
Chapter 6

Numerical interpolation, extrapolation and
fi tting of data

6.1 Introduction

Numerical interpolation and extrapolation is perhaps one of the most used tools in numerical applications
to physics. The often encountered situation is that of a function f at a set of points x1 . . . xn where an
analytic form is missing. The function f may represent some data points from experiment or the result of
a lengthy large-scale computation of some physical quantity that cannot be cast into a simple analytical
form.

We may then need to evaluate the function f at some point x within the data set x1 . . . xn, but where
x differs from the tabulated values. In this case we are dealing with interpolation. If x is outside we are
left with the more troublesome problem of numerical extrapolation. Below we will concentrate on two
methods for interpolation and extrapolation, namely polynomial interpolation and extrapolation and the
qubic spline interpolation approach.

6.2 Interpolation and extrapolation

6.2.1 Polynomial interpolation and extrapolation

Let us assume that we have a set of N + 1 points y0 = f(x0), y1 = f(x1), . . . , yN = f(xN ) where none
of the xi values are equal. We wish to determine a polynomial of degree n so that

PN (xi) = f(xi) = yi, i = 0, 1, . . . ,N (6.1)

for our data points. If we then write Pn on the form

PN (x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + · · · + aN (x − x0) . . . (x − xN−1), (6.2)

then Eq. (6.1) results in a triangular system of equations

a0 = f(x0)
a0+ a1(x1 − x0) = f(x1)
a0+ a1(x2 − x0)+ a2(x2 − x0)(x2 − x1) = f(x2)
. . . . . . . . . . . .

. (6.3)

119



Numerical interpolation, extrapolation and fitting of data

The coefficients a0, . . . , aN are then determined in a recursive way, starting with a0, a1, . . . .
The classic of interpolation formulae was created by Lagrange and is given by

PN (x) =
N

∑

i=0

∏

k 6=i

x − xk

xi − xk
yi. (6.4)

If we have just two points (a straight line) we get

P1(x) =
x − x0

x1 − x0
y1 +

x − x1

x0 − x1
y0, (6.5)

and with three points (a parabolic approximation) we have

P3(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
y2 +

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
y1 +

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
y0 (6.6)

and so forth. It is easy to see from the above equations that when x = xi we have that f(x) = f(xi) It is
also possible to show that the approximation error (or rest term) is given by the second term on the right
hand side of

f(x) = PN (x) +
ωN+1(x)f (N+1)(ξ)

(N + 1)!
. (6.7)

The function ωN+1(x) is given by

ωN+1(x) = aN (x − x0) . . . (x − xN ), (6.8)

and ξ = ξ(x) is a point in the smallest interval containing all interpolation points xj and x. The algorithm
we provide however (the code POLINT in the program library) is based on divided differences. The recipe
is quite simple. If we take x = x0 in Eq. (6.2), we then have obviously that a0 = f(x0) = y0. Moving
a0 over to the left-hand side and dividing by x − x0 we have

f(x) − f(x0)

x − x0
= a1 + a2(x − x1) + · · · + aN (x − x1)(x − x2) . . . (x − xN−1), (6.9)

where we hereafter omit the rest term

f (N+1)(ξ)

(N + 1)!
(x − x1)(x − x2) . . . (x − xN ). (6.10)

The quantity

f0x =
f(x) − f(x0)

x − x0
, (6.11)

is a divided difference of first order. If we then take x = x1, we have that a1 = f01. Moving a1 to the
left again and dividing by x − x1 we obtain

f0x − f01

x − x1
= a2 + · · · + aN (x − x2) . . . (x − xN−1). (6.12)

and the quantity

f01x =
f0x − f01

x − x1
, (6.13)
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6.2 – Interpolation and extrapolation

is a divided difference of second order. We note that the coefficient

a1 = f01, (6.14)

is determined from f0x by setting x = x1. We can continue along this line and define the divided
difference of order k + 1 as

f01...kx =
f01...(k−1)x − f01...(k−1)k

x − xk
, (6.15)

meaning that the corresponding coefficient ak is given by

ak = f01...(k−1)k. (6.16)

