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Abstract

In this work the numerical solution of the eingenvalue prob-
lems are obtained through the shooting algorithm, which is
applied to solve to the time-independent Schrödinger Equa-
tion for the one dimensional harmonic oscillator and the ra-
dial wavefunctions of the hydrogen atom. The results are dis-
cussed and compared to the respective analytical solutions of
obtained via pure mathematical handling and physical argu-
mentation.

Introduction
aaaA wide variety of situations in physics happens to be ex-
pressed by second order differential equations, which are not
always solvable. In such cases, the numerical approach is
necessary in order to study the system.
aaaAs a subclass of second order differential equation, there
are the eigenvalue problems, which involves the determina-
tion o the eingenvalues to which the solutions of the equation
of the problem obeys the boundary conditions, i.e., the spa-
tial restrictions of the problem [6].
aaaThe problem treated in this work is the quantum har-
monic oscillator which is an example of both eigenvalue de-
termination and root solving problem; as it will be better
explained in the following sections [4].
aaaFirst, one solves the harmonic oscillator analytically via
Fr0̈benius method [5], in which one rewrites the wavefunc-
tion as a power series. As this new wavefunction is sub-
stitued in the Schrödinger equation, a recursion relation be-
tween the series terms appears so that on can analize the
even and odd terms, whose parity relates to the states parity.
The solution of the radial part of the Schrödinger equation
for the hydrogen atom are the so called hydrogen atom radial
wavefunctions and they represent the behavior of the wave-
function given a n and a l. These are obtained in the same
way the harmonic oscillator both analytical and numerical
solutions.
aaaIn the numerical resolution of this problem, one uses the
shooting method together with the bisection method as a root
solver in order to obtain both the eigenvalues and wavefunc-
tions subject to the initial and boundary conditions [2].
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The Shooting Algorithm
aaaaaConsider, for instance, the time-independent one di-
mensional Schrödinger equation,

− h̄

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (1)

Let V(x) remain undefined and ψ(x) be the eigenstate of
the problem, one can then rewrite the the above equaiton
such that

− h̄

2m

d2ψ(x)

dx2
+ [V (x)− E]ψ(x) = 0 (2)

Now one need to solve the above equation for the eigen-
values E and the eigenstates ψ(x) for and V(x).

The idea is to expand the second order derivatives by us-
ing the finite difference method, hence

lim
∆x

0
∆f

∆x
=
df

dx
(3)

Which,

df

dx
≈ ∆f

∆x
=
f(x+ δx)− f(x− δx)

2δx
= (4)

d2f

dx2
≈ 1

2δx

(
df

dx
|x+δx −

df

dx
|x−δx

)
(5)

Now applying the difference method one obtains

d2f

dx2
≈ f(x+ δx)− 2f(x) + f(x− δx)

(δx)2
(6)

Now substituting the above expression in the Schrödinger
equation [7], one obtains

− h̄

2m

[
ψ(x+ δx)− 2ψ(x) + ψ(x− δx)

(δx)2

]
+[V (x)− E]ψ(x) = 0

(7)
Hence,

ψ(x+δx)−2ψ(x)+ψ(x−δx) =
2m

h̄2 (δx)2 [V (x)− E] = 0

(8)
Simplifying the expression, one has that



ψ(x+ δx) =
2m

h̄2 (δx)2 [V (x)− E]ψ(x)−ψ(x− δx) (9)

The above expression says that if one knows the ψ(x−δx
and ψ(x) , ψ(x + δx) can be determined for any eigenen-
ergy E. The Shooting Method is the iterative raffle of initial
conditions and eigenenergies and the correct matching with
the problem’s initial conditions[].

