
Chapter 2

Introduction to C++ and Fortran

Abstract This chapters aims at catching two birds with a stone; to introduce to you essential
features of the programming languages C++ and Fortran with a brief reminder on Python
specific topics, and to stress problems like overflow, underflow, round off errors and even-
tually loss of precision due to the finite amount of numbers a computer can represent. The
programs we discuss are tailored to these aims.

2.1 Getting Started

In programming languages1 we encounter data entities such as constants, variables, re-
sults of evaluations of functions etc. Common to these objects is that they can be rep-
resented through the type concept. There are intrinsic types and derived types. Intrinsic
types are provided by the programming language whereas derived types are provided by
the programmer. If one specifies the type to be for example INTEGER (KIND=2) for Fortran
2 or short int/int in C++, the programmer selects a particular date type with 2 bytes
(16 bits) for every item of the class INTEGER (KIND=2) or int. Intrinsic types come in two
classes, numerical (like integer, real or complex) and non-numeric (as logical and charac-
ter). The general form for declaring variables is data type name of variable and Table
2.1 lists the standard variable declarations of C++ and Fortran (note well that there be may
compiler and machine differences from the table below). An important aspect when declar-
ing variables is their region of validity. Inside a function we define a a variable through the
expression int var or INTEGER :: var . The question is whether this variable is available
in other functions as well, moreover where is var initialized and finally, if we call the function
where it is declared, is the value conserved from one call to the other?

Both C++ and Fortran operate with several types of variables and the answers to these
questions depend on how we have defined for example an integer via the statement int var.
Python on the other hand does not use variable or function types (they are not explicitely
written), allowing thereby for a better potential for reuse of the code.

1 For more detailed texts on C++ programming in engineering and science are the books by Flowers [18]
and Barton and Nackman [19]. The classic text on C++ programming is the book of Bjarne Stoustrup [20].
The Fortran 95 standard is well documented in Refs. [11–13] while the new details of Fortran 2003 can be
found in Ref. [14]. The reader should note that this is not a text on C++ or Fortran. It is therefore important
than one tries to find additional literature on these programming languages. Good Python texts on scientific
computing are [21,22].
2 Our favoured display mode for Fortran statements will be capital letters for language statements and low
key letters for user-defined statements. Note that Fortran does not distinguish between capital and low key
letters while C++ does.

9

10 2 Introduction to C++ and Fortran

Table 2.1 Examples of variable declarations for C++ and Fortran . We reserve capital letters for Fortran
declaration statements throughout this text, although Fortran is not sensitive to upper or lowercase letters.
Note that there are machines which allow for more than 64 bits for doubles. The ranges listed here may
therefore vary.

type in C++ and Fortran bits range

int/INTEGER (2) 16 −32768 to 32767
unsigned int 16 0 to 65535
signed int 16 −32768 to 32767
short int 16 −32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 −32768 to 32767
int/long int/INTEGER(4) 32 −2147483648 to 2147483647
signed long int 32 −2147483648 to 2147483647
float/REAL(4) 32 10−44 to 10+38
double/REAL(8) 64 10−322 to 10e+308

The following list may help in clarifying the above points:

type of variable validity

local variables defined within a function, only available within the
scope of the function.

formal parameter If it is defined within a function it is only available within
that specific function.

global variables Defined outside a given function, available for all func-
tions from the point where it is defined.

In Table 2.1 we show a list of some of the most used language statements in Fortran and
C++.

In addition, both C++ and Fortran allow for complex variables. In Fortran we would declare
a complex variable as COMPLEX (KIND=16):: x, y which refers to a double with word length
of 16 bytes. In C++ we would need to include a complex library through the statements

#include <complex>

complex<double> x, y;

We will discuss the above declaration complex<double> x,y; in more detail in chapter 3.

2.1.1 Scientific hello world

Our first programming encounter is the ’classical’ one, found in almost every textbook on
computer languages, the ’hello world’ code, here in a scientific disguise. We present first the
C version.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program1.cpp

/* comments in C begin like this and end with */

#include <stdlib.h> /* atof function */

#include <math.h> /* sine function */

#include <stdio.h> /* printf function */

int main (int argc, char* argv[])
{

2.1 Getting Started 11

Fortran C++

Program structure

PROGRAM something main ()
FUNCTION something(input) double (int) something(input)
SUBROUTINE something(inout)

Data type declarations

REAL (4) x, y float x, y;
REAL(8) :: x, y double x, y;
INTEGER :: x, y int x,y;
CHARACTER :: name char name;
REAL(8), DIMENSION(dim1,dim2) :: x double x[dim1][dim2];
INTEGER, DIMENSION(dim1,dim2) :: x int x[dim1][dim2];
LOGICAL :: x
TYPE name struct name {
declarations declarations;
END TYPE name }
POINTER :: a double (int) *a;
ALLOCATE new;
DEALLOCATE delete;

Logical statements and control structure

IF (a == b) THEN if (a == b)
b=0 { b=0;
ENDIF }
DO WHILE (logical statement) while (logical statement)
do something {do something
ENDDO }
IF (a>= b) THEN if (a >= b)
b=0 { b=0;
ELSE else
a=0 a=0; }
ENDIF
SELECT CASE (variable) switch(variable)
CASE (variable=value1) {
do something case 1:
CASE (. . .) variable=value1;
. . . do something;

break;
END SELECT case 2:

do something; break; . . .
}

DO i=0, end, 1 for(i=0; i<= end; i++)
do something { do something ;
ENDDO }

Table 2.2 Elements of programming syntax.

double r, s; /* declare variables */

r = atof(argv[1]); /* convert the text argv[1] to double */

s = sin(r);
printf("Hello, World! sin(%g)=%g\n", r, s);
return 0; /* success execution of the program */

}

The compiler must see a declaration of a function before you can call it (the compiler
checks the argument and return types). The declaration of library functions appears in so-
called header files that must be included in the program, for example #include <stdlib.h.

We call three functions atof, sin, printf and these are declared in three different
header files. The main program is a function called main with a return value set to an integer,

12 2 Introduction to C++ and Fortran

returning 0 if success. The operating system stores the return value, and other programs/u-
tilities can check whether the execution was successful or not. The command-line arguments
are transferred to the main function through the statement

int main (int argc, char* argv[])

The integer argc stands for the number of command-line arguments, set to one in our case,
while argv is a vector of strings containing the command-line arguments with argv[0]

containing the name of the program and argv[1], argv[2], ... are the command-line args,
i.e., the number of lines of input to the program.

This means that we would run the programs as mhjensen@compphys:./myprogram.exe 0.3.
The name of the program enters argv[0] while the text string 0.2 enters argv[1]. Here we
define a floating point variable, see also below, through the keywords float for single pre-
cision real numbers and double for double precision. The function atof transforms a text
(argv[1]) to a float. The sine function is declared in math.h, a library which is not automat-

ically included and needs to be linked when computing an executable file.
With the command printf we obtain a formatted printout. The printf syntax is used for

formatting output in many C-inspired languages (Perl, Python, awk, partly C++).
In C++ this program can be written as

// A comment line begins like this in C++ programs

using namespace std;
#include <iostream>

#include <cstdlib>

#include <cmath>

int main (int argc, char* argv[])
{
// convert the text argv[1] to double using atof:

double r = atof(argv[1]);

double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << s << endl;

// success

return 0;
}

We have replaced the call to printf with the standard C++ function cout. The header
file iostream is then needed. In addition, we don’t need to declare variables like r and s
at the beginning of the program. I personally prefer however to declare all variables at the
beginning of a function, as this gives me a feeling of greater readability. Note that we have
used the declaration using namespace std;. Namespace is a way to collect all functions
defined in C++ libraries. If we omit this declaration on top of the program we would have to
add the declaration std in front of cout or cin. Our program would then read

// Hello world code without using namespace std

#include <iostream>

#include <cstdlib>

#include <cmath>

int main (int argc, char* argv[])
{
// convert the text argv[1] to double using atof:

double r = atof(argv[1]);
double s = sin(r);
std::cout << "Hello, World! sin(" << r << ")=" << s << endl;

// success

return 0;
}

2.1 Getting Started 13

Another feature which is worth noting is that we have skipped exception handlings here.
In chapter 3 we discuss examples that test our input from the command line. But it is easy to
add such a feature, as shown in our modified hello world program

// Hello world code with exception handling

using namespace std;
#include <cstdlib>

#include <cmath>

#include <iostream>

int main (int argc, char* argv[])
{
// Read in output file, abort if there are too few command-line arguments

if(argc <= 1){
cout << "Bad Usage: " << argv[0] <<

" read also a number on the same line, e.g., prog.exe 0.2" << endl;
exit(1); // here the program stops.

}
// convert the text argv[1] to double using atof:

double r = atof(argv[1]);
double s = sin(r);

cout << "Hello, World! sin(" << r << ")=" << s << endl;
// success

return 0;
}

Here we test that we have more than one argument. If not, the program stops and writes to
screen an error message. Observe also that we have included the mathematics library via the
#include <cmath> declaration.
To run these programs, you need first to compile and link them in order to obtain an

executable file under operating systems like e.g., UNIX or Linux. Before we proceed we give
therefore examples on how to obtain an executable file under Linux/Unix.