With these definitions we see that Eq. (6.7) can be rewritten as

f(x) = a0 +
∑

k=1

Nf01...k(x − x0) . . . (x − xk−1) +
ωN+1(x)f (N+1)(ξ)

(N + 1)!
. (6.17)

If we replace x0, x1, . . . , xk in Eq. (6.15) with xi+1, xi+2, . . . , xk, that is we count from i+1 to k instead
of counting from 0 to k and replace x with xi, we can then construct the following recursive algorithm
for the calculation of divided differences

fxixi+1...xk
=

fxi+1...xk
− fxixi+1...xk−1

xk − xi
. (6.18)

Assuming that we have a table with function values (xj , f(xj) = yj) and need to construct the coeffi-
cients for the polynomial PN (x). We can then view the last equation by constructing the following table
for the case where N = 3.

x0 y0

fx0x1

x1 y1 fx0x1x2

fx1x2
fx0x1x2x3

x2 y2 fx1x2x3

fx2x3

x3 y3

. (6.19)

The coefficients we are searching for will then be the elements along the main diagonal. We can under-
stand this algorithm by considering the following. First we construct the unique polynomial of order zero
which passes through the point x0, y0. This is just a0 discussed above. Therafter we construct the unique
polynomial of order one which passes through both x0y0 and x1y1. This corresponds to the coefficient a1

and the tabulated value fx0x1
and together with a0 results in the polynomial for a straight line. Likewise

we define polynomial coefficients for all other couples of points such as fx1x2
and fx2x3

. Furthermore, a
coefficient like a2 = fx0x1x2

spans now three points, and adding together fx0x1
we obtain a polynomial

which represents three points, a parabola. In this fashion we can continue till we have all coefficients. The
function POLINT included in the library is based on an extension of this algorithm, knowns as Neville’s
algorithm. It is based on equidistant interpolation points. The error provided by the call to the function
POLINT is based on the truncation error in Eq. (6.7).

Exercise 6.1
Use the function f(x) = x3 to generate function values at four points x0 = 0, x1 = 1, x2 =
5 and x3 = 6. Use the above described method to show that the interpolating polynomial
becomes P3(x) = x + 6x(x − 1) + x(x − 1)(x − 5). Compare the exact answer with the
polynomial P3 and estimate the rest term.
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Numerical interpolation, extrapolation and fitting of data

6.3 Richardson’s deferred extrapolation method

Here we present an elegant method to improve the precision of our mathematical truncation, without
too many additional function evaluations. We will again study the evaluation of the first and second
derivatives of exp (x) at a given point x = ξ. In Eqs. (3.1) and (3.2) for the first and second derivatives,
we noted that the truncation error goes like O(h2j).

Employing the mid-point approximation to the derivative, the various derivatives D of a given func-
tion f(x) can then be written as

D(h) = D(0) + a1h
2 + a2h

4 + a3h
6 + . . . , (6.20)

where D(h) is the calculated derivative, D(0) the exact value in the limit h → 0 and ai are independent
of h. By choosing smaller and smaller values for h, we should in principle be able to approach the exact
value. However, since the derivatives involve differences, we may easily loose numerical precision as
shown in the previous sections. A possible cure is to apply Richardson’s deferred approach, i.e., we
perform calculations with several values of the step h and extrapolate to h = 0. The philososphy is to
combine different values of h so that the terms in the above equation involve only large exponents for h.
To see this, assume that we mount a calculation for two values of the step h, one with h and the other
with h/2. Then we have

D(h) = D(0) + a1h
2 + a2h

4 + a3h
6 + . . . , (6.21)

and

D(h/2) = D(0) +
a1h

2

4
+

a2h
4

16
+

a3h
6

64
+ . . . , (6.22)

and we can eliminate the term with a1 by combining

D(h/2) +
D(h/2) − D(h)

3
= D(0) −

a2h
4

4
−

5a3h
6

16
. (6.23)

We see that this approximation to D(0) is better than the two previous ones since the error now goes like
O(h4). As an example, let us evaluate the first derivative of a function f using a step with lengths h and
h/2. We have then

fh − f−h

2h
= f ′

0 + O(h2), (6.24)

fh/2 − f−h/2

h
= f ′

0 + O(h2/4), (6.25)

which can be combined, using Eq. (6.23) to yield

−fh + 8fh/2 − 8f−h/2 + f−h

6h
= f ′

0 −
h4

480
f (5). (6.26)

In practice, what happens is that our approximations to D(0) goes through a series of steps

D
(0)
0

D
(1)
0 D

(0)
1

D
(2)
0 D

(1)
1 D

(0)
2

D
(3)
0 D

(2)
1 D

(1)
2 D

(0)
3

. . . . . . . . . . . .

