
3.11 Eigenvalues and Eigenvectors, Spectral Repre-

sentation

3.11.1 Eigenvalues and Eigenvectors

A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6= 0, i.e.,

K' = k'

k is the eigenvalue.

If  is eigenvector of

t

K, then its components satisfy

X

i

 

i

K

ij

= k j

or

 K = k 

and  is called left eigenvector of K; ' is called right eigenvector of K.

The equation for ' can be written as

(K � k1)' = 0

This has a non-zero solution ' if and only if

det (K � k1) = 0

For an n � n matrix, the determinant is a polynomial of degree n in k with at most n

district roots. For every root 1 eigenvector. For a repeated root, there may be an many
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linearly indepedent eigenvectors as the multiplicity of the root, but in general there may

be no more than one.

For further discussion, assume matrices of the form that det (K�k1) = 0 with n distinct

simple roots

k

i

(i = 1; � � � ; n) with eigenvectors '

i

.

'

i

linearly independent and span space K ! basis vectors.

Further:

det (K � k1) = det (

t

K � k1)

) for each k

i

, there is a left eigenvector  

i

and a right eigenvector '

i

such that

K'

i

= k

i

'

i

and  

i

K = k

i

 

i

For k

i

6= k

j

;  

i

? '

j

and  

j

? '

i

:

k

j

( 

i

; '

j

) = ( 

i

; K'

j

) = ( 

i

t

K;'

j

) = k

i

( 

i

; '

j

)

Since  

i

perpendicular to all vectors '

j

with j 6= i !  

i

cannot be perpendicular to '

i

,

then it would be zero.

) ( 

i

; '

i

) 6= 0 ! normalized such that

( 

i

; '

i

) = 1

! ( 

i

; '

j

) = �

ij

! Sets f 

i

g and f'

i

g are called reciprocal.
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3.11.2 Spectral Representation

Use set f'

i

g as basis )

Each vector f can be written as:

f =

X

i

f

i

'

i

where f

i

are the components of f with respect to basis '

i

. Components are inner

product of f with left eigenvectors:

( 

j

; f) =

X

i

f

i

( 

j

; '

i

) =

X

k

f

i

�

ij

= f

j

! f =

X

i

'

i

( 

i

; f)

Use left eigenvectors as basis (reciprocal basis) !

f =

X

i

(f; '

i

) 

i

Notation: (ab)

ij

^

= a

i

b

j

Then identity can be represented as

1 =

X

i

'

i

 

i

Apply K on vector f :
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Kf =

X

i

K'

i

( 

i

; f) =

X

i

k

i

'

i

( 

i

; f)

With respect to basis f'

i

g; K acts like a diagonal matrix. Since above equation is valid

for arbitrary f )

K =

X

i

k

i

'

i

 

i

This is the spectral representation of matrix K.

The set of eigenvalues k

i

is called the spectrum of K.

! For any positive n:

K

n

=

X

i

k

n

i

'

i

 

i

and interpret K

0

^

= 1

For the inverse: K

�1

=

P

i

k

�1

i

'

i

 

i

.

If any eigenvalue k

i

= 0, then K does not have an inverse.

152



3.12 Singular Value Decomposition (SVD)

Theorem: Let A be an arbitrary (complex) m� n matrix

A 2M(m� n;C)

1. There exists a unitary matrix U 2M(m�m;C)(U

+

= U

�1

) and a unitary matrix

V 2M(n� n;C)(V

+

= V

�1

) such that U

+

AV = � is a m� n "diagonal" matrix

of the following form:

� =

 

D 0

0 0

!

D := diag (�

1

; � � � ; �

r

); �

1

� � � � � � � �

r

> 0

where �

1

; � � � ; �

r

are the nonvanishing singular values of A and r = rankA.

2. The nonvanishing singular values of A

+

are also given by �

1

; � � � ; �

r

.

The decomposition

A = U � V

+

is called singular value decomposition.

Preliminaries:

1. We know that for every Hermitian matrix A 2M(n�n;C) there is a unitary matrix

U 2M(n� n;C) with

U

�1

AU =

0

B

B

B

@

�

1

0

�

�

0 �

n

1

C

C

C

A

; �

i

2 R

and a Hermitian matrix A is positive (positive semide�nite) if and only if the eigen-

values of A are positive (non-negative).
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2. An arbitrary matrix A 2 M(n � n;C) is called normal if there exists a unitary

matrix U 2M(n� n;C) such that

U

�1

AU =

0

B

B

B

@

�

1

0

�

�

0 �

n

1

C

C

C

A

So, Hermitian matrices are normal.

What can be done if A 2M(m � n;C)?

Then

AA

+

2M(m �m;C) to Hermitian.