In order to obtain an executable file for a C++ program, the following instructions under
Linux/Unix can be used

c++ -c -Wall myprogram.c

c++ -o myprogram myprogram.o

where the compiler is called through the command c++. The compiler option -Wall means
that a warning is issued in case of non-standard language. The executable file is in this case
myprogram. The option -c is for compilation only, where the program is translated into ma-
chine code, while the -o option links the produced object file myprogram.o and produces the
executable myprogram .

The corresponding Fortran code is

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program1.f90

PROGRAM shw

IMPLICIT NONE
REAL (KIND =8) :: r ! Input number

REAL (KIND=8) :: s ! Result

! Get a number from user

WRITE(*,*) 'Input a number: '

READ(*,*) r
! Calculate the sine of the number

s = SIN(r)
! Write result to screen

14 2 Introduction to C++ and Fortran

WRITE(*,*) 'Hello World! SINE of ', r, ' =', s
END PROGRAM shw

The first statement must be a program statement; the last statement must have a corre-
sponding end program statement. Integer numerical variables and floating point numerical
variables are distinguished. The names of all variables must be between 1 and 31 alphanu-
meric characters of which the first must be a letter and the last must not be an underscore.
Comments begin with a ! and can be included anywhere in the program. Statements are writ-
ten on lines which may contain up to 132 characters. The asterisks (*,*) following WRITE
represent the default format for output, i.e., the output is e.g., written on the screen. Sim-
ilarly, the READ(*,*) statement means that the program is expecting a line input. Note also
the IMPLICIT NONE statement which we strongly recommend the use of. In many Fortran 77
programs one can find statements like IMPLICIT REAL*8(a-h,o-z), meaning that all variables
beginning with any of the above letters are by default floating numbers. However, such a
usage makes it hard to spot eventual errors due to misspelling of variable names. With IM-
PLICIT NONE you have to declare all variables and therefore detect possible errors already
while compiling. I recommend strongly that you declare all variables when using Fortran.

We call the Fortran compiler (using free format) through

f90 -c -free myprogram.f90

f90 -o myprogram.x myprogram.o

Under Linux/Unix it is often convenient to create a so-called makefile, which is a script
which includes possible compiling commands, in order to avoid retyping the above lines every
once and then we have made modifcations to our program. A typical makefile for the above
cc compiling options is listed below

General makefile for c - choose PROG = name of given program

Here we define compiler option, libraries and the target

CC= c++ -Wall

PROG= myprogram

Here we make the executable file

${PROG} : ${PROG}.o

${CC} ${PROG}.o -o ${PROG}

whereas here we create the object file

${PROG}.o : ${PROG}.cpp

${CC} -c ${PROG}.cpp

If you name your file for ’makefile’, simply type the command make and Linux/Unix ex-
ecutes all of the statements in the above makefile. Note that C++ files have the extension
.cpp

For Fortran, a similar makefile is

2.2 Representation of Integer Numbers 15

General makefile for F90 - choose PROG = name of given program

Here we define compiler options, libraries and the target

F90= f90

PROG= myprogram

Here we make the executable file

${PROG} : ${PROG}.o

${F90} ${PROG}.o -o ${PROG}

whereas here we create the object file

${PROG}.o : ${PROG}.f90

${F90} -c ${PROG}.f

Finally, for the sake of completeness, we list the corresponding Python code

http://folk.uio.no/mhjensen/compphys/programs/chapter02/python/program1.py

#!/usr/bin/env python

import sys, math
Read in a string a convert it to a float

r = float(sys.argv[1])
s = math.sin(r)
print "Hello, World! sin(%g)=%12.6e" % (r,s)

where we have used a formatted printout with scientific notation. In Python we do not need
to declare variables. Mathematical functions like the sin function are imported from the math
module. For further references to Python and its syntax, we recommend the text of Hans
Petter Langtangen [22]. The corresponding codes in Python are available at the webpage of
the course. All programs are listed as a directory tree beginning with programs/chapterxx.
Each chapter has in turn three directories, one for C++, one for Fortran and finally one for
Python codes. The Fortran codes in this chapter can be found in the directory programs/chap-
ter02/Fortran.

2.2 Representation of Integer Numbers

In Fortran a keyword for declaration of an integer is INTEGER (KIND=n) , n = 2 reserves 2
bytes (16 bits) of memory to store the integer variable wheras n = 4 reserves 4 bytes (32 bits).
In Fortran, although it may be compiler dependent, just declaring a variable as INTEGER ,
reserves 4 bytes in memory as default.

In C++ keywords areshort int, int, long int, long long int. The byte-length is
compiler dependent within some limits. The GNU C++-compilers (called by gcc or g++)
assign 4 bytes (32 bits) to variables declared by int and long int. Typical byte-lengths
are 2, 4, 4 and 8 bytes, for the types given above. To see how many bytes are reserved for a
specific variable, C++ has a library function called sizeof(type) which returns the number
of bytes for type .

An example of a program declaration is

Fortran: INTEGER (KIND=2) :: age_of_participant

16 2 Introduction to C++ and Fortran

C++: short int age_of_participant;

Note that the (KIND=2) can be written as (2). Normally however, we will for Fortran pro-
grams just use the 4 bytes default assignment INTEGER .

In the above examples one bit is used to store the sign of the variable age_of_participant
and the other 15 bits are used to store the number, which then may range from zero to
215− 1 = 32767. This should definitely suffice for human lifespans. On the other hand, if we
were to classify known fossiles by age we may need

Fortran: INTEGER (4) :: age_of_fossile
C++: int age_of_fossile;

Again one bit is used to store the sign of the variable age_of_fossile and the other 31 bits are
used to store the number which then may range from zero to 231− 1= 2.147.483.647. In order
to give you a feeling how integer numbers are represented in the computer, think first of the
decimal representation of the number 417

417= 4× 102+ 1× 101+ 7× 100,

which in binary representation becomes

417= an2n+ an−12n−1+ an−22n−2+ · · ·+ a020,

where the coefficients ak with k = 0, . . . ,n are zero or one. They can be calculated through
successive division by 2 and using the remainder in each division to determine the numbers
an to a0. A given integer in binary notation is then written as

an2n+ an−12n−1+ an−22n−2+ · · ·+ a020.

In binary notation we have thus

(417)10 = (110100001)2,

since we have

(110100001)2= 1× 28+ 1× 27+ 0× 26+ 1× 25+ 0× 24+ 0× 23+ 0× 22+ 0× 22+ 0× 21+ 1× 20.

To see this, we have performed the following divisions by 2

417/2=208 remainder 1 coefficient of 20 is 1
208/2=104 remainder 0 coefficient of 21 is 0
104/2=52 remainder 0 coefficient of 22 is 0
52/2=26 remainder 0 coefficient of 23 is 0
26/2=13 remainder 0 coefficient of 24 is 0
13/2= 6 remainder 1 coefficient of 25 is 1
6/2= 3 remainder 0 coefficient of 26 is 0
3/2= 1 remainder 1 coefficient of 27 is 1
1/2= 0 remainder 1 coefficient of 28 is 1

We see that nine bits are sufficient to represent 417. Normally we end up using 32 bits as
default for integers, meaning that our number reads

(417)10 = (00000000000000000000000110100001)2,

A simple program which performs these operations is listed below. Here we employ the
modulus operation (with division by 2), which in C++ is given by the a%2 operator. In Fortran
we would call the function MOD(a,2) in order to obtain the remainder of a division by 2.

2.2 Representation of Integer Numbers 17

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program2.cpp

using namespace std;
#include <iostream>

int main (int argc, char* argv[])
{

int i;
int terms[32]; // storage of a0, a1, etc, up to 32 bits

int number = atoi(argv[1]);
// initialise the term a0, a1 etc

for (i=0; i < 32 ; i++){ terms[i] = 0;}
for (i=0; i < 32 ; i++){

terms[i] = number%2;
number /= 2;

}
// write out results

cout << `` Number of bytes used= '' << sizeof(number) << endl;

for (i=0; i < 32 ; i++){
cout << `` Term nr: `` << i << ``Value= `` << terms[i];
cout << endl;

}
return 0;

}

The C++ function sizeof yields the number of bytes reserved for a specific variable. Note
also the for construct. We have reserved a fixed array which contains the values of ai being
0 or 1, the remainder of a division by two. We have enforced the integer to be represented by
32 bits, or four bytes, which is the default integer representation.

Note that for 417 we need 9 bits in order to represent it in a binary notation, while a
number like the number 3 is given in an 32 bits word as

(3)10 = (00000000000000000000000000000011)2.

For this number 2 significant bits would be enough.
With these prerequesites in mind, it is rather obvious that if a given integer variable is

beyond the range assigned by the declaration statement we may encounter problems.
If we multiply two large integers n1×n2 and the product is too large for the bit size allocated

for that specific integer assignement, we run into an overflow problem. The most significant
bits are lost and the least significant kept. Using 4 bytes for integer variables the result
becomes

220× 220 = 0.

However, there are compilers or compiler options that preprocess the program in such a way
that an error message like ’integer overflow’ is produced when running the program. Here
is a small program which may cause overflow problems when running (try to test your own
compiler in order to be sure how such problems need to be handled).