, (6.27)
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6.4 – Qubic spline interpolation

where the elements in the first column represent the given approximations

D
(k)
0 = D(h/2k). (6.28)

This means that D
(0)
1 in the second column and row is the result of the extrapolating based on D

(0)
0 and

D
(1)
0 . An element D

(k)
m in the table is then given by

D(k)
m = D

(k)
m−1 +

D
(k+1)
m−1 − D

(k)
m−1

4m − 1
(6.29)

with m > 0. I.e., it is a linear combination of the element to the left of it and the element right over the
latter.

In Table 3.1 we presented the results for various step sizes for the second derivative of exp (x) using
f ′′
0 =

fh−2f0+f
−h

h2 . The results were compared with the exact ones for various x values. Note well that
as the step is decreased we get closer to the exact value. However, if it is further increased, we run into
problems of loss of precision. This is clearly seen for h = 0000001. This means that even though we
could let the computer run with smaller and smaller values of the step, there is a limit for how small the
step can be made before we loose precision. Consider now the results in Table 6.1 where we choose to
employ Richardson’s extrapolation scheme. In this calculation we have computed our function with only
three possible values for the step size, namely h, h/2 and h/4 with h = 0.1. The agreement with the
exact value is amazing! The extrapolated result is based upon the use of Eq. (6.29). We will use this

x h = 0.1 h = 0.05 h = 0.025 Extrapolat Error
0.0 1.00083361 1.00020835 1.00005208 1.00000000 0.00000000
1.0 2.72054782 2.71884818 2.71842341 2.71828183 0.00000001
2.0 7.39521570 7.39059561 7.38944095 7.38905610 0.00000003
3.0 20.10228045 20.08972176 20.08658307 20.08553692 0.00000009
4.0 54.64366366 54.60952560 54.60099375 54.59815003 0.00000024
5.0 148.53687797 148.44408109 148.42088912 148.41315910 0.00000064

Table 6.1: Result for numerically calculated second derivatives of exp (x) using extrapolation. The first
three values are those calculated with three different step sizes, h, h/2 and h/4 with h = 0.1. The
extrapolated result to h = 0 should then be compared with the exact ones from Table 3.1.

method to obtain improved eigenvalues in chapter 12.

6.4 Qubic spline interpolation

Qubic spline interpolation is among one of the mostly used methods for interpolating between data points
where the arguments are organized as ascending series. In the library program we supply such a function,
based on the so-called qubic spline method to be described below.

A spline function consists of polynomial pieces defined on subintervals. The different subintervals
are connected via various continuity relations.

Assume we have at our disposal n + 1 points x0, x1, . . . xn arranged so that x0 < x1 < x2 <
. . . xn−1 < xn (such points are called knots). A spline function s of degree k with n + 1 knots is defined
as follows
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– On every subinterval [xi−1, xi) s is a polynomial of degree ≤ k.

– s has k − 1 continuous derivatives in the whole interval [x0, xn].

As an example, consider a spline function of degree k = 1 defined as follows

s(x) =















s0(x) = a0x + b0 x ∈ [x0, x1)
s1(x) = a1x + b1 x ∈ [x1, x2)

. . . . . .
sn−1(x) = an−1x + bn−1 x ∈ [xn−1, xn]

(6.30)

In this case the polynomial consists of series of straight lines connected to each other at every end-
point. The number of continuous derivatives is then k − 1 = 0, as expected when we deal with straight
lines. Such a polynomial is quite easy to construct given n+1 points x0, x1, . . . xn and their correspond-
ing function values.