Starting with the two known values of ψ(x) a third value
is predicted, which is to be used in the next iteration allowing
the predition of a fourth value; this procedure is successively
applied by a choosen energy E. The solutions must satisfy
the boundary conditions below;

ψ(x→∞)→ 0;
∂

∂x
ψ(x→∞)→ 0

For a symmetric V(x), so are problem’s eigenstates. Sup-
pose a state with odd parity [7], the first excited state of a
symmetric quantum well, seen in figure (), it must be zero
at the middle of the well, due to its parity. This way, a small
displacement along the x direction, ψ(x) must have a finite
value, whose magnitude is not significant due to the normal-
ization of ψ. Starting with the following boundary condi-
tions:

ψ(0) = 0;ψ(δx) = 1

Now it is necessary to find E [3], which is the value
that guarantees the ψ(x) satistfies the boundary conditions
above. Since E is unkown, ψ is a function of x and E. Now,
one must look for solutions that obeys

ψ(∞, E) = 0

Whose values can be determined via any root solver.
In the case where the eigenstate has even parity, the wave

function has a non-zero value at x=0. Hence, ψ(0) = 1
is a nice choice. Also, ψ(x) is symmetric, i.e., ψ(δx) =
ψ(−δx), which when substituted into (), yields:

ψ(δx) =

(
2m

h̄2 (δx)2 [V (x)− E] + 2

)
· 1− ψ(δx) (10)

So,

ψ(δx) =
1

2

(
2m

h̄2 (δx)2 [V (x)− E] + 2

)
(11)

The Analytical Solution for the Quantum
Harmonic Oscillator

aaaThe potential associated to this system is,

V (x) =
1

2
mω2x2 (12)

And the the problem consists on solving the the time-
independent Schrödinger Equation:

− h̄

2m

d2ψ(x)

dx2
+

1

2
mω2x2ψ(x) = Eψ(x) (13)

Which can be rewriten in a more convenient form by
defining

ε =

√
mω

h̄
x (14)

and
K =

2E

h̄ω
(15)

Hence,

d2ψ

dε2
=
(
ε2 −K

)
ψ (16)

Which, by considering ε >> K reduces to

d2ψ

dε2
≈ ε2ψ (17)

Whose solution is,

ψ(ε) = Ae−
ε2

2 +Be
ε2

2 (18)

The second term must be zero, once ψ(ε) = h(ε)e−
ε2

2 ,

dψ

dε
=

(
dh

dε
− hε

)
e−

ε2

2 (19)

So,

d2ψ

dε2
=

(
d2h

dε2
− 2ε

dh

dε
+ (ε2 − 1)h

)
e−

ε2

2 (20)

And finally gives

d2ψ

dε2
− 2ε

dh

dε
+ (K − 1)h = 0 (21)

Solving this differential equation through the Frobenius
Method

h(ε) =

∞∑
j=0

ajε
j = 0 (22)

Differentiating the equation,

dh(ε)

dε
=

∞∑
j=0

jajε
j−1 = 0 (23)

Again,

d2h(ε)

dε2
=

∞∑
j=0

(j + 1)(j + 2)aj+2ε
j = 0 (24)

Putting (22)-(24) back in (21) yields
∞∑
j=0

[(j + 1)(j + 2)aj+2 − 2jaj + (K − 1)aj ] ε
j = 0

(25)
From which one obtains the following recursion formula,

aj+2 =
(2j + 1−K)

(j + 1)(j + 2)
aj (26)



Because of the j+2 index it is necessary to split the solu-
tion into its even and odd terms, i.e., terms whose index and
power are even and odd [5].

In order to normalize the solutions, one sees that for a
large j the recursion formula (15) reduces to,

aj+2 ≈
2

j
aj (27)

Which implies that for a given constant C such that

aj =
C

(j/2)!
(28)

The solution becomes

h(ε) = C

∞∑
j=0

1

(j/2)!
εj = C

∞∑
j=0

1

(j)!
ε2j = Ceε

2

(29)

As the solution has to be truncated at a given term, which
can be even or odd, (15) requires that K = 2n+1.

When subtituted in (4) results that

En =

(
n+

1

2

)
h̄ω (30)

Where n ∈ N

The Harmonic Oscillator Numerical Solution
aaaAs a lot of the numerical implementation of the problem
has already been discussed in the explanation of the method.
aaaHere the first two excited states are discussed in deep
detail as well as the ground state [7].
aaaIn order to ease the check of the results, one might use
h̄ = ω = 1, without any restriction.

The Implementation of Shooting Method
aaaThe piece of code below shows the details in the imple-
mentation of shooting method with the bisection method as
the root solver.
aaaaThe code was writen in Python and can be run on
python2.7 interpreter. aaaaaThe code generates the figures
used in this article [8].