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program3.cpp

// Program to calculate 2**n

using namespace std;
#include <iostream>

int main()
{

int int1, int2, int3;
// print to screen

cout << "Read in the exponential N for 2^N =\n";
// read from screen

18 2 Introduction to C++ and Fortran

cin >> int2;
int1 = (int) pow(2., (double) int2);

cout << " 2^N * 2^N = " << int1*int1 << "\n";
int3 = int1 - 1;
cout << " 2^N*(2^N - 1) = " << int1 * int3 << "\n";
cout << " 2^N- 1 = " << int3 << "\n";
return 0;

}

// End: program main()

If we run this code with an exponent N = 32, we obtain the following output

2^N * 2^N = 0

2^N*(2^N - 1) = -2147483648

2^N- 1 = 2147483647

We notice that 264 exceeds the limit for integer numbers with 32 bits. The program returns
0. This can be dangerous, since the results from the operation 2N(2N− 1) is obviously wrong.
One possibility to avoid such cases is to add compilation options which flag if an overflow or
underflow is reached.

2.2.1 Fortran codes

The corresponding Fortran code is

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program2.f90

PROGRAM binary_integer
IMPLICIT NONE

INTEGER i, number, terms(0:31) ! storage of a0, a1, etc, up to 32 bits,

! note array length running from 0:31. Fortran allows negative indexes as well.

WRITE(*,*) 'Give a number to transform to binary notation'
READ(*,*) number

! Initialise the terms a0, a1 etc

terms = 0
! Fortran takes only integer loop variables

DO i=0, 31
terms(i) = MOD(number,2) ! Modulus function in Fortran

number = number/2

ENDDO
! write out results

WRITE(*,*) 'Binary representation '
DO i=0, 31
WRITE(*,*)' Term nr and value', i, terms(i)

ENDDO

END PROGRAM binary_integer

and

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program3.f90

PROGRAM integer_exp
IMPLICIT NONE
INTEGER :: int1, int2, int3
! This is the begin of a comment line in Fortran 90

2.3 Real Numbers and Numerical Precision 19

! Now we read from screen the variable int2

WRITE(*,*) 'Read in the number to be exponentiated'

READ(*,*) int2
int1=2**int2
WRITE(*,*) '2^N*2^N', int1*int1
int3=int1-1
WRITE(*,*) '2^N*(2^N-1)', int1*int3
WRITE(*,*) '2^N-1', int3

END PROGRAM integer_exp

In Fortran the modulus division is performed by the intrinsic function MOD(number,2) in case
of a division by 2. The exponentation of a number is given by for example 2**N instead of the
call to the pow function in C++.

2.3 Real Numbers and Numerical Precision

An important aspect of computational physics is the numerical precision involved. To design a
good algorithm, one needs to have a basic understanding of propagation of inaccuracies and
errors involved in calculations. There is no magic recipe for dealing with underflow, overflow,
accumulation of errors and loss of precision, and only a careful analysis of the functions
involved can save one from serious problems.

Since we are interested in the precision of the numerical calculus, we need to understand
how computers represent real and integer numbers. Most computers deal with real numbers
in the binary system, or octal and hexadecimal, in contrast to the decimal system that we
humans prefer to use. The binary system uses 2 as the base, in much the same way that the
decimal system uses 10. Since the typical computer communicates with us in the decimal sys-
tem, but works internally in e.g., the binary system, conversion procedures must be executed
by the computer, and these conversions involve hopefully only small roundoff errors

Computers are also not able to operate using real numbers expressed with more than a
fixed number of digits, and the set of values possible is only a subset of the mathematical
integers or real numbers. The so-called word length we reserve for a given number places a
restriction on the precision with which a given number is represented. This means in turn,
that for example floating numbers are always rounded to a machine dependent precision,
typically with 6-15 leading digits to the right of the decimal point. Furthermore, each such
set of values has a processor-dependent smallest negative and a largest positive value.

Why do we at all care about rounding and machine precision? The best way is to consider
a simple example first. In the following example we assume that we can represent a floating
number with a precision of 5 digits only to the right of the decimal point. This is nothing but
a mere choice of ours, but mimicks the way numbers are represented in the machine.

Suppose we wish to evaluate the function

f (x) =
1− cos(x)
sin (x)

,

for small values of x. If we multiply the denominator and numerator with 1+ cos(x) we obtain
the equivalent expression

f (x) =
sin (x)

1+ cos(x) .

If we now choose x= 0.006 (in radians) our choice of precision results in

sin(0.007)≈ 0.59999× 10−2,

20 2 Introduction to C++ and Fortran

and
cos(0.007)≈ 0.99998.

The first expression for f (x) results in

f (x) =
1− 0.99998

0.59999× 10−2
=

0.2× 10−4

0.59999× 10−2
= 0.33334× 10−2,

while the second expression results in

f (x) =
0.59999× 10−2

1+ 0.99998
=
0.59999× 10−2

1.99998
= 0.30000× 10−2,

which is also the exact result. In the first expression, due to our choice of precision, we
have only one relevant digit in the numerator, after the subtraction. This leads to a loss of
precision and a wrong result due to a cancellation of two nearly equal numbers. If we had
chosen a precision of six leading digits, both expressions yield the same answer. If we were
to evaluate x∼ π , then the second expression for f (x) can lead to potential losses of precision
due to cancellations of nearly equal numbers.

This simple example demonstrates the loss of numerical precision due to roundoff errors,
where the number of leading digits is lost in a subtraction of two near equal numbers. The
lesson to be drawn is that we cannot blindly compute a function. We will always need to
carefully analyze our algorithm in the search for potential pitfalls. There is no magic recipe
however, the only guideline is an understanding of the fact that a machine cannot represent
correctly all numbers.

2.3.1 Representation of real numbers

Real numbers are stored with a decimal precision (or mantissa) and the decimal exponent
range. The mantissa contains the significant figures of the number (and thereby the precision
of the number). A number like (9.90625)10 in the decimal representation is given in a binary
representation by

(1001.11101)2= 1× 23+ 0× 22+ 0× 21+ 1× 20+ 1× 2−1+ 1× 2−2+ 1× 2−3+ 0× 2−4+ 1× 2−5,

and it has an exact machine number representation since we need a finite number of bits to
represent this number. This representation is however not very practical. Rather, we prefer
to use a scientific notation. In the decimal system we would write a number like 9.90625 in
what is called the normalized scientific notation. This means simply that the decimal point is
shifted and appropriate powers of 10 are supplied. Our number could then be written as

9.90625= 0.990625× 101,

and a real non-zero number could be generalized as

x=±r× 10n,

with a r a number in the range 1/10≤ r< 1. In a similar way we can represent a binary number
in scientific notation as

x=±q× 2m,

with a q a number in the range 1/2≤ q< 1. This means that the mantissa of a binary number
would be represented by the general formula

2.3 Real Numbers and Numerical Precision 21

(0.a−1a−2 . . .a−n)2 = a−1× 2−1+ a−2× 2−2+ · · ·+ a−n× 2−n.

In a typical computer, floating-point numbers are represented in the way described above, but
with certain restrictions on q and m imposed by the available word length. In the machine,
our number x is represented as

x= (−1)s×mantissa× 2exponent,

where s is the sign bit, and the exponent gives the available range. With a single-precision
word, 32 bits, 8 bits would typically be reserved for the exponent, 1 bit for the sign and 23
for the mantissa. This means that if we define a variable as

Fortran: REAL (4) :: size_of_fossile
C++: float size_of_fossile;

we are reserving 4 bytes in memory, with 8 bits for the exponent, 1 for the sign and and 23
bits for the mantissa, implying a numerical precision to the sixth or seventh digit, since the
least significant digit is given by 1/223 ≈ 10−7. The range of the exponent goes from 2−128 =
2.9× 10−39 to 2127 = 3.4× 1038, where 128 stems from the fact that 8 bits are reserved for the
exponent.

A modification of the scientific notation for binary numbers is to require that the leading
binary digit 1 appears to the left of the binary point. In this case the representation of the
mantissa q would be (1. f)2 and 1 ≤ q < 2. This form is rather useful when storing binary
numbers in a computer word, since we can always assume that the leading bit 1 is there.
One bit of space can then be saved meaning that a 23 bits mantissa has actually 24 bits. This
means explicitely that a binary number with 23 bits for the mantissa reads

(1.a−1a−2 . . .a−23)2 = 1× 20+ a−1× 2−1+ a−2× 2−2+ · · ·+ a−n× 2−23.

As an example, consider the 32 bits binary number

(10111110111101000000000000000000)2,

where the first bit is reserved for the sign, 1 in this case yielding a negative sign. The exponent
m is given by the next 8 binary numbers 01111101 resulting in 125 in the decimal system.
However, since the exponent has eight bits, this means it has 28− 1 = 255 possible numbers
in the interval −128≤ m≤ 127, our final exponent is 125−127=−2 resulting in 2−2. Inserting
the sign and the mantissa yields the final number in the decimal representation as

−2−2
(
1× 20+ 1× 2−1+ 1× 2−2+ 1× 2−3+ 0× 2−4+ 1× 2−5

)
= (−0.4765625)10.

