3.11 Eigenvalues and Eigenvectors, Spectral Representation

3.11.1 Eigenvalues and Eigenvectors

A vector φ is eigenvector of a matrix K, if $K \varphi$ is parallel to φ and $\varphi \neq 0$, i.e.,

$$
K \varphi=k \varphi
$$

k is the eigenvalue.
If ψ is eigenvector of ${ }^{t} K$, then its components satisfy

$$
\sum_{i} \psi_{i} K_{i j}=k \psi j
$$

or

$$
\psi K=k \psi
$$

and ψ is called left eigenvector of $K ; \varphi$ is called right eigenvector of K.
The equation for φ can be written as

$$
(K-k \mathbf{1}) \varphi=0
$$

This has a non-zero solution φ if and only if

$$
\operatorname{det}(K-k \mathbf{1})=0
$$

For an $n \times n$ matrix, the determinant is a polynomial of degree n in k with at most n district roots. For every root 1 eigenvector. For a repeated root, there may be an many
linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one.

For further discussion, assume matrices of the form that $\operatorname{det}(K-k \mathbf{1})=0$ with n distinct simple roots
$k_{i}(i=1, \cdots, n)$ with eigenvectors φ_{i}.
φ_{i} linearly independent and span space $K \rightarrow$ basis vectors.
Further:

$$
\operatorname{det}(K-k \mathbf{1})=\operatorname{det}\left({ }^{t} K-k \mathbf{1}\right)
$$

\Rightarrow for each k_{i}, there is a left eigenvector ψ_{i} and a right eigenvector φ_{i} such that

$$
K \varphi_{i}=k_{i} \varphi_{i} \quad \text { and } \quad \psi_{i} K=k_{i} \psi_{i}
$$

For $k_{i} \neq k_{j}, \psi_{i} \perp \varphi_{j}$ and $\psi_{j} \perp \varphi_{i}$:

$$
k_{j}\left(\psi_{i}, \varphi_{j}\right)=\left(\psi_{i}, K \varphi_{j}\right)=\left(\psi_{i}^{t} K, \varphi_{j}\right)=k_{i}\left(\psi_{i}, \varphi_{j}\right)
$$

Since ψ_{i} perpendicular to all vectors φ_{j} with $j \neq i \rightarrow \psi_{i}$ cannot be perpendicular to φ_{i}, then it would be zero.
$\Rightarrow \quad\left(\psi_{i}, \varphi_{i}\right) \neq 0 \rightarrow$ normalized such that

$$
\left(\psi_{i}, \varphi_{i}\right)=1
$$

$\rightarrow\left(\psi_{i}, \varphi_{j}\right)=\delta_{i j}$
\rightarrow Sets $\left\{\psi_{i}\right\}$ and $\left\{\varphi_{i}\right\}$ are called reciprocal.

3.11.2 Spectral Representation

Use set $\left\{\varphi_{i}\right\}$ as basis \Rightarrow
Each vector f can be written as:

$$
f=\sum_{i} f_{i} \varphi_{i}
$$

where f_{i} are the components of f with respect to basis φ_{i}. Components are inner product of f with left eigenvectors:

$$
\begin{aligned}
\left(\psi_{j}, f\right)= & \sum_{i} f_{i}\left(\psi_{j}, \varphi_{i}\right)=\sum_{k} f_{i} \delta_{i j}=f_{j} \\
& \rightarrow \mathbf{f}=\sum_{\mathbf{i}} \varphi_{\mathbf{i}}\left(\psi_{\mathbf{i}}, \mathbf{f}\right)
\end{aligned}
$$

Use left eigenvectors as basis (reciprocal basis) \rightarrow

$$
f=\sum_{i}\left(f, \varphi_{i}\right) \psi_{i}
$$

Notation: $\quad(a b)_{i j} \xlongequal[=]{ } a_{i} b_{j}$
Then identity can be represented as

$$
\mathbf{1}=\sum_{i} \varphi_{i} \psi_{i}
$$

Apply K on vector f :

$$
K f=\sum_{i} K \varphi_{i}\left(\psi_{i}, f\right)=\sum_{i} k_{i} \varphi_{i}\left(\psi_{i}, f\right)
$$

With respect to basis $\left\{\varphi_{i}\right\}, K$ acts like a diagonal matrix. Since above equation is valid for arbitrary $f \Rightarrow$

$$
\mathbf{K}=\sum_{\mathbf{i}} \mathbf{k}_{\mathbf{i}} \varphi_{\mathbf{i}} \psi_{\mathbf{i}}
$$

This is the spectral representation of matrix K.
The set of eigenvalues k_{i} is called the spectrum of K.
$\rightarrow \quad$ For any positive n :

$$
K^{n}=\sum_{i} k_{i}^{n} \varphi_{i} \psi_{i}
$$

and interpret $K^{0} \wedge \mathbf{1}$
For the inverse: $\quad K^{-1}=\sum_{i} k_{i}^{-1} \varphi_{i} \psi_{i}$.
If any eigenvalue $k_{i}=0$, then K does not have an inverse.