Proof: (AA

+

)

+

= AA

+

and A

+

A 2M(n� n;C) is Hermitian

(A

+

A)

+

= A

+

A

and A

+

A is positive semide�nite via construction.

! Eigenvalues �

i

� 0 can be written as �

i

= �

2

i

. The numbers �

i

are called

singular values of A.

Proof of the theorem by induction on m and n:

1. m = 0; n = 0 ! nothing to prove.

2. Assume that theorem holds for matrices

~

A;

~

� 2 M((m � 1) � (n � 1);C), i.e.,

there exists unitary matrix

~

U 2 M((m � 1) � (m � 1);C); unitary matrix

~

V 2

M((n� 1)� (n� 1);C) such that

~

U

+

~

A

~

V =

~

� =

 

~

D 0

0 0

!

with

~

D = diag (�

2

; � � � ; �

r

) and �

2

2

� �

2

3

� � � � �

2

r

� 0.
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3. Show under assumption (2) that theorem holds for A 2M(m� n;C).

Let largest singular value of A be �

1

> 0 (for �

1

= 0 ! A = 0, since �

1

should be

largest).

Let x

1

6= 0 be eigenvector of A

+

A with eigenvalue �

2

1

, i.e., A

+

Ax

1

= �

2

1

x

1

and

k x

1

k= 1.

Now �nd additional n� 1 vectors x

2

; x

3

; � � � ; x

n

2 C

n

such that matrix

X := (x

1

; x

2

; � � � ; x

n

) 2M(n� n;C) is unitary; i.e., X

+

X = 1.

X

1

is the column X

1

=

0

B

B

B

B

B

B

@

X

1

1

X

2

1

�

�

x

n

1

1

C

C

C

C

C

C

A

k Ax

1

k

2

= hAx

1

j Ax

1

i = x

+

1

A

+

Ax

1

= x

+

1

�

2

1

x

1

= �

2

1

k x

1

k= �

1

> 0

De�ne y

1

=

1

�

1

Ax

1

2 C

m

, with k y

1

k

2

=

kAx

1

k

�

2

1

= 1.

y

1

are well de�ned.

Find additional (m� 1) vectors y

1

; � � � ; y

m

(orthogonal) such that

Y := (y

1

; y

2

; � � � y

m

) 2M(m �m;C)

is unitary, i.e., Y

+

Y = 1.

Look at components of this matrix equation:

t

y

1

y

1

= �

1

; in general

X

`

y

+

ie

y

ej

=

X

`

y

�

ei

y

ej

= �

ij

Take unit vectors e

n

1

2 C

n

and e

m

1

2 C

m

and take 'matrix elements' of Y

+

AX

Y

+

AXe

n

1

= Y

+

A

1

x

1

= �

1

Y

+

y

1

= �

1

e

m

1

2 C

m

(3.93)

(Y

+

AX)

+

e

m

1

= X

+

A

+

Y e

m

1

= X

+

A

+

y

1

=

1

�

1

X

+

A

+

Ax

1

= �

1

X

+

x

1

= �

1

e

n

1

2 C

n

! he

m

1

j Y

+

AX j e

n

1

i = �

1
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or

Y

+

AX =

0

B

B

B

@

�

1

� � � 0

�

�

~

A

0

1

C

C

C

A

with

~

A 2M((m� 1)� (n� 1);C).

According to induction hypothesis, there are unitary matrices

~

U;

~

V such that

~

A can be

written as

~

U

+

~

A

~

V =

~

� =

 

~

D 0

0 0

!

with

~

D = diag(�

2

; � � � ; �

r

) and �

2

2

� �

2

3

� � � � �

�

2

r

� 0.

Now de�ne

U := Y �

 

1 0

0

~

U

!

2M(m�m;C) (3.94)

V := X �

 

1 0

0

~

V

!

2M(n� n;C)

) U

+

AV =

 

1 0

0

~

U

+

!

Y

+

AX

 

1 0

0

~

V

!

(3.95)

=

 

1 0

0

~

U

+

!  

�

1

0

0

~

A

!  

1 0

0

~

V

!

=

 

1 0

0

~

U

+

!  

�

1

0

0

~

A

~

V

!

=

 

�

1

0

0

~

U

+

~

A

~

V

!

=

 

�

1

0

0

~

�

!

=

0

B

@

�

1

0

~

D

0 0

1

C

A

:=

 

D 0

0 0

!