In this case we have an exact machine representation with 32 bits (actually, we need less than
23 bits for the mantissa).

If our number x can be exactly represented in the machine, we call x a machine num-
ber. Unfortunately, most numbers cannot and are thereby only approximated in the machine.
When such a number occurs as the result of reading some input data or of a computation, an
inevitable error will arise in representing it as accurately as possible by a machine number.

A floating number x, labelled f l(x) will therefore always be represented as

f l(x) = x(1± εx), (2.1)

with x the exact number and the error |εx|≤ |εM |, where εM is the precision assigned. A num-
ber like 1/10 has no exact binary representation with single or double precision. Since the
mantissa

22 2 Introduction to C++ and Fortran

1.(a−1a−2 . . .a−n)2
is always truncated at some stage n due to its limited number of bits, there is only a limited
number of real binary numbers. The spacing between every real binary number is given by
the chosen machine precision. For a 32 bit words this number is approximately εM ∼ 10−7 and
for double precision (64 bits) we have εM ∼ 10−16, or in terms of a binary base as 2−23 and 2−52
for single and double precision, respectively.

2.3.2 Machine numbers

To understand that a given floating point number can be written as in Eq. (2.1), we assume
for the sake of simplicity that we work with real numbers with words of length 32 bits, or four
bytes. Then a given number x in the binary representation can be represented as

x= (1.a−1a−2 . . .a−23a−24a−25 . . .)2× 2n,

or in a more compact form
x= r× 2n,

with 1≤ r < 2 and −126≤ n≤ 127 since our exponent is defined by eight bits.
In most cases there will not be an exact machine representation of the number x. Our

number will be placed between two exact 32 bits machine numbers x− and x+. Following the
discussion of Kincaid and Cheney [23] these numbers are given by

x− = (1.a−1a−2 . . .a−23)2× 2n,

and
x+ =

(
(1.a−1a−2 . . .a−23))2+ 2−23

)
× 2n.

If we assume that our number x is closer to x− we have that the absolute error is constrained
by the relation

|x− x−|≤
1
2
|x+− x−|=

1
2
× 2n−23 = 2n−24.

A similar expression can be obtained if x is closer to x+. The absolute error conveys one
type of information. However, we may have cases where two equal absolute errors arise from
rather different numbers. Consider for example the decimal numbers a= 2 and a= 2.001. The
absolute error between these two numbers is 0.001. In a similar way, the two decimal numbers
b= 2000 and b= 2000.001 give exactly the same absolute error. We note here that b= 2000.001
has more leading digits than b.

If we compare the relative errors

|a− a|
|a|

= 1.0× 10−3, |b− b|
|b|

= 1.0× 10−6,

we see that the relative error in b is much smaller than the relative error in a. We will see
below that the relative error is intimately connected with the number of leading digits in the
way we approximate a real number. The relative error is therefore the quantity of interest in
scientific work. Information about the absolute error is normally of little use in the absence
of the magnitude of the quantity being measured.

We define then the relative error for x as

|x− x−|
|x|

≤
2n−24

r× 2n
=
1
q
× 2−24 ≤ 2−24.

2.3 Real Numbers and Numerical Precision 23

Instead of using x− and x+ as the machine numbers closest to x, we introduce the relative
error

|x− x|
|x|

≤ 2n−24,

with x being the machine number closest to x. Defining

εx =
x− x
x

,

we can write the previous inequality

f l(x) = x(1+ εx)

where |εx|≤ εM = 2−24 for variables of length 32 bits. The notation f l(x) stands for the machine
approximation of the number x. The number εM is given by the specified machine precision,
approximately 10−7 for single and 10−16 for double precision, respectively.

There are several mathematical operations where an eventual loss of precision may ap-
pear. A subraction, especially important in the definition of numerical derivatives discussed
in chapter 3 is one important operation. In the computation of derivatives we end up sub-
tracting two nearly equal quantities. In case of such a subtraction a= b− c, we have

f l(a) = f l(b)− f l(c) = a(1+ εa),

or
f l(a) = b(1+ εb)− c(1+ εc),

meaning that

f l(a)/a= 1+ εb
b
a
− εc

c
a
,

and if b≈ c we see that there is a potential for an increased error in the machine representa-
tion of f l(a). This is because we are subtracting two numbers of equal size and what remains
is only the least significant part of these numbers. This part is prone to roundoff errors and if
a is small we see that (with b≈ c)

εa ≈
b
a
(εb− εc),

can become very large. The latter equation represents the relative error of this calculation.
To see this, we define first the absolute error as

| f l(a)− a|,

whereas the relative error is
| f l(a)− a|

a
≤ εa.

The above subraction is thus

| f l(a)− a|
a

=
| f l(b)− f (c)− (b− c)|

a
,

yielding
| f l(a)− a|

a
=

|bεb− cεc|
a

.

An interesting question is then how many significant binary bits are lost in a subtraction
a = b− c when we have b ≈ c. The loss of precision theorem for a subtraction a = b− c states
that [23]: if b and c are positive normalized floating-point binary machine numbers with b> c
and

24 2 Introduction to C++ and Fortran

2−r ≤ 1−
c
b
≤ 2−s, (2.2)

then at most r and at least s significant binary bits are lost in the subtraction b−c. For a proof
of this statement, see for example Ref. [23].

But even additions can be troublesome, in particular if the numbers are very different in
magnitude. Consider for example the seemingly trivial addition 1+ 10−8 with 32 bits used to
represent the various variables. In this case, the information contained in 10−8 is simply lost
in the addition. When we perform the addition, the computer equates first the exponents of
the two numbers to be added. For 10−8 this has however catastrophic consequences since in
order to obtain an exponent equal to 100, bits in the mantissa are shifted to the right. At the
end, all bits in the mantissa are zeros.

This means in turn that for calculations involving real numbers (if we omit the discussion
on overflow and underflow) we need to carefully understand the behavior of our algorithm,
and test all possible cases where round-off errors and loss of precision can arise. Other cases
which may cause serious problems are singularities of the type 0/0 which may arise from
functions like sin(x)/x as x→ 0. Such problems may also need the restructuring of the algo-
rithm.

2.4 Programming Examples on Loss of Precision and Round-off Errors

2.4.1 Algorithms for e−x

In order to illustrate the above problems, we discuss here some famous and perhaps less
famous problems, including a discussion on specific programming features as well.

We start by considering three possible algorithms for computing e−x:

1. by simply coding

e−x =
∞

∑
n=0

(−1)n x
n

n!

2. or to employ a recursion relation for

e−x =
∞

∑
n=0

sn =
∞

∑
n=0

(−1)n
xn

n!

using

sn =−sn−1
x
n
,

3. or to first calculate

expx=
∞

∑
n=0

sn

and thereafter taking the inverse

e−x =
1

expx
Below we have included a small program which calculates

e−x =
∞

∑
n=0

(−1)n x
n

n!
,

for x-values ranging from 0 to 100 in steps of 10. When doing the summation, we can always
define a desired precision, given below by the fixed value for the variable TRUNCATION=

2.4 Programming Examples on Loss of Precision and Round-off Errors 25

1.0E− 10, so that for a certain value of x > 0, there is always a value of n = N for which the
loss of precision in terminating the series at n=N is always smaller than the next term in the
series xN

N! . The latter is implemented through the while{. . .} statement.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program4.cpp

// Program to calculate function exp(-x)

// using straightforward summation with differing precision

using namespace std;
#include <iostream>
// type float: 32 bits precision

// type double: 64 bits precision

#define TYPE double
#define PHASE(a) (1 - 2 * (abs(a) % 2))
#define TRUNCATION 1.0E-10
// function declaration

TYPE factorial(int);

int main()
{

int n;
TYPE x, term, sum;
for(x = 0.0; x < 100.0; x += 10.0) {

sum = 0.0; //initialization

n = 0;
term = 1;
while(fabs(term) > TRUNCATION) {

term = PHASE(n) * (TYPE) pow((TYPE) x,(TYPE) n) / factorial(n);
sum += term;

n++;
} // end of while() loop

cout << `` x ='' << x << `` exp = `` << exp(-x) << `` series = `` << sum;
cout << `` number of terms = " << n << endl;

} // end of for() loop
return 0;

} // End: function main()

// The function factorial()
// calculates and returns n!

TYPE factorial(int n)
{

int loop;
TYPE fac;
for(loop = 1, fac = 1.0; loop <= n; loop++) {

fac *= loop;
}
return fac;

} // End: function factorial()

There are several features to be noted3. First, for low values of x, the agreement is good,
however for larger x values, we see a significant loss of precision. Secondly, for x = 70 we
have an overflow problem, represented (from this specific compiler) by NaN (not a number).
The latter is easy to understand, since the calculation of a factorial of the size 171! is beyond
the limit set for the double precision variable factorial. The message NaN appears since the
computer sets the factorial of 171 equal to zero and we end up having a division by zero in
our expression for e−x.
3 Note that different compilers may give different messages and deal with overflow problems in different
ways.

26 2 Introduction to C++ and Fortran

x exp(−x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1

10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171

100.0 0.372008E-43 NaN 171

Table 2.3 Result from the brute force algorithm for exp (−x).

