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Abstract. We demonstrate that the partial-wave decomposition of three-nucleon
forces used up to now in momentum space has to be necessarily unstable for high
partial waves. This does not affect the applications performed up to now, which
were restricted to low partial waves. We present a new way to perform the partial-
wave decomposition free of that defect. This is exemplified for the most common
two-pion-exchange Tucson-Melbourne three-nucleon force. For the lower partial
waves the results of the old method are reproduced.

1 Introduction

Three-nucleon forces (3NF) act for more than two nucleons. The interesting questions
are after their strengths and their signatures.

A first observable where 3NF clearly show up is the binding energy of the triton.
Here it is known that the most recent realistic nucleon-nucleon (NN) forces cannot
produce the binding energy and 3NF are needed in order to get the experimental number
[1, 2].

The next logical step is to look into the 3N continuum. Our results based on
numerically precise solutions of the three-nucleon (3N) Faddeev equations and realistic
NN forces agree overall very well with experimental data [3]. In elastic nucleon-
deuteron (Nd) scattering there is only one discrepancy that sticks out clearly, namely the
low-energy vector analyzing power, which depends sensitively on the 3Pj NN force
components. There is either an ambiguity in their determination from NN data or one
really sees a 3NF effect. The inclusion of the 3NF, which have been worked out up to
now, does not diminish that discrepancy [3, 4]. Right now it remains a puzzle [5]. At
very low energies, near the Nd threshold, one has to expect 3NF effects, connected with
the accompanying shift of the triton binding energy. But we have found also scattering
observables that do not scale with the triton binding energy [6, 3]. The threshold region
is an interesting energy domain to be studied further experimentally. At higher energies,
up to about 60 MeV, the 3NF effects we find for cross sections are mostly small (of the
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The very left recoupling coefficient has to be taken in the form where both d-functions act to the
right,
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and G̃aa0 ð pqxÞ can be taken, for instance, from ref. [3].
Finally, the recoupling coefficient from the states of type 1 to 3 require a form where both d-functions

act to the left,
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In Eq. (A.7) we need the same quantity G̃ as in Eq. (A.5) but with interchanged arguments.

Appendix B. Cubic Hermitean Splines

In Appendix A we encountered two-fold interpolations. They have to be performed for very many channels
and should be as good as possible. We found that our usual basis splines [14] are not efficient enough to
perform these two-fold interpolations within a reasonable time. Therefore we sought a more efficient
interpolation algorithm.

Such an algorithm can be constituted by using cubic Hermitean splines. Although cubic Hermitean
splines are well-known in the literature (see, for example, ref. [21]), we shall give here a short introduction
in order to explain our way to use them.
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Consider a function f ðxÞ given at certain grid points xi, i ¼ 1; . . . ; n. Let x be positioned in the interval
½xi; xi þ 1ÿ. For the sake of simpler notation we call the end points xi ; x1 and xi þ 1 ; x2. Then one defines a
unique cubic polynomial fiðxÞ by the following constraints:

fiðx1Þ ¼ f ðx1Þ;

fiðx2Þ ¼ f ðx2Þ;

f 0
i ðx1Þ ¼ f 0

ðx1Þ;

f 0
i ðx2Þ ¼ f 0

ðx2Þ: ðB:1Þ

Therefore these interpolating functions fiðxÞ and their derivatives f 0
i ðxÞ are continuous at the grid points xi.

They are given by

fiðxÞ ¼ f ðx1Þf1ðxÞ þ f ðx2Þf2ðxÞ þ f 0
ðx1Þf3ðxÞ þ f 0

ðx2Þf4ðxÞ ðB:2Þ

in terms of the spline functions
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 !
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We approximate the derivatives f 0
ðx1Þ and f 0

ðx2Þ with the help of a quadratic polynomial, which is
uniquely defined by the function values at a grid point and its two neighbours. Calling xi ¹ 1 ¼ x0 and
xi þ 1 ¼ x3 we get
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At the end points x1 and xn we define the quadratic polynomial by f ðx1Þ, f ðx2Þ, and f ðx3Þ and by f ðxn ¹ 2Þ,
f ðxn ¹ 1Þ, and f ðxnÞ, respectively. This is achieved by putting x0 ¼ x3 in the first case and x3 ¼ xn ¹ 2 in the
second case.

Insertion of Eq. (B.4) into Eq. (B.2) yields

fiðxÞ ¼
"

3

j ¼ 0

SjðxÞ f ðxjÞ ðB:5Þ

for the interpolating function in the i-th interval of the grid points. Thereby we are led to the modified spline
functions
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Eq. (B.5) is very well suited for the numerical usage. The modified spline functions SjðxÞ are independent of
the function values and depend only on the grid points and the actual position x. Therefore they can be
prepared beforehand. This is very important if one has to interpolate very many functions given at the same
grid points as we have to do in our 3NF code.

The form of Eq. (B.5) is the same as the one found in ref. [14] for basis splines. The difference is that the
sum for the basis splines runs over the whole grid, whereas the sum for the Hermitean splines in Eq. (B.5)
has only four terms related to the four grid points nearest to the interpolation point x. (Basis splines are
global splines, whereas Hermitean splines are local.) Assuming a grid of typically 20 points the one-
dimensional interpolation using Hermitean splines needs only 1

5 operations as compared to basis splines. For
a two-dimensional interpolation the number of operations is reduced by a factor of 1

25.
For the two-dimensional interpolation one has to make a bi-cubic ansatz for the interpolating functions

fi jðx; yÞ. To define a bi-cubic function uniquely we need 16 constraints, which we choose as

fi jðx1; y1Þ ¼ f ðx1; y1Þ;
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∂x ∂y
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and identical expressions for the other three points ðx1; y2Þ, ðx2; y1Þ, and ðx2; y2Þ, respectively. Hereby the
four grid points ðx1; y1Þ, ðx1; y2Þ, ðx2; y1Þ, and ðx2; y2Þ are the nearest neighbours for the interpolation point
ðx; yÞ in the xy-plane.

The partial derivatives are approximated as in the one-dimensional case. The second derivative is
estimated by a bi-quadratic polynomial, which is uniquely given by the function value at the specific grid
point and the function values of the eight surrounding grid points.

Following these steps one obtains

fi jðx; yÞ ¼
#

3

k ¼ 0

#

3

l ¼ 0

Sð2Þ

kl ðx; yÞ f ðxk; ylÞ ðB:8Þ

for the interpolating function. It is a fairly easy exercise to show that the two-dimensional spline functions
Sð2Þ

kl ðx; yÞ are simply given by

Sð2Þ

kl ðx; yÞ ¼ SkðxÞSlð yÞ: ðB:9Þ

Analogous equations hold for interpolations in more than two dimensions.
According to our experience one- and two-dimensional interpolations using Hermitean splines are at

least of the same accuracy as interpolations based on basis splines.
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