E_precision = 0.000001

lower_bound = 0.0
upper_bound = 4.0

E = upper_bound
dE = 1

while dE> E_precision:

for i in lin[0:-1]:

if i==0:
psi[i+1]=f0[i]+dx*dpsi_0

else:

psi[i+1] = -psi[i-1]+psi[i]*\
(2-dx**2*(2*E-x[i]**2))

#Here Bisection Method is Applied

if psi[i]>5:
lower_bound = E
E = lower_bound + \
(upper_bound-lower_bound)/2
break

elif psi[i]<-5:
upper_bound = E
E = upper_bound - \
(upper_bound-lower_bound)/2
break

dE = upper_bound-lower_bound

What it does is basically to use the initial guess for the
energy to check if the this energy permits the wave function
to obey the boundary conditions[autarkaw].

Ground State
aaaAs the ground state is even, i.e., symmetric with respect
to x=0, ψ′(0) = 0 and one choosing the ψ(0) = 1.
aaaIt is important to mention that the choice of ψ(0) is irrel-
evant since ψ(x) will be normalized.
aaaThe values of ψ′(0) and ψ(0) suffice to determine the
ground state energy by choosing defining a gap within which
the ground state energy can be found. The length of the gap
is directly related to the uncertainty of the calculation.
aaaIncreasing x by δx along the domain, the shooting is
run with the initial guess E0. This valueis improved itera-
tively with the root solver, which in this case is the bisection
method.
aaaIf ψ(x → ∞) → ∞ then the initial guess for E0 is
wrong and must be corrected, in this case it is raised; On the
other hand, if ψ(x→∞)→ −∞, the initial guess for E0 is
lowered.
aaaThis procedure is held until the choosen accuracy for the
bisection method is reached.
aaaThe input used to determine the eigenenergy correspond-
ing to the ground state was already show in the code above
resulting on

E0: 0.50028181076

With 0.06% of relative error from the analytical ground state
energy E0 = (0 + 1

2 ) = 0.5.

First Excited State
aaaAs the first excited state is odd, ψ′(0) can assume any
value but ψ(0) has to be zero.
aaaObviously E0 < E1, this sugests that a good choice
for the lower bound for the first excited state is E0 but the



Figure 1: Comparison of the Exact solution and the Wave-
function for the ground state through Shooting Method ran
with the above input parameters

choice of the upper bound is not a simple task since the only
condition it has to obey is that E1 > E0.
aaaHowever it is not easy to determine the upper bound of
the first excited state, it must equal the lower bound of the
second excited state.

The input used here was:

lower_bound = E
upper_bound = 4.0
E1=lower_bound

Which resulted on an eigenenergy of:

E1: 1.50000014392

And a relative error of 0.00009% over then first excited state
energy in (30), 1.5 .

Second Excited State
aaaThe second excited state is even and the condition E1 <
E2 is a the best choice. Due to the parity of state the same
initial conditions used for the ground state can be used here.

lower_bound = E
upper_bound = 4.0
E1=lower_bound

From which, one obtains:

E2: 2.50070469402

Figure 2: Comparison of the Exact solution and the Wave-
function for the first excited state through Shooting Method
ran with lower_bound = E, upper_bound = 4.0 and E1 =
lower_bound

Figure 3:

Whose relative error is 0.03% with respect to the second ex-
cite state energy, 2.5.

As one can see in figures 1-3, the agreement of the ana-
lytical solution and the calculated is impressive with a small
deviation in the edges.

Schrödinger’s Equation Radial Part Obtention
aaaThe solution of the angular part of the Schrödinger equa-
tion was already simulated as posted on the Quantum Me-
chanics’ Drive, within a python implementation that used
scipy.special module (which is an excellent package since
it accomplishes all special functions used in physics and its
simplicity in the usage) to calculate the spherical harmon-
ics and Mayavi for the visualization. Here, the solution of
the radial part of the Schrödinger equation is obtained both



analytically and through computer simulation.
First, one may start by deriving the exact solution. After

applying the Laplacian operator and using the separation of
variables one obtains

1

R(r)

∂

∂r

(
r2 ∂

∂r

)
R(r)− 2mr2

h̄2 [V (r)− E] (31)