The overflow problem can be dealt with via a recurrence formula4 for the terms in the sum,
so that we avoid calculating factorials. A simple recurrence formula for our equation

exp(−x) =
∞

∑
n=0

sn =
∞

∑
n=0

(−1)n x
n

n!
,

is to note that
sn =−sn−1

x
n
,

so that instead of computing factorials, we need only to compute products. This is exemplified
through the next program.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program5.cpp

// program to compute exp(-x) without factorials

using namespace std;

#include <iostream>
#define TRUNCATION 1.0E-10

int main()
{

int loop, n;

double x, term, sum;

for(loop = 0; loop <= 100; loop += 10){
x = (double) loop; // initialization

sum = 1.0;
term = 1;

n = 1;
while(fabs(term) > TRUNCATION){

term *= -x/((double) n);
sum += term;
n++;

} // end while loop

cout << ``x ='' << x << ``exp = `` << exp(-x) << ``series = `` << sum;
cout << ``number of terms = " << n << endl;

} // end of for loop
} // End: function main()

4 Recurrence formulae, in various disguises, either as ways to represent series or continued fractions, are
among the most commonly used forms for function approximation. Examples are Bessel functions, Hermite
and Laguerre polynomials, discussed for example in chapter 5.

2.4 Programming Examples on Loss of Precision and Round-off Errors 27

x exp (−x) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1

10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264

100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4 Result from the improved algorithm for exp (−x).

In this case, we do not get the overflow problem, as can be seen from the large number of
terms. Our results do however not make much sense for larger values of x. Decreasing the
truncation test will not help! (try it). This is a much more serious problem.

In order better to understand this problem, let us consider the case of x= 20, which already
differs largely from the exact result. Writing out each term in the summation, we obtain the
largest term in the sum appears at n = 19, with a value that equals −43099804. However, for
n= 20we have almost the same value, but with an interchanged sign. It means that we have an
error relative to the largest term in the summation of the order of 43099804×10−10≈ 4×10−2.
This is much larger than the exact value of 0.21× 10−8. The large contributions which may
appear at a given order in the sum, lead to strong roundoff errors, which in turn is reflected
in the loss of precision. We can rephrase the above in the following way: Since exp(−20) is
a very small number and each term in the series can be rather large (of the order of 108,
it is clear that other terms as large as 108, but negative, must cancel the figures in front of
the decimal point and some behind as well. Since a computer can only hold a fixed number
of significant figures, all those in front of the decimal point are not only useless, they are
crowding out needed figures at the right end of the number. Unless we are very careful
we will find ourselves adding up series that finally consists entirely of roundoff errors! An
analysis of the contribution to the sum from various terms shows that the relative error made
can be huge. This results in an unstable computation, since small errors made at one stage
are magnified in subsequent stages.

To this specific case there is a simple cure. Noting that exp(x) is the reciprocal of exp(−x),
we may use the series for exp(x) in dealing with the problem of alternating signs, and simply
take the inverse. One has however to beware of the fact that exp(x) may quickly exceed the
range of a double variable.

2.4.2 Fortran codes

The Fortran programs are rather similar in structure to the C++ program.
In Fortran Real numbers are written as 2.0 rather than 2 and declared as REAL (KIND=8)

or REAL (KIND=4) for double or single precision, respectively. In general we discorauge the
use of single precision in scientific computing, the achieved precision is in general not good
enough. Fortran uses a do construct to have the computer execute the same statements more
than once. Note also that Fortran does not allow floating numbers as loop variables. In the
example below we use both a do construct for the loop over x and a DO WHILE construction
for the truncation test, as in the C++ program. One could altrenatively use the EXIT state-

28 2 Introduction to C++ and Fortran

ment inside a do loop. Fortran has also if statements as in C++. The IF construct allows the
execution of a sequence of statements (a block) to depend on a condition. The if construct
is a compound statement and begins with IF ... THEN and ends with ENDIF. Examples of
more general IF constructs using ELSE and ELSEIF statements are given in other program
examples. Another feature to observe is the CYCLE command, which allows a loop variable
to start at a new value.

Subprograms are called from the main program or other subprograms. In the C++ codes
we declared a function TYPE factorial(int);. Subprograms are always called functions
in C++. If we declare it with void is has the same meaning as subroutines in Fortran,. Sub-
routines are used if we have more than one return value. In the example below we compute
the factorials using the function factorial . This function receives a dummy argument n.
INTENT(IN) means that the dummy argument cannot be changed within the subprogram.
INTENT(OUT) means that the dummy argument cannot be used within the subprogram un-
til it is given a value with the intent of passing a value back to the calling program. The
statement INTENT(INOUT) means that the dummy argument has an initial value which is
changed and passed back to the calling program. We recommend that you use these options
when calling subprograms. This allows better control when transfering variables from one
function to another. In chapter 3 we discuss call by value and by reference in C++. Call by
value does not allow a called function to change the value of a given variable in the calling
function. This is important in order to avoid unintentional changes of variables when trans-
fering data from one function to another. The INTENT construct in Fortran allows such a
control. Furthermore, it increases the readability of the program.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program4.f90

! In this module you can define for example global constants

MODULE constants
! definition of variables for double precisions and complex variables

INTEGER, PARAMETER :: dp = KIND(1.0D0)
INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))

! Global Truncation parameter

REAL(DP), PARAMETER, PUBLIC :: truncation=1.0E-10
END MODULE constants

! Here you can include specific functions which can be used by

! many subroutines or functions

MODULE functions

CONTAINS
REAL(DP) FUNCTION factorial(n)

USE CONSTANTS
INTEGER, INTENT(IN) :: n
INTEGER :: loop

factorial = 1.0_dp
IF (n > 1) THEN

DO loop = 2, n
factorial=factorial*loop

ENDDO
ENDIF

END FUNCTION factorial

END MODULE functions
! Main program starts here

PROGRAM exp_prog
USE constants
USE functions

2.4 Programming Examples on Loss of Precision and Round-off Errors 29

IMPLICIT NONE
REAL (DP) :: x, term, final_sum

INTEGER :: n, loop_over_x

! loop over x-values

DO loop_over_x=0, 100, 10
x=loop_over_x
! initialize the EXP sum

final_sum= 0.0_dp; term = 1.0_dp; n = 0
DO WHILE (ABS(term) > truncation)

term = ((-1.0_dp)**n)*(x**n)/ factorial(n)
final_sum=final_sum+term
n=n+1

ENDDO
! write the argument x, the exact value, the computed value and n

WRITE(*,*) x ,EXP(-x), final_sum, n
ENDDO

END PROGRAM exp_prog

The MODULE declaration in Fortran allows one to place functions like the one which calculates
the factorials. Note also the usage of the module constants where we define double and
complex variables. If one wishes to switch to another precision, one just needs to change
the declaration in one part of the program only. This hinders possible errors which arise if
one has to change variable declarations in every function and subroutine. In addition we
have defined a global variable truncation which is accessible to all functions which have the
USE constants declaration. These declarations have to come before any variable declara-

tions and IMPLICIT NONE statement.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program5.f90

! In this module you can define for example global constants

MODULE constants

! definition of variables for double precisions and complex variables

INTEGER, PARAMETER :: dp = KIND(1.0D0)
INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))
! Global Truncation parameter

REAL(DP), PARAMETER, PUBLIC :: truncation=1.0E-10

END MODULE constants

PROGRAM improved_exp
USE constants
IMPLICIT NONE
REAL (dp) :: x, term, final_sum

INTEGER :: n, loop_over_x

! loop over x-values, no floats as loop variables

DO loop_over_x=0, 100, 10
x=loop_over_x
! initialize the EXP sum

final_sum=1.0 ; term=1.0 ; n = 1
DO WHILE (ABS(term) > truncation)

term = -term*x/FLOAT(n)
final_sum=final_sum+term
n=n+1

ENDDO

! write the argument x, the exact value, the computed value and n

WRITE(*,*) x ,EXP(-x), final_sum, n
ENDDO

END PROGRAM improved_exp

30 2 Introduction to C++ and Fortran

2.4.3 Further examples

2.4.3.1 Summing 1/n

Let us look at another roundoff example which may surprise you more. Consider the series

s1 =
N

∑
n=1

1
n
,

which is finite when N is finite. Then consider the alternative way of writing this sum

s2 =
1

∑
n=N

1
n
,

which when summed analytically should give s2 = s1. Because of roundoff errors, numerically
we will get s2 '= s1! Computing these sums with single precision for N = 1.000.000 results in s1=
14.35736 while s2 = 14.39265! Note that these numbers are machine and compiler dependent.
With double precision, the results agree exactly, however, for larger values of N, differences
may appear even for double precision. If we choose N = 108 and employ double precision, we
get s1 = 18.9978964829915355while s2 = 18.9978964794618506, and one notes a difference even
with double precision.

This example demonstrates two important topics. First we notice that the chosen precision
is important, and we will always recommend that you employ double precision in all calcu-
lations with real numbers. Secondly, the choice of an appropriate algorithm, as also seen for
e−x, can be of paramount importance for the outcome.

