Appendix A

A Fortran 90/95 primer

A.1 Introduction to F90/F95

Fortran (FORmula TRANSslation) was introduced in 1957 and remains the language of choice for most
scientific programming. The latest standard, Fortran 90 and 95, includes extensions that are familiar to
users of C. Some of the most important features of Fortran 90 include recursive subroutines, dynamic
storage allocation and pointers, user defined data structures, modules, and the ability to manipulate entire
arrays.

Fortran 90 is compatible with Fortran 77 and includes syntax that is no longer considered desirable. Fortran
90 does however not allow for pointer algebra. This feature is included in Fortran 95 together with other
features such as the FORALL statement.

A.1.1 Introduction

In order to get started, consider the following simple Fortran 90 program which sets up Newton’s second
law.

PROGRAM newton
IMPLICIT NONE
DOUBLE PRECISION :: mass, acceleration, force

write to screen and ask for the mass in kg
WRITE(*,*) >Give the mass in units of kg’
read in the value
READ (*,%*) mass
write to screen and ask for the acceleration in ms-2
WRITE(*,*) ’Give the acceleration’
read in the value
READ(*,*) acceleration
force = mass*acceleration
write back to screen
WRITE(*,*) mass, acceleration, force

END PROGRAM newton

The first statement must be a program statement; the last statement must have a corresponding end program
statement.

Integer numerical variables and floating point numerical variables are distinguished. The names of all
variables must be between 1 and 31 alphanumeric characters of which the first must be a letter and the last
must not be an underscore.

a7

48 APPENDIX A. A FORTRAN 90/95 PRIMER

The types of all variables must be declared. Real numbers are written as 2.0 rather than 2 and decl
DOUBLE PRECISION. In general we discorauge the use of single precision in scientific computing
achieved precision is in general not good enough. Comments begin with a ! and can be included any
in the program. Statements are written on lines which may contain up to 132 characters. The as
(*,*) following WRITE represent the default format for output, i.e., the output is e.g., written out on |
screen. Similarly, the READ(*,*) statement means that the program is expecting a line input. Note als
IMPLICIT NONE statement which we strongly recommend the use of. In many Fortran 77 one cat
statements like IMPLICIT REAL*8(a-h,0-z), meaning that all variables beginning with any of the ab
letters are by deafult floating numbers. However, such a usage makes it hard to spot eventual errc
to misspelling of variable names. With IMPLICIT NONE you have to declare all variables and there
detect possible errors already while compiling.

A.1.2 DO construct

Fortran 90/95 use a do construct to have the computer execute the same statements more than o
example of a do construct follows from example 4 in chapter 2. There we sunhfredp to a given
number, say 1000

PROGRAM series

IMPLICIT NONE

DOUBLE PRECISION :: sum
INTEGER :: n

! Initialize the sum
sum = 0.
DO n =1, 1000
sum = sum + 1.0/FLOAT(n)
WRITE(*,*) n,sum
ENDDO

END PROGRAM series

Note that n is an integer variable. In this case the do statement specifies the first and last values
increases by unity (default). Note here that we wish to avoid a division with by an integer through the
of FLOAT(n). Moreover, Fortran does not allow floating numbers as loop variables.

A.1.3 Logical constructs
In the next program example, the do loop is exited by satisfying a test.

PROGRAM series_test
IMPLICIT NONE
DOUBLE PRECISION :: sum, newterm, relative_change
INTEGER :: n
! initialize sum, newterm and relative_change
sum = 0.; newterm=0.; relative_change=0.

DO n =1, 1000

newterm=1.0/FLOAT (n)

sum = sum + newterm

relative_change = newterm/sum

IF (relative_change < 0.00001) EXIT
ENDDO
WRITE(*,*) n, sum, relative_change

END PROGRAM series_test

A.1L. INTRODUCTION TO F90/F95 49

The features included in the above program include:

A do construct can be exited by using the EXIT statement. The IF construct allows the execution of a
sequence of statements (a block) to depend on a condition. The if construct is a compound statement and
begins with IF ... THEN and ends with ENDIF. Examples of more general IF constructs using ELSE and
ELSEIF statements are given in the program library or in the main text. Another feature to observe is the
CYCLE command, which allows the loop variable n to start at a new value. As a rule of thumb, if possible,
you should avoid IF statements or calls to other functions if you operate on arrays inside loops. This may
reduce the effect of optimizations gained through various compiler options.

A.1.4 Subprograms

Subprograms are called from the main program or other subprograms. Subprograms (subroutines and
functions) can be included in modules. The form of a module, subroutine, and a function is similar to
that of a main program. A module is accessed in the main program by the use statement. Subroutines are
invoked in the main program by using the call statement. A subprogram always has access to other entities
in the module. The subprograms in a module are preceded by a contains statement.

Variables and subprograms may be declared public in a module and be available to the main program (and
other modules). An example follows here.