As the radial part of the Schrödinger equation. Now using
the reduced mass and substituting the htdrogen atom poten-
cial it reduces to

1

R(r)

∂

∂r

(
r2 ∂

∂r

)
R(r)− 2µr2

h̄2

[
−e

2

r
− E

]
− l(l+1) = 0

(32)
By simplifying,

1

R(r)

∂

∂r

(
r2 ∂

∂r

)
R(r)+

[
2µe2

rh̄2 +
2µr2E

h̄2 − l(l + 1)

]
R(r) = 0

(33)
Now defining

y(r) = rR(r)⇒ R(r) =
y(r)

r
(34)

It follows that

d

dr

(
r2 d

dr

)
R(r) = r2 d

2y(r)

dr2
(35)

Hence () gives

d2y(r)

dr2
+

[
2µe2

rh̄2 +
2µE

h̄2 −
l(l + 1)

r2

]
y(r) = 0 (36)

In order to simplify the expression on might use( ε
2

)2

= −2µE

h̄2

d2y(r)

dr2
+

[
2µe2

rh̄2 −
e2

4
− l(l + 1)

r2

]
R(r) = 0 (37)

d2y(r)

dr2
= ε2

d2y(x)

dx2
(38)

So the radial equation assumes the form of

d2y(x)

dx2
+

[
−1

4
+

2µe2

h̄2εx
− l(l + 1)

x2

]
y(x) = 0 (39)

where

l(l + 1) =
k2 − 1

4
and

2µe2

h̄2ε
=

2j + k + 1

2
(40)

Which implies in the solution in the form of

ykj = e−
x
2 x

(k+1)
2 Lkj (x) (41)

where Lkj (x) are the Laguerre polynomials
This final solution could be writen in a more friendly and

equivalent manner,

Rn,l(r) =

√(
2

na0

)3
(n− l − 1)!

2n [(n+ l)!]
3 e
− r
na0

(
2r

na0

)l
L2l+1
n−l−1

(
2r

na0

)
(42)

As seen in [10].

Implementation of the solution
aaaIn this work, the radial solutions where obtained via
shooting method [code site]in the same the the harmonic os-
cillator was solved.
aaaThe piece of code below expresses the shooting algo-
rithm usage

" evaluation from r=infty to r=0"

# initial condition
u0 = array([0.,1.])

# integration of Sch. equation
ub = integrate.odeint(Schoedinger_deriv,\
u0, r_mesh, args=(l, eps, Z))
u_at_0 = ub[-1,0] +(ub[-2,0]-ub[-1,0])*\
(0.0-r_mesh[-1])/(r_mesh[-2]-r_mesh[-1])

One can see that from the initial guess of the eigenenergy
it takes the integration process as seen in [9] in order to de-
termine the numerical solution.

In order to easen and fasten the physical approach, the
usage of the python module called sympy.physics.hydrogen
within the library simpy the radial function are obtained by
calling the R_nl that receives n, l and r as arguments [11].
This way, one would not be determining the radial solutions
since the Laguerre polynomials are already implemented
and used in calculation via analytical expression of R_nl
(42).

Results of the Numerical Calculation
Running the code for the a couple of values of n and l, one
obtained the curves seen in figure 4.
As one can see, the results obtained are in agreement with
the ones available in the literature [1].
By looking at the legend, n=1 represents the 1s orbital ra-
dial wavefunction as well as for n=2 and n=3 one has the p
orbitals.



Figure 4: Radial Wavefunction Obtained Numerically from
sympy.physics.hydrogen.R_nl

Conclusions
aaaAs demonstrated above, the analytical solution of the har-
monic oscillator subject to a one dimensional parabolic po-
tential, the eigenenergies are given by:

En =

(
n+

1

2

)
h̄ω (43)

By using a very simple implementation one obtained
excellent results which differ from the exact solution by on
average 0.03%; such an impressive agreement.
aaaThe results of the computer program are in accordance
with the demonstrates in (30). One can also see the agree-
ment on the plots, where analytical and numerical solutions
slightly differ only close to the boundaries; which are
due to the extremely high precision and computational
representation of the numbers .
aaaAlso, the analytical solution for the radial wavefunctions
(42) where obtained numerically through the shooting
method. The obtained radial solutions are in agreement with
the analytical result.
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