2.4.3.2 The standard algorithm for the standard deviation

Yet another example is the calculation of the standard deviation σ when σ is small compared
to the average value x. Below we illustrate how one of the most frequently used algorithms
can go wrong when single precision is employed.

However, before we proceed, let us define σ and x. Suppose we have a set of N data points,
represented by the one-dimensional array x(i), for i= 1,N. The average value is then

x= ∑Ni=1 x(i)
N

,

while

σ =

√
∑i x(i)2− x∑i x(i)

N− 1
.

Let us now assume that
x(i) = i+ 105,

and that N = 127, just as a mere example which illustrates the kind of problems which can
arise when the standard deviation is small compared with the mean value x.

The standard algorithm computes the two contributions to σ separately, that is we sum
∑i x(i)2 and subtract thereafter x∑i x(i). Since these two numbers can become nearly equal
and large, we may end up in a situation with potential loss of precision as an outcome.

The second algorithm on the other hand computes first x(i)− x and then squares it when
summing up. With this recipe we may avoid having nearly equal numbers which cancel.

2.4 Programming Examples on Loss of Precision and Round-off Errors 31

Using single precision results in a standard deviation of σ = 40.05720139 for the first and
most used algorithm, while the exact answer is σ = 36.80579758, a number which also results
from the above second algorithm. With double precision, the two algorithms result in the
same answer.

The reason for such a difference resides in the fact that the first algorithm includes the
subtraction of two large numbers which are squared. Since the average value for this exam-
ple is x = 100063.00, it is easy to see that computing ∑i x(i)2− x∑i x(i) can give rise to very
large numbers with possible loss of precision when we perform the subtraction. To see this,
consider the case where i= 64. Then we have

x264− xx64 = 100352,

while the exact answer is
x264− xx64 = 100064!

You can even check this by calculating it by hand.
The second algorithm computes first the difference between x(i) and the average value.

The difference gets thereafter squared. For the second algorithm we have for i= 64

x64− x= 1,

and we have no potential for loss of precision.
The standard text book algorithm is expressed through the following program, where we

have also added the second algorithm

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program6.cpp

// program to calculate the mean and standard deviation of

// a user created data set stored in array x[]

using namespace std;
#include <iostream>

int main()
{

int i;
float sum, sumsq2, xbar, sigma1, sigma2;
// array declaration with fixed dimension

float x[127];

// initialise the data set

for (i=0; i < 127 ; i++){
x[i] = i + 100000.;

}
// The variable sum is just the sum over all elements

// The variable sumsq2 is the sum over x^2

sum=0.;
sumsq2=0.;
// Now we use the text book algorithm

for (i=0; i < 127; i++){
sum += x[i];
sumsq2 += pow((double) x[i],2.);

}
// calculate the average and sigma

xbar=sum/127.;
sigma1=sqrt((sumsq2-sum*xbar)/126.);
/*

** Here comes the second algorithm where we evaluate

** separately first the average and thereafter the

** sum which defines the standard deviation. The average

** has already been evaluated through xbar

*/

32 2 Introduction to C++ and Fortran

sumsq2=0.;
for (i=0; i < 127; i++){

sumsq2 += pow((double) (x[i]-xbar),2.);
}
sigma2=sqrt(sumsq2/126.);
cout << "xbar = `` << xbar << ``sigma1 = `` << sigma1 << ``sigma2 = `` << sigma2;
cout << endl;
return 0;

}// End: function main()

The corresponding Fortran program is given below.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program6.f90

PROGRAM standard_deviation
IMPLICIT NONE

REAL (KIND = 4) :: sum, sumsq2, xbar
REAL (KIND = 4) :: sigma1, sigma2
REAL (KIND = 4), DIMENSION (127) :: x
INTEGER :: i

x=0;
DO i=1, 127

x(i) = i + 100000.
ENDDO
sum=0.; sumsq2=0.
! standard deviation calculated with the first algorithm

DO i=1, 127
sum = sum +x(i)

sumsq2 = sumsq2+x(i)**2
ENDDO
! average

xbar=sum/127.
sigma1=SQRT((sumsq2-sum*xbar)/126.)
! second algorithm to evaluate the standard deviation

sumsq2=0.
DO i=1, 127

sumsq2=sumsq2+(x(i)-xbar)**2

ENDDO
sigma2=SQRT(sumsq2/126.)
WRITE(*,*) xbar, sigma1, sigma2

END PROGRAM standard_deviation

2.5 Additional Features of C++ and Fortran

2.5.1 Operators in C++

In the previous program examples we have seen several types of operators. In the tables
below we summarize the most important ones. Note that the modulus in C++ is represented
by the operator % whereas in Fortran we employ the intrinsic function MOD. Note also that
the increment operator ++ and the decrement operator -- is not available in Fortran . In
C++ these operators have the following meaning

++x; or x++; has the same meaning as x = x + 1;

--x; or x--; has the same meaning as x = x - 1;

2.5 Additional Features of C++ and Fortran 33

Table 2.5 lists several relational and arithmetic operators. Logical operators in C++ and

arithmetic operators relation operators
operator effect operator effect
− Subtraction > Greater than
+ Addition >= Greater or equal
∗ Multiplication < Less than
/ Division <= Less or equal

% or MOD Modulus division == Equal
−− Decrement != Not equal
++ Increment

Table 2.5 Relational and arithmetic operators. The relation operators act between two operands. Note that
the increment and decrement operators ++ and −− are not available in Fortran .

Fortran are listed in 2.6. while Table 2.7 shows bitwise operations.

Logical operators
C++ Effect Fortran
0 False value .FALSE.
1 True value .TRUE.
!x Logical negation .NOT.x

x&& y Logical AND x.AND.y
x||y Logical inclusive OR x.OR.y

Table 2.6 List of logical operators in C++ and Fortran .

Bitwise operations
C++ Effect Fortran
~i Bitwise complement NOT(j)
i&j Bitwise and IAND(i,j)
i^j Bitwise exclusive or IEOR(i,j)
i|j Bitwise inclusive or IOR(i,j)
i<<j Bitwise shift left ISHFT(i,j)
i>>n Bitwise shift right ISHFT(i,-j)

Table 2.7 List of bitwise operations.

C++ offers also interesting possibilities for combined operators. These are collected in
Table 2.8.

Expression meaning expression meaning
a += b; a = a + b; a -= b; a = a - b;
a *= b; a = a * b; a /= b; a = a / b;
a %= b; a = a % b; a «= b; a = a « b;
a »= b; a = a » b; a &= b; a = a & b;

a |= b; a = a | b; a ∧= b; a = a ∧ b;

Table 2.8 C++ specific expressions.

Finally, we show some special operators pertinent to C++ only. The first one is the ? oper-
ator. Its action can be described through the following example

34 2 Introduction to C++ and Fortran

A = expression1 ? expression2 : expression3;

Here expression1 is computed first. If this is "true" ('= 0), then expression2 is computed and
assigned A. If expression1 is "false", then expression3 is computed and assigned A.

2.5.2 Pointers and arrays in C++.

In addition to constants and variables C++ contain important types such as pointers and
arrays (vectors and matrices). These are widely used in most C++ program. C++ allows also
for pointer algebra, a feature not included in Fortran . Pointers and arrays are important
elements in C++. To shed light on these types, consider the following setup

int name defines an integer variable called name. It is given an address in
memory where we can store an integer number.

&name is the address of a specific place in memory where the integer
name is stored. Placing the operator & in front of a variable yields
its address in memory.

int *pointer defines an integer pointer and reserves a location in memory for
this specific variable The content of this location is viewed as the
address of another place in memory where we have stored an
integer.

Note that in C++ it is common to write int* pointer while in C one usually writes
int *pointer. Here are some examples of legal C++ expressions.

name = 0x56; /* name gets the hexadecimal value hex 56. */
pointer = &name; /* pointer points to name. */
printf("Address of name = %p",pointer); /* writes out the address of name. */
printf("Value of name= %d",*pointer); /* writes out the value of name. */

Here’s a program which illustrates some of these topics.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program7.cpp

1 using namespace std;
2 main()
3 {
4 int var;
5 int *pointer;

6
7 pointer = &var;
8 var = 421;
9 printf("Address of the integer variable var : %p\n",&var);
10 printf("Value of var : %d\n", var);
11 printf("Value of the integer pointer variable: %p\n",pointer);

12 printf("Value which pointer is pointing at : %d\n",*pointer);
13 printf("Address of the pointer variable : %p\n",&pointer);
14 }

2.5 Additional Features of C++ and Fortran 35

Line Comments

4 • Defines an integer variable var.
5 • Define an integer pointer – reserves space in memory.
7 • The content of the adddress of pointer is the address of var.
8 • The value of var is 421.
9 • Writes the address of var in hexadecimal notation for pointers %p.
10 • Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, reads

Address of the integer variable var : 0xbfffeb74

Value of var: 421

Value of integer pointer variable : 0xbfffeb74

The value which pointer is pointing at : 421

Address of the pointer variable : 0xbfffeb70

In the next example we consider the link between arrays and pointers.

int matr[2] defines a matrix with two integer members – matr[0] og matr[1].

matr is a pointer to matr[0].

(matr + 1) is a pointer to matr[1].