1
! This module contains the parametrization of the EOS as

! a polynomial in density. The number of terms kept in the
! polynomial expansion is given by number_terms.

MODULE eos
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:), PUBLIC :: polynom_terms
INTEGER, PUBLIC :: number_terms
CONTAINS

rho: energy per particle in units of MeV/fm"3
rho=\sum_{i=1}"{number of polynoms} a_i*density~{(i-1)/3}

DOUBLE PRECISION FUNCTION rho(x)
IMPLICIT NONE

DOUBLE PRECISION, INTENT(IN) :: x
INTEGER :: i

rho=polynom_terms1(1)
DO i=2,number_termsi

rho=rho+polynom_terms1(i)#* (x**(FLOAT(i-1)/3.d0))
ENDDO

END FUNCTION rho

pressure in units of MeV/fm~3
pressure = density*d rho/d demsity - rho

DOUBLE PRECISION FUNCTION press(x)
IMPLICIT NONE

DOUBLE PRECISION, INTENT(IN) :: x
INTEGER :: i

press=-rho(x)

50 APPENDIX A. A FORTRAN 90/95 PRIMER

DO i=2,number_termsi
press=press+(FLOAT(i-1)/3.0*polynom_terms1(i)* (x**(FLOAT(i-1)/3.)))
ENDDO

END FUNCTION press

END MODULE eos

INTENT(IN) means that the dummy argument cannot be changed within the subprogram. INTENT(C
means that the dummy argument cannot be used within the subprogram until it is given a value
the intent of passing a value back to the calling program. The statement INTENT(INOUT) means
the dummy argument has an initial value which is changed and passed back to the calling prograr
recommend that you use these options when calling subprograms

The module(s) can be included in a separate file.

A.1l5 Arrays

An array is declared in the declaration section of a program, module, or procedure using the dime
attribute. Examples include

DOUBLE PRECISION, DIMENSION (10) :: x,y
REAL, DIMENSION (1:10) :: x,y

INTEGER, DIMENSION (-10:10) :: prob
INTEGER, DIMENSION (10,10) :: spin

The default value of the lower bound of an array is 1. For this reason the first two statements are equi
to the first. The lower bound of an array can be negative. The last statement is an example o
dimensional array.

Rather than assigning each array element explicitly, we can use an array constructor to give an arre
of values. An array constructor is a one-dimensional a list of values, separated by commas, and de
by "(/"and "/)". An example is

a(1:3) = (/ 2.0, -3.0, -4.0 /)

is equivalent to the separate assignments

a(1) = 2.0
a(2) = -3.0
a(3) = -4.0

A.1.6 Allocate statement and mathematical operationson arrays

One of the better features of Fortran 90 is dynamic storage allocation. That is, the size of an arre
be changed during the execution of the program. To see how the dynamic allocation works in Fortre
consider the following simple example where we set dp<a4 unity matrix.

IMPLICIT NONE
! The definition of the matrix, using dynamic allocation
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: unity
! The size of the matrix
INTEGER :: n
! Here we set the dim n=4
n=4
! Allocate now place in memory for the matrix
ALLOCATE (unity(m,n))
! all elements are set equal zero

A.1L. INTRODUCTION TO F90/F95 51

unity=0.
! setup identity matrix
DO i=1,n
unity(i,i)=1.
ENDDO
DEALLOCATE (unity)

We always recommend to use to deallocation statement, since this frees space in memory. If the matrix is
transferred to a function from a calling program, one can transfer the dimensionafitjrat matrix with
the call. Another possibility is to determine the dimensionality with the SIZE command, i.e.,

n=SIZE(unity,DIM=1)

will give the size of the rows, while using DIM=2 gives that of the columns.

Other useful Fortran 90 intrisic functions are given by the following examples. Suppose we need to find the
maximum absolute value of of the column elements in a two-dimensional matrix. In Fortran 77 we would
have to code something like

! loop over rows i
DO i=1,n
max_value=0.
! the loop over columns
DO j=1,n
IF (ABS(a(i,j)) > max_value) max_value=ABS(a(i,j))
ENDDO
! then we store this number in a one-dimensional vector
max_value_row(i)=max_value
ENDDO

In Fortran 90 this statement is replaced by one line
max_value_row=MAXVAL(ABS(a), DIM=2)

where DIM=2 tells that we are searching among columns. It is understood that alf @ewsevaluated
simultaneously.
As another example, suppose we need to evaluate

n
w; = Z @i + 5],

Jj=1
which in Fortran 77 would involve a sum over i and j can be written in Fortran 90 using the intrisic function
SUM