= �

with D = diag(�

1

; �

2

; � � � ; �

r

); � 2M(m � n;C) and �

2

2

� �

2

3

� � � � � �

2

r

� 0.
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�

2

1

= �

max

(A

+

A) according to choice at beginning.

rank A = rank (U

+

AV ) = rank � = r

Still to prove that �

2

1

� �

2

2

and that �

i

are the singular values of A. Consider

�

+

� = V

+

A

+

UU

+

AV = V

+

A

+

AV = diag(�

2

1

; �

2

2

; � � � ; �

2

r

)

Since V is the unitary matrix diagonalizing A

+

A and A

+

A Hermitian, thus the unitary

matrix V exists.

! �

2

1

; �

2

2

; � � � ; �

2

r

are eigenvalues of A

+

A )

�

2

1

; �

2

2

; � � � ; �

r

are the nonvanishing singular values of A.

Because

�

2

1

= �

max

(A

+

A) ) �

2

1

� �

2

2

Shown that there exists a decomposition

U

+

AV = � or A = U� V

+

with U

�1

= U

+

; V

�1

= V

+

and

U 2M(m �m;C); V 2M(n� n;C); A;� 2 r(m� n;C)

Columns of U represent m orthogonal eigenvectors of AA

+

2M(m�m;C).

Columns of V represent n orthogonal eigenvectors of A

+

A 2 M(n� n;C).

Easy to see:
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U

+

AA

+

U = U

+

AV V

+

A

+

U = �

P

+

,

i.e., U diagonalizes AA

+

with eigenvalues �

2

1

; � � � ; �

2

r

V

+

A

+

AV = V

+

A

+

UU

+

AV = �

+

P

,

i.e., V diagonalizes A

+

A with eigenvalues �

2

1

; � � � ; �

2

r

.

Side Remark:

De�nition: The Pseudoinverse (or Moore-Penrose inverse) of an arbitrary matrix

A 2M(m� n;C) is a matrix A

+

2M(n�m;C) with

1. A

+

A = P , where P is the orthogonal projector

P : C

n

! N(A); N(A) := fx 2 C

n

;Ax = 0g

AA

+

=

�

P , where

�

P is the projector

�

P : C

m

! R(A); R(A) := fAx 2 C

m

; x 2 C

n

g

2. (a) A

+

A = (A

+

A)

+

(b) AA

+

= (AA

+

)

+

(c) AA

+

A = A

(d) A

+

A A

+

= A

+

Build the 'pseudoinverse' A

+

of matrix A 2M(m� n;C):

We have U

+

AV = � =

 

D 0

0 0

!

; D = diag(�

1

; � � � ; �

r

)

! �

+

2M(n�m;C) easy to obtain:

�

+

=

 

D

�1

0

0 0

!
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for A = U � V de�ne A

+

:= V �

+

U

+

and in principle the properties of a pseudoinverse have to be checked.

! for m = n (square matrices)

A = U � V

+

can be inverted to give

A

�1

= V

 

D

�1

0

0 0

!

U

+

with D

�1

= diag

�

1

�

1

; � � � ;

1

�

r

�

Application of SVD:

Solve system of homogeneous or inhomogeneous linear equations:

Ax = b ! x = A

�1

b

Since one can calculate A

�1

, even if A singular or ill-determined ! good way to solve

x = A

�1

b. Considerations about solution space are easy:

Look at A � x = 0 = (U � V

+

)x = 0.

Solution are in Ker A : then any column of V which corresponds to �

i

= 0 are 2 Ker A.

For A � x = b, has only solution if b 2 Im(A).

If b 2 Im(A), then one still can construct a "solution" vector, which will not solve A�x = b,

but be closest possible solution in a least square sense, i.e., one �nds X which minimizes

r := j A � x� b j (3.96)

r

^

= residual solution

(See Numerical Recipes, p. 54.)
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Construct Orthonormal Basis:

A 2M(m� n;C) or M(m � n;R)

Matrix U 2 M(m�m;C(R)) represent the orthogonal eigenvectors of AA

+

!

Columns of U are desired orthonormal system of eigenvectors.

! If some of the �

2

i

= 0, then the space spanned by the column vectors of U has

dimension < m.

Approximation of Matrices:

A = U � V

+

with elements

A

ij

=

X

km

U

ik

X

km

�

km

V

jm

(3.97)

=

m

X

k=1

�

k

U

ik

V

jk

(3.98)

If only �

r

with r < m are 6= 0, then matrix A can be approximated by 'smaller' matrix.

Then consider

A �X =

X

j

A

ij

x

j

=

X

j

X

k

�

k

u

ik

v

ik

� x

j

(3.99)

=

X

k

�

k

u

ik

X

j

v

jk

x

j

(3.100)

If k � m, then the evaluation of A � x requires k(m + n) multiplications which is in that

sense smaller than m � n multiplications needed to evaluate

P

j

A

ij

x

j

for all i.
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