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program8.cpp

1 using namespace std;
2 #included <iostream>
3 int main()
4 {

5 int matr[2];
6 int *pointer;
7 pointer = &matr[0];
8 matr[0] = 321;
9 matr[1] = 322;
10 printf("\nAddress of the matrix element matr[1]: %p",&matr[0]);

11 printf("\nValue of the matrix element matr[1]; %d",matr[0]);
12 printf("\nAddress of the matrix element matr[2]: %p",&matr[1]);
13 printf("\nValue of the matrix element matr[2]: %d\n", matr[1]);
14 printf("\nValue of the pointer : %p",pointer);
15 printf("\nValue which pointer points at : %d",*pointer);

16 printf("\nValue which (pointer+1) points at: %d\n",*(pointer+1));
17 printf("\nAddress of the pointer variable: %p\n",&pointer);
18 }

You should especially pay attention to the following

Line

5 • Declaration of an integer array matr with two elements
6 • Declaration of an integer pointer
7 • The pointer is initialized to point at the first element of the array matr.
8–9 • Values are assigned to the array matr.

The ouput of this example, compiled again with g++, is

36 2 Introduction to C++ and Fortran

Address of the matrix element matr[1]: 0xbfffef70

Value of the matrix element matr[1]; 321

Address of the matrix element matr[2]: 0xbfffef74

Value of the matrix element matr[2]: 322

Value of the pointer: 0xbfffef70

The value pointer points at: 321

The value that (pointer+1) points at: 322

Address of the pointer variable : 0xbfffef6c

2.5.3 Macros in C++

In C we can define macros, typically global constants or functions through the define state-
ments shown in the simple C-example below for

1. #define ONE 1
2. #define TWO ONE + ONE
3. #define THREE ONE + TWO
4.

5. main()
6. {
7. printf("ONE=%d, TWO=%d, THREE=%d",ONE,TWO,THREE);
8. }

In C++ the usage of macros is discouraged and you should rather use the declaration
for constant variables. You would then replace a statement like #define ONE 1 with
const int ONE = 1;. There is typically much less use of macros in C++ than in C. C++

allows also the definition of our own types based on other existing data types. We can do this
using the keyword typedef, whose format is: typedef existing_type new_type_name ;,
where existing_type is a C++ fundamental or compound type and new_type_name is the
name for the new type we are defining. For example:

typedef char new_name;
typedef unsigned int word ;
typedef char * test;
typedef char field [50];

In this case we have defined four data types: new_name, word, test and field as char, unsigned
int, char* and char[50] respectively, that we could perfectly use in declarations later as any
other valid type

new_name mychar, anotherchar, *ptc1;

word myword;
test ptc2;
field name;

The use of typedef does not create different types. It only creates synonyms of existing types.
That means that the type of myword can be considered to be either word or unsigned int,
since both are in fact the same type. Using typedef allows to define an alias for a type that is
frequently used within a program. It is also useful to define types when it is possible that we
will need to change the type in later versions of our program, or if a type you want to use has
a name that is too long or confusing.

In C we could define macros for functions as well, as seen below.

2.5 Additional Features of C++ and Fortran 37

1. #define MIN(a,b) (((a) < (b)) ? (a) : (b))
2. #define MAX(a,b) (((a) > (b)) ? (a) : (b))

3. #define ABS(a) (((a) < 0) ? -(a) : (a))
4. #define EVEN(a) ((a) %2 == 0 ? 1 : 0)
5. #define TOASCII(a) ((a) & 0x7f)

In C++ we would replace such function definition by employing so-called inline functions.
The above functions could then read

inline double MIN(double a,double b) (return (((a)<(b)) ? (a):(b));)
inline double MAX(double a,double b)(return (((a)>(b)) ? (a):(b));)
inline double ABS(double a) (return (((a)<0) ? -(a):(a));)

where we have defined the transferred variables to be of type double. The functions also
return a double type. These functions could easily be generalized through the use of classes
and templates, see chapter 6, to return whather types of real, complex or integer variables.

Inline functions are very useful, especially if the overhead for calling a function implies a
significant fraction of the total function call cost. When such function call overhead is sig-
nificant, a function definition can be preceded by the keyword inline. When this function is
called, we expect the compiler to generate inline code without function call overhead. How-
ever, although inline functions eliminate function call overhead, they can introduce other
overheads. When a function is inlined, its code is duplicated for each call. Excessive use of
inline may thus generate large programs. Large programs can cause excessive paging in
virtual memory systems. Too many inline functions can also lengthen compile and link times,
on the other hand not inlining small functions like the above that do small computations,
can make programs bigger and slower. However, most modern compilers know better than
programmer which functions to inline or not. When doing this, you should also test various
compiler options. With the compiler option −O3 inlining is done automatically by basically all
modern compilers.

A good strategy, recommended in many C++ textbooks, is to write a code without inline
functions first. As we also suggested in the introductory chapter, you should first write a as
simple and clear as possible program, without a strong emphasis on computational speed.
Thereafter, when profiling the program one can spot small functions which are called many
times. These functions can then be candidates for inlining. If the overall time comsumption is
reduced due to inlining specific functions, we can proceed to other sections of the program
which could be speeded up.

Another problem with inlined functions is that on some systems debugging an inline func-
tion is difficult because the function does not exist at runtime.

2.5.4 Structures in C++ and TYPE in Fortran

A very important part of a program is the way we organize our data and the flow of data
when running the code. This is often a neglected aspect especially during the development
of an algorithm. A clear understanding of how data are represented makes the program
more readable and easier to maintain and extend upon by other users. Till now we have
studied elementary variable declarations through keywords like int or INTEGER, double or
REAL(KIND(8) and char or its Fortran equivalent CHARACTER. These declarations could also
be extended to general multi-dimensional arrays.

However, C++ and Fortran offer other ways as well by which we can organize our data in
a more transparent and reusable way. One of these options is through the struct declaration

38 2 Introduction to C++ and Fortran

of C++, or the correspondingly similar TYPE in Fortran. The latter data type will also be
discussed in chapter 6.

The following example illustrates how we could make a general variable which can be
reused in defining other variables as well.

Suppose you would like to make a general programwhich treats quantummechanical prob-
lems from both atomic physics and nuclear physics. In atomic and nuclear physics the single-
particle degrees are represented by quantum numbers such orbital angular momentum, total
angular momentum, spin and energy. An independent particle model is often assumed as the
starting point for building up more complicated many-body correlations in systems with many
interacting particles. In atomic physics the effective degrees of freedom are often reduced to
electrons interacting with each other, while in nuclear physics the system is described by neu-
trons and protons. The structure single_particle_descript contains a list over different
quantum numbers through various pointers which are initialized by a calling function.

struct single_particle_descript{
int total_states;
int* n;
int* lorb;

int* m_l;
int* jang;
int* spin;
double* energy;
char* orbit_status

};

To describe an atom like Neon we would need three single-particle orbits to describe the
ground state wave function if we use a single-particle picture, i.e., the 1s, 2s and 2p single-
particle orbits. These orbits have a degeneray of 2(2l+ 1), where the first number stems
from the possible spin projections and the second from the possible projections of the orbital
momentum. Note that we reserve the naming orbit for the generic labelling 1s, 2s and 2p
while we use the naming states when we include all possible quantum numbers. In total
there are 10 possible single-particle states when we account for spin and orbital momentum
projections. In this case we would thus need to allocate memory for arrays containing 10
elements.

The above structure is written in a generic way and it can be used to define other variables
as well. For electrons we could write struct single_particle_descript electrons; and
is a new variable with the name electrons containing all the elements of this structure.

The following program segment illustrates how we access these elements To access these
elements we could for example read from a given device the various quantum numbers:

for (int i = 0; i < electrons.total_states; i++){

cout << `` Read in the quantum numbers for electron i: `` << i << endl;
cin >> electrons.n[i];
cin > electrons.lorb[i];
cin >> electrons.m_l[i];
cin >> electrons.jang[i];
cin >> electrons.spin[i];

}

The structure single_particle_descript can also be used for defining quantum num-
bers of other particles as well, such as neutrons and protons throughthe new variables
struct single_particle_descript protons and struct single_particle_descript neutrons.
The corresponding declaration in Fortran is given by the TYPE construct, seen in the fol-

lowing example.

TYPE, PUBLIC :: single_particle_descript

2.6 Exercises 39

INTEGER :: total_states
INTEGER, DIMENSION(:), POINTER :: n, lorb, jang, spin, m_l

CHARACTER (LEN=10), DIMENSION(:), POINTER :: orbit_status
REAL(8), DIMENSION(:), POINTER :: energy

END TYPE single_particle_descript

This structure can again be used to define variables like electrons, protons and neutrons

through the statement TYPE (single_particle_descript) :: electrons, protons, neutrons.
More detailed examples on the use of these variable declarations, classes and templates will
be given in subsequent chapters.

2.6 Exercises

2.1. Set up an algorithm which converts a floating number given in the decimal representa-
tion to the binary representation. You may or may not use a scientific representation. Write
thereafter a program which implements this algorithm.

2.2. Make a program which sums

1.

sup =
N

∑
n=1

1
n
,

and

sdown =
n=1

∑
n=N

1
n
.