3.12 Singular Value Decomposition (SVD)

Theorem: Let A be an arbitrary (complex) $m \times n$ matrix

$$
A \in M(m \times n, \mathbf{C})
$$

1. There exists a unitary matrix $U \in M(m \times m, \mathbf{C})\left(U^{+}=U^{-1}\right)$ and a unitary matrix $V \in M(n \times n, \mathbf{C})\left(V^{+}=V^{-1}\right)$ such that $U^{+} A V=\Sigma$ is a $m \times n$ "diagonal" matrix of the following form:

$$
\Sigma=\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right) \quad D:=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}\right) ; \sigma_{1} \geq \sigma \geq \cdots \geq \sigma_{r}>0
$$

where $\sigma_{1}, \cdots, \sigma_{r}$ are the nonvanishing singular values of A and $r=\operatorname{rank} A$.
2. The nonvanishing singular values of A^{+}are also given by $\sigma_{1}, \cdots, \sigma_{r}$.

The decomposition

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{+}
$$

is called singular value decomposition.

Preliminaries:

1. We know that for every Hermitian matrix $A \in M(n \times n, \mathbf{C})$ there is a unitary matrix $U \in M(n \times n, \mathbf{C})$ with

$$
U^{-1} A U=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \cdot & \\
& \cdot & \\
0 & & \lambda_{n}
\end{array}\right), \quad \lambda_{i} \in \mathbf{R}
$$

and a Hermitian matrix A is positive (positive semidefinite) if and only if the eigenvalues of A are positive (non-negative).
2. An arbitrary matrix $A \in M(n \times n, \mathbf{C})$ is called normal if there exists a unitary matrix $U \in M(n \times n, \mathbf{C})$ such that

$$
U^{-1} A U=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \cdot & \\
& \cdot & \\
0 & & \lambda_{n}
\end{array}\right)
$$

So, Hermitian matrices are normal.
What can be done if $A \in M(m \times n, \mathbf{C})$?
Then
$A A^{+} \in M(m \times m, \mathbf{C})$ to Hermitian.
Proof: $\quad\left(A A^{+}\right)^{+}=A A^{+}$
and $A^{+} A \in M(n \times n, \mathbf{C})$ is Hermitian

$$
\left(A^{+} A\right)^{+}=A^{+} A
$$

and $A^{+} A$ is positive semidefinite via construction.
\rightarrow Eigenvalues $\lambda_{i} \leq 0$ can be written as $\lambda_{i}=\sigma_{i}^{2}$. The numbers σ_{i} are called singular values of A.

Proof of the theorem by induction on m and n :

1. $m=0, n=0 \rightarrow$ nothing to prove.
2. Assume that theorem holds for matrices $\tilde{A}, \tilde{\Sigma} \in M((m-1) \times(n-1)$, C), i.e., there exists unitary matrix $\tilde{U} \in M((m-1) \times(m-1)$, C); unitary matrix $\tilde{V} \in$ $M((n-1) \times(n-1), \mathbf{C})$ such that

$$
\tilde{U}^{+} \tilde{A} \tilde{V}=\tilde{\Sigma}=\left(\begin{array}{cc}
\tilde{D} & 0 \\
0 & 0
\end{array}\right)
$$

with $\tilde{D}=\operatorname{diag}\left(\sigma_{2}, \cdots, \sigma_{r}\right)$ and $\sigma_{2}^{2} \geq \sigma_{3}^{2} \geq \cdots \sigma_{r}^{2} \geq 0$.
3. Show under assumption (2) that theorem holds for $A \in M(m \times n, \mathbf{C})$.

Let largest singular value of A be $\sigma_{1}>0$ (for $\sigma_{1}=0 \rightarrow A=0$, since σ_{1} should be largest).