DO i=1,n
w(i)=SUM(ABS (x(i)+x)
ENDDO
Similarly, the product

n

wi= [[(@-z),

J=15#i
can be coded by aid of the PRODUCT function
DO i=1,n

w(i)=PRODUCT(x(i)-x, MASK=(x /= x(i)))
ENDDO

52 APPENDIX A. A FORTRAN 90/95 PRIMER

where the MASK argument prevents that the diagonal terms are included. Another way of writing
above MASK statement is through teh WHERE statement. Consider a division of all matrix element:
matrix B with a matrix C, i.e., we have

A=B/C

meaning that we are performing a division for i and pef/c;;. If we wish to avoid division by zero we
could write the above equation as

WHERE (¢ /= 0) a=b/c

and that's all which is needed. The statement inside WHERE checks all matrix elements of thedmatr
Other useful functions are the dot products of two vectors, i.e.,

a=DOT_PRODUCT (b,c)
which means: = b(1)c(1) + b(2)c(2) + ... + b(n)c(n). This could also have been written as
a=SUM (bx*c)

Here's an example of a module for matrix operations which employs the module mesh_variables th
the USE statement.

MODULE matrix_manipulations

USE mesh_variables
IMPLICIT NONE

CONTAINS
! perform the outer product of two vectors a and b
FUNCTION outer_product(a,b)

DOUBLE PRECISION, INTENT(IN) , DIMENSION(:) :: a, b
DOUBLE PRECISION, DIMENSION(SIZE(a), SIZE(b)) :: outer_product

outer_product = SPREAD(a,DIM=2, NCOPIES=SIZE(b)) * &
SPREAD(b,DIM=1, NCOPIES=SIZE(a))

END FUNCTION outer_product
! multiply a matrix with a vector
FUNCTION matrix_vector_mult(a,b)

DOUBLE PRECISION, INTENT(IN) , DIMENSION(:) :: b
DOUBLE PRECISION, DIMENSION(:,:), INTENT(IN) :: a
DOUBLE PRECISION, DIMENSION(SIZE(b)) :: matrix_vector_mult
INTEGER :: i
DO i=1, SIZE(Db)
matrix_vector_mult(i)=SUM(a(i,:)*b(:))
ENDDO

END FUNCTION matrix_vector_mult

END MODULE matrix_manipulations

For more functions, we recommend that you consult a F90 manual or see the link to F90 lectures
web page.

A.1L. INTRODUCTION TO F90/F95 53 54 APPENDIX A. A FORTRAN 90/95 PRIMER

A.1.7 Complex variables END FUNCTION addition

Fortran 90 is uniquely suited to handle complex variables through variable definitions like COMPLEX and FUNCTION subtraction(a,b)

functions like AIMAG.

As another example, you could define your own complex operations through the following example.

PROGRAM complex_example

IMPLICIT NONE

DOUBLE PRECISION, parameter :: pi = 3.141592654
COMPLEX :: b,bstar,f,arg, a

DOUBLE PRECISION :: c

INTEGER :: d

A complex constant is written as two real numbers, separated by
a comma and enclosed in parentheses.

a = (2.D0,-3.D0)

If one of part has a kind, the other part must have same kind
b = (0.5D0,0.8D0)
WRITE(*,*) ’a =, a

WRITE(*,*) ’a*a =’, a*a
WRITE(#*,%) ’b =’, b
WRITE(*,*) ’a*b =’, a*b
real part of b
¢ = REAL(D)
WRITE(*,*) ’real part of b =, ¢
imaginary part of b
¢ = aimag(b)
WRITE(*,*) ’imaginary part of b =, ¢
arg = CMPLX(0.0DO,pi)
b = EXP(arg)

complex conjugate of b
bstar = CONJG(b)
absolute value of b
£ = ABS(Db)
WRITE(*,*) ’properties of b =’, b,bstar,b*bstar,f

END PROGRAM complex_example
MODULE complex_operations
IMPLICIT NONE
TYPE complex_variable
DOUBLE PRECISION :: real_part, complex_part
END TYPE complex_variable
CONTAINS

FUNCTION addition(a,b)

TYPE (complex_variable), INTENT(IN) :: a, b
TYPE (complex_variable) :: addition

addition = &

complex_variable(alireal_part+b%real_part,alcomplex_part+blcomplex_part)

TYPE (complex_variable), INTENT(IN) :: a, b
TYPE (complex_variable) :: subtraction

subtraction = &

complex_variable(alireal_part-b%real_part,a’complex_part-bjcomplex_part

END FUNCTION subtraction
FUNCTION multiplication(a,b)

TYPE (complex_variable), INTENT(IN) :: a, b
TYPE (complex_variable) :: multiplication

multiplication%real_part =&
a%real_part*bYreal_part-alcomplex_part*bjcomplex_part

multiplication¥%complex_part = &
aljireal_part*bYcomplex_part+alcomplex_part*blreal_part

END FUNCTION multiplication

END MODULE complex_operations

	Morten_HJ_manybodylect 27
	Morten_HJ_manybodylect 28
	Morten_HJ_manybodylect 29
	Morten_HJ_manybodylect 30