The program should read N from screen and write the final output to screen.
2. Compare sup og sdown for different N using both single and double precision for N up to
N = 1010. Which of the above formula is the most realiable one? Try to give an explanation
of possible differences. One possibility for guiding the eye is for example to make a log-log
plot of the relative difference as a function of N in steps of 10n with n = 1,2, . . . ,10. This
means you need to compute log10(|(sup(N)− sdown(N))/sdown(N)|) as function of log10(N).

2.3. Write a program which computes

f (x) = x− sinx,

for a wide range of values of x. Make a careful analysis of this function for values of x near
zero. For x≈ 0 you may consider to write out the series expansions of sinx

sinx= x−
x3

3!
+
x5

5!
−
x7

7!
+ . . .

Use the loss of precision theorem of Eq. (2.2) to show that the loss of bits can be limited to at
most one bit by restricting x so that

1− sinx
x
≥
1
2
.

One finds then that x must at least be 1.9, implying that for |x| < 1.9 we need to carefully
consider the series expansion. For |x|≥ 1.9 we can use directly the expression x− sinx.

For |x| < 1.9 you should device a recurrence relation for the terms in the series expansion
in order to avoid having to compute very large factorials.

2.4. Assume that you do not have access to the intrinsic function for expx. Write your own
algorithm for exp(−x) for all possible values of x, with special care on how to avoid the loss of

40 2 Introduction to C++ and Fortran

precision problems discussed in the text. Write thereafter a program which implements this
algorithm.

2.5. The classical quadratic equation ax2+ bx+ c= with solution

x=
(
−b±

√
b2− 4ac

)
/2a,

needs particular attention when 4ac is small relative to b2. Find an algorithm which yields
stable results for all possible values of a, b and c. Write thereafter a program and test the
results of your computations.

2.6. Write a Fortran program which reads a real number x and computes the precision in bits
(using the function DIGIT(x))for single and double precision, the smallest positive number
(using TINY(x)), the largets positive number (using the function HUGE(x)) and the number of
leading digits (using the function PRECISION(x)). Try thereafter to find similar functionalities
in C++ and Python.

2.7. Write an algorithm and programwhich reads in a real number x and finds the two nearest
machine numbers x− and x+, the corresponding relative errors and absolute errors.

2.8. Recurrence relations are extremely useful in representing functions, and form expedient
ways of representing important classes of functions used in the Sciences. We will see two such
examples in the discussion below. One example of recurrence relations appears in studies of
Fourier series, which enter studies of wave mechanics, be it either in classical systems or
quantum mechanical ones. We may need to calculate in an efficient way sums like

F(x) =
N

∑
n=0

ancos(nx), (2.3)

where the coefficients an are known numbers and x is the argument of the function F(). If we
want to solve this problem right on, we could write a simple repetitive loop that multiplies
each of the cosines with its respective coefficient an like

for (n=0; n < N; n++){

f += an*cos(n*x)
}

Even though this seems rather straightforward, it may actually yield a waste of computer
time if N is large. The interesting point here is that through the three-term recurrence relation

cos(n− 1)x− 2cos(x)cos(nx)+ cos(n+1)x= 0, (2.4)

we can express the entire finite Fourier series in terms of cos(x) and two constants. The
essential device is to define a new sequence of coefficients bn recursively by

bn = (2cos(x))bn−1− bn+2+ an n= 0, . . .N− 1,N, (2.5)

defining bN+1 = bN+2+ .. · · ·= 0 for all n> N, the upper limit. We can then determine all the bn
coefficients from an and one evaluation of 2cos(x). If we replace an with bn in the sum for F(x)
in Eq. (2.3) we obtain

F(x) = bN [cos(Nx)− 2cos((N− 1)x)cos(x)+ cos((N− 2)x)]+
bN−1 [cos((N− 1)x)− 2cos((N− 2)x)cos(x)+ cos((N− 3)x)]+ . . .

b2
[
cos(2x)− 2cos2(x)+ 1

]
+ b1 [cos(x)− 2cos(x)]+ b0. (2.6)

2.6 Exercises 41

Using Eq. (2.4) we obtain the final result

F(x) = b0− b1cos(x), (2.7)

and b0 and b1 are determined from Eq. (2.3). The latter relation is after Chensaw. This method
of evaluating finite series of orthogonal functions that are connected by a linear recurrence
is a technique generally available for all standard special functions in mathematical physics,
like Legendre polynomials, Bessel functions etc. They all involve two or three terms in the
recurrence relations. The general relation can then be written as

Fn+1(x) = αn(x)Fn(x)+βn(x)Fn−1(x).

Evaluate the function F(x) = ∑Nn=0ancos(nx) in two ways: first by computing the series of
Eq. (reffour-1) and then using the equation given in Eq. (2.5). Assume that an = (n+2)/(n+1),
set e.g., N = 1000 and try with different x-values as input.

2.9. Often, especially when one encounters singular behaviors, one may need to rewrite the
function to be evaluated in terms of a taylor expansion. Another possibility is to used so-called
continued fractions, which may be viewed as generalizations of a Taylor expansion. When
dealing with continued fractions, one possible approach is that of successive substitutions.
Let us illustrate this by a simple example, namely the solution of a second order equation

x2− 4x− 1= 0, (2.8)

which we rewrite as

x=
1

4+ x
,

which in turn could be represented through an iterative substitution process

xn+1 =
1

4+ xn
,

with x0 = 0. This means that we have

x1 =
1
4
,

x2 =
1

4+ 1
4
,

x3 =
1

4+ 1
4+ 1

4

,

and so forth. This is often rewritten in a compact way as

xn = x0+
a1

x1+ a2
x2+

a3
x3+

a4
x4+...

,

or as

xn = x0+
a1
x1+

a2
x2+

a3
x3+

. . .

Write a program which implements this continued fraction algorithm and solve iteratively
Eq. (2.8). The exact solution is x = 0.23607 while already after three iterations you should
obtain x3 = 0.236111.

42 2 Introduction to C++ and Fortran

2.10. Many physics problems have spherical harmonics as solutions, such as the angular
part of the Schrödinger equation for the hydrogen atom or the angular part of the three-
dimensional wave equation or Poisson’s equation.

The spherical harmonics for a given orbital momentum L, its projection M for −L ≤M ≤ L
and angles θ ∈ [0,π] and φ ∈ [0,2π] are given by

YML (θ ,φ) =

√
(2L+ 1)(L−M)!
4π(L+M)!

PML (cos(θ))exp(iMφ),

The functions PML (cos(θ) are the so-called associated Legendre functions. They are normally
determined via the usage of recurrence relations. Recurrence relations are unfortunately
often unstable, but the following relation is stable (with x= cos(θ))

(L−M)PML (x) = x(2L− 1)PML−1(x)− (L+M− 1)PML−2(x),

and with the analytic (on closed form) expressions

PMM (x) = (−1)M(2M− 1)!!(1− x2)M/2,

and
PMM+1(x) = x(2M+ 1)PMM (x),

we have the starting values and the equations necessary for generating the associated Leg-
endre functions for a general value of L.

1. Make first a function which computes the associated Legendre functions for different val-
ues of L and M. Compare with the closed-form results listed in chapter 5.

2. Make thereafter a program which calculates the real part of the spherical harmonics
3. Make plots for various L = M as functions of θ (set φ = 0) and study the behavior as L is

increased. Try to explain why the functions become more and more narrow as L increases.
In order to make these plots you can use for example gnuplot, as discussed in appendix
3.5.

4. Study also the behavior of the spherical harmonics when θ is close to 0 and when it ap-
proaches 180 degrees. Try to extract a simple explanation for what you see.

2.11. Other well-known polynomials are the Laguerre and the Hermite polynomials, both
being solutions to famous differential equations. The Laguerre polynomials arise from the
solution of the differential equation

(
d2

dx2
−

d
dx

+
λ
x
−
l(l+ 1)
x2

)
L (x) = 0,

where l is an integer l≥ 0 and λ a constant. This equation arises for example from the solution
of the radial Schrödinger equation with a centrally symmetric potential such as the Coulomb
potential. The first polynomials are

L0(x) = 1,

L1(x) = 1− x,

L2(x) = 2− 4x+ x2,

L3(x) = 6− 18x+ 9x2− x3,

and
L4(x) = x4− 16x3+ 72x2− 96x+ 24.

They fulfil the orthogonality relation

2.6 Exercises 43

∫ ∞

−∞
e−xLn(x)2dx= 1,

and the recursion relation

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x).

Similalry, the Hermite polynomials are solutions of the differential equation

d2H(x)
dx2

− 2xdH(x)
dx

+(λ − 1)H(x) = 0,

which arises for example by solving Schrödinger’s equation for a particle confined to move in
a harmonic oscillator potential. The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2− 2,

H3(x) = 8x3− 12,

and
H4(x) = 16x4− 48x2+ 12.

They fulfil the orthogonality relation
∫ ∞

−∞
e−x

2
Hn(x)2dx= 2nn!

√
π,

and the recursion relation
Hn+1(x) = 2xHn(x)− 2nHn−1(x).

Write a program which computes the above Laguerre and Hermite polynomials for different
values of n using the pertinent recursion relations. Check your results agains some selected
closed-form expressions.