Let $x_{1} \neq 0$ be eigenvector of $A^{+} A$ with eigenvalue σ_{1}^{2}, i.e., $A^{+} A x_{1}=\sigma_{1}^{2} x_{1}$ and $\left\|x_{1}\right\|=1$.
Now find additional $n-1$ vectors $x_{2}, x_{3}, \cdots, x_{n} \in \mathbf{C}^{n}$ such that matrix $X:=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in M(n \times n, \mathbf{C})$ is unitary; i.e., $X^{+} X=\mathbf{1}$.
X_{1} is the column $X_{1}=\left(\begin{array}{c}X_{1}^{1} \\ X_{1}^{2} \\ \cdot \\ \cdot \\ x_{1}^{n}\end{array}\right)$

$$
\left\|A x_{1}\right\|^{2}=\left\langle A x_{1} \mid A x_{1}\right\rangle=x_{1}^{+} A^{+} A x_{1}=x_{1}^{+} \sigma_{1}^{2} x_{1}=\sigma_{1}^{2} \quad\left\|x_{1}\right\|=\sigma_{1}>0
$$

Define $y_{1}=\frac{1}{\sigma_{1}} A x_{1} \in \mathbf{C}^{m}$, with $\left\|y_{1}\right\|^{2}=\frac{\left\|A x_{1}\right\|}{\sigma_{1}^{2}}=\mathbf{1}$.
y_{1} are well defined.
Find additional $(m-1)$ vectors y_{1}, \cdots, y_{m} (orthogonal) such that

$$
Y:=\left(y_{1}, y_{2}, \cdots y_{m}\right) \in M(m \times m, \mathbf{C})
$$

is unitary, i.e., $Y^{+} Y=\mathbf{1}$.
Look at components of this matrix equation:

$$
{ }^{t} y_{1} y_{1}=\delta_{\mathbf{1}}, \quad \text { in general } \sum_{\ell} y_{i e}^{+} y_{e j}=\sum_{\ell} y_{e i}^{*} y_{e j}=\delta_{i j}
$$

Take unit vectors $e_{1}^{n} \in \mathbf{C}^{n}$ and $e_{1}^{m} \in \mathbf{C}^{m}$ and take 'matrix elements' of $Y^{+} A X$

$$
\begin{align*}
Y^{+} A X e_{1}^{n} & =Y^{+} A_{1} x_{1}=\sigma_{1} Y^{+} y_{1}=\sigma_{1} e_{1}^{m} \in \mathbf{C}^{m} \tag{3.93}\\
\left(Y^{+} A X\right)^{+} e_{1}^{m} & =X^{+} A^{+} Y e_{1}^{m}=X^{+} A^{+} y_{1}=\frac{1}{\sigma_{1}} X^{+} A^{+} A x_{1} \\
& =\sigma_{1} X^{+} x_{1}=\sigma_{1} e_{1}^{n} \in \mathbf{C}^{n} \\
\rightarrow\left\langle e_{1}^{m}\right| Y^{+} A X\left|e_{1}^{n}\right\rangle & =\sigma_{1}
\end{align*}
$$

or

$$
Y^{+} A X=\left(\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\cdot & & \\
\cdot & \tilde{A} & \\
0 & &
\end{array}\right)
$$

with $\tilde{A} \in M((m-1) \times(n-1), \mathbf{C})$.

According to induction hypothesis, there are unitary matrices \tilde{U}, \tilde{V} such that \tilde{A} can be written as $\tilde{U}^{+} \tilde{A} \tilde{V}=\tilde{\Sigma}=\left(\begin{array}{cc}\tilde{D} & 0 \\ 0 & 0\end{array}\right)$ with $\tilde{D}=\operatorname{diag}\left(\sigma_{2}, \cdots, \sigma_{r}\right)$ and $\sigma_{2}^{2} \geq \sigma_{3}^{2} \geq \cdots \geq$ $\sigma_{r}^{2} \geq 0$.

Now define

$$
\begin{aligned}
& U \quad:=Y \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{U}
\end{array}\right) \in M(m \times m, \mathbf{C}) \\
& V \quad:=X \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{V}
\end{array}\right) \in M(n \times n, \mathbf{C}) \\
& \Rightarrow \quad U^{+} A V=\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{U}^{+}
\end{array}\right) Y^{+} A X\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{V}
\end{array}\right) \\
&=\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{U}^{+}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \tilde{A}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{V}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \tilde{U}^{+}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \tilde{A} \tilde{V}
\end{array}\right) \\
&=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \tilde{U}^{+} \tilde{A} \tilde{V}
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \tilde{\Sigma}
\end{array}\right)=\left(\begin{array}{ccc}
\sigma_{1} & \tilde{D} \\
& \tilde{D} \\
0 & & 0
\end{array}\right) \\
&:=\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right)=\Sigma
\end{aligned}
$$

with $D=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{r}\right), \Sigma \in M(m \times n, \mathbf{C})$ and $\sigma_{2}^{2} \geq \sigma_{3}^{2} \geq \cdots \geq \sigma_{r}^{2} \geq 0$.
$\sigma_{1}^{2}=\lambda_{\max }\left(A^{+} A\right)$ according to choice at beginning.