The most commonly used spline function is the one with k = 3, the so-called qubic spline function.
Assume that we have in adddition to the n + 1 knots a series of functions values y0 = f(x0), y1 =
f(x1), . . . yn = f(xn). By definition, the polynomials si−1 and si are thence supposed to interpolate the
same point i, i.e.,

si−1(xi) = yi = si(xi), (6.31)

with 1 ≤ i ≤ n − 1. In total we have n polynomials of the type

si(x) = ai0 + ai1x + ai2x
2 + ai2x

3, (6.32)

yielding 4n coefficients to determine. Every subinterval provides in addition the 2n conditions

yi = s(xi), (6.33)

and
s(xi+1) = yi+1, (6.34)

to be fulfilled. If we also assume that s′ and s′′ are continuous, then

s′i−1(xi) = s′i(xi), (6.35)

yields n − 1 conditions. Similarly,
s′′i−1(xi) = s′′i (xi), (6.36)

results in additional n− 1 conditions. In total we have 4n coefficients and 4n− 2 equations to determine
them, leaving us with 2 degrees of freedom to be determined.

Using the last equation we define two values for the second derivative, namely

s′′i (xi) = fi, (6.37)

and
s′′i (xi+1) = fi+1, (6.38)

and setting up a straight line between fi and fi+1 we have

s′′i (x) =
fi

xi+1 − xi
(xi+1 − x) +

fi+1

xi+1 − xi
(x − xi), (6.39)
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6.4 – Qubic spline interpolation

and integrating twice one obtains

si(x) =
fi

6(xi+1 − xi)
(xi+1 − x)3 +

fi+1

6(xi+1 − xi)
(x − xi)

3 + c(x − xi) + d(xi+1 − x). (6.40)

Using the conditions si(xi) = yi and si(xi+1) = yi+1 we can in turn determine the constants c and d
resulting in

si(x) = fi

6(xi+1−xi)
(xi+1 − x)3 + fi+1

6(xi+1−xi)
(x − xi)

3

+ ( yi+1

xi+1−xi
−

fi+1(xi+1−xi)
6 )(x − xi) + ( yi

xi+1−xi
−

fi(xi+1−xi)
6 )(xi+1 − x). (6.41)

How to determine the values of the second derivatives fi and fi+1? We use the continuity assumption
of the first derivatives

s′i−1(xi) = s′i(xi), (6.42)

and set x = xi. Defining hi = xi+1 − xi we obtain finally the following expression

hi−1fi−1 + 2(hi + hi−1)fi + hifi+1 =
6

hi
(yi+1 − yi) −

6

hi−1
(yi − yi−1), (6.43)

and introducing the shorthands ui = 2(hi + hi−1), vi = 6
hi

(yi+1 − yi) −
6

hi−1
(yi − yi−1), we can

reformulate the problem as a set of linear equations to be solved through e.g., Gaussian elemination,
namely

















u1 h1 0 . . .
h1 u2 h2 0 . . .
0 h2 u3 h3 0 . . .

. . . . . . . . . . . . . . . . . .
. . . 0 hn−3 un−2 hn−2

0 hn−2 un−1

































f1

f2

f3

. . .
fn−2

fn−1

















=

















v1

v2

v3

. . .
vn−2

vn−1

















. (6.44)

Note that this is a set of tridiagonal equations and can be solved through only O(n) operations. The
functions supplied in the program library are spline and splint. In order to use qubic spline interpolation
you need first to call

s p l i n e ( double x [ ] , double y [ ] , i n t n , double yp1 , double yp2 , double y2 [ ] )

This function takes as input x[0, .., n − 1] and y[0, .., n − 1] containing a tabulation yi = f(xi) with
x0 < x1 < .. < xn−1 together with the first derivatives of f(x) at x0 and xn−1, respectively. Then the
function returns y2[0, .., n − 1] which contanin the second derivatives of f(xi) at each point xi. n is the
number of points. This function provides the qubic spline interpolation for all subintervals and is called
only once. Thereafter, if you wish to make various interpolations, you need to call the function

s p l i n t ( double x [ ] , double y [ ] , double y2a [ ] , i n t n , double x , double ∗y )

which takes as input the tabulated values x[0, .., n − 1] and y[0, .., n − 1] and the output y2a[0,..,n - 1]
from spline. It returns the value y corresponding to the point x.
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