rk4()

{

/*We are using the fourth-order-Runge-Kutta-algorithm

We have to calculate the parameters k1, k2, k3, k4 for v and phi,

268 8 Differential equations

so we use to arrays k1[2] and k2[2] for this

k1[0], k2[0] are the parameters for phi,

k1[1], k2[1] are the parameters for v

*/

int i;

double t_h;

double yout[2],y_h[2]; //k1[2],k2[2],k3[2],k4[2],y_k[2];

t_h=0;

y_h[0]=y[0]; //phi

y_h[1]=y[1]; //v

ofstream fout("rk4.out");

fout.setf(ios::scientific);

fout.precision(20);

for(i=1; i<=n; i++){

rk4_step(t_h,y_h,yout,delta_t_roof);

fout<<i*delta_t<<"\t\t"<<yout[0]<<"\t\t"<<yout[1]<<"\n";

t_h+=delta_t_roof;

y_h[0]=yout[0];

y_h[1]=yout[1];

}

fout.close;

}

int main()

{

pendelum testcase;

testcase.initialise();

testcase.rk4();

return 0;

} // end of main function

8.7 Exercises

8.1. In the pendulum example we rewrote the equations as two differential equations in terms
of so-called dimensionless variables. One should always do that. There are at least two good
reasons for doing this.

• By rewriting the equations as dimensionless ones, the program will most likely be easier to
read, with hopefully a better possibility of spotting eventual errors. In addtion, the various
constants which are pulled out of the equations in the process of rendering the equations
dimensionless, are reintroduced at the end of the calculation. If one of these constants is
not correctly defined, it is easier to spot an eventual error.

• In many physics applications, variables which enter a differential equation, may differ
by orders of magnitude. If we were to insist on not using dimensionless quantities, such
differences can cause serious problems with respect to loss of numerical precision.

An example which demonstrates these features is the set of equations for gravitational
equilibrium of a neutron star. We will not solve these equations numerically here, rather, we
will limit ourselves to merely rewriting these equations in a dimensionless form.

	Hjorth-Jensen_lectures2012 255
	Hjorth-Jensen_lectures2012 256
	Hjorth-Jensen_lectures2012 257
	Hjorth-Jensen_lectures2012 258
	Hjorth-Jensen_lectures2012 259
	Hjorth-Jensen_lectures2012 260
	Hjorth-Jensen_lectures2012 261
	Hjorth-Jensen_lectures2012 262
	Hjorth-Jensen_lectures2012 263
	Hjorth-Jensen_lectures2012 264
	Hjorth-Jensen_lectures2012 265
	Hjorth-Jensen_lectures2012 266
	Hjorth-Jensen_lectures2012 267
	Hjorth-Jensen_lectures2012 268
	Hjorth-Jensen_lectures2012 269
	Hjorth-Jensen_lectures2012 270
	Hjorth-Jensen_lectures2012 271
	Hjorth-Jensen_lectures2012 272
	Hjorth-Jensen_lectures2012 273
	Hjorth-Jensen_lectures2012 274
	Hjorth-Jensen_lectures2012 275
	Hjorth-Jensen_lectures2012 276
	Hjorth-Jensen_lectures2012 277
	Hjorth-Jensen_lectures2012 278
	Hjorth-Jensen_lectures2012 279
	Hjorth-Jensen_lectures2012 280