$$
\operatorname{rank} A=\operatorname{rank}\left(U^{+} A V\right)=\operatorname{rank} \Sigma=r
$$

Still to prove that $\sigma_{1}^{2} \geq \sigma_{2}^{2}$ and that σ_{i} are the singular values of A. Consider

$$
\Sigma^{+} \Sigma=V^{+} A^{+} U U^{+} A V=V^{+} A^{+} A V=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \cdots, \sigma_{r}^{2}\right)
$$

Since V is the unitary matrix diagonalizing $A^{+} A$ and $A^{+} A$ Hermitian, thus the unitary matrix V exists.
$\rightarrow \sigma_{1}^{2}, \sigma_{2}^{2}, \cdots, \sigma_{r}^{2}$ are eigenvalues of $A^{+} A \Rightarrow$
$\sigma_{1}^{2}, \sigma_{2}^{2}, \cdots, \sigma_{r}$ are the nonvanishing singular values of A.
Because

$$
\sigma_{1}^{2}=\lambda_{\max }\left(A^{+} A\right) \Rightarrow \sigma_{1}^{2} \geq \sigma_{2}^{2}
$$

Shown that there exists a decomposition

$$
U^{+} A V=\Sigma \quad \text { or } \quad A=U \Sigma V^{+}
$$

with $U^{-1}=U^{+}, V^{-1}=V^{+}$and

$$
U \in M(m \times m, \mathbf{C}) ; \quad V \in M(n \times n, \mathbf{C}) ; \quad A, \Sigma \in r(m \times n, \mathbf{C})
$$

Columns of U represent m orthogonal eigenvectors of $A A^{+} \in M(m \times m, \mathbf{C})$.
Columns of V represent n orthogonal eigenvectors of $A^{+} A \in M(n \times n, \mathbf{C})$.
Easy to see:
$U^{+} A A^{+} U=U^{+} A V V^{+} A^{+} U=\Sigma \Sigma^{+}$,
i.e., U diagonalizes $A A^{+}$with eigenvalues $\sigma_{1}^{2}, \cdots, \sigma_{r}^{2}$
$V^{+} A^{+} A V=V^{+} A^{+} U U^{+} A V=\Sigma^{+} \Sigma$,
i.e., V diagonalizes $A^{+} A$ with eigenvalues $\sigma_{1}^{2}, \cdots, \sigma_{r}^{2}$.

Side Remark:

Definition: The Pseudoinverse (or Moore-Penrose inverse) of an arbitrary matrix $A \in M(m \times n, \mathbf{C})$ is a matrix $A_{+} \in M(n \times m, \mathbf{C})$ with

1. $A_{+} A=P$, where P is the orthogonal projector

$$
P: \mathbf{C}^{n} \rightarrow N(A) ; N(A):=\left\{x \in \mathbf{C}^{n} ; A x=0\right\}
$$

$A A_{+}=\bar{P}$, where \bar{P} is the projector

$$
\bar{P}: \mathbf{C}^{m} \rightarrow \mathbf{R}(A) ; \mathbf{R}(A):=\left\{A x \in \mathbf{C}^{m}, x \in \mathbf{C}^{n}\right\}
$$

2. (a) $A_{+} A=\left(A_{+} A\right)_{+}$
(b) $A A_{+}=\left(A A_{+}\right)_{+}$
(c) $A A_{+} A=A$
(d) $A_{+} A A_{+}=A_{+}$

Build the 'pseudoinverse' A_{+}of matrix $A \in M(m \times n, \mathbf{C})$:
We have $U^{+} A V=\Sigma=\left(\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right), D=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}\right)$
$\rightarrow \quad \Sigma_{+} \in M(n \times m, \mathbf{C})$ easy to obtain:

$$
\Sigma_{+}=\left(\begin{array}{cc}
D^{-1} & 0 \\
0 & 0
\end{array}\right)
$$

for $A=U \Sigma V$ define $A_{+}:=V \Sigma_{+} U^{+}$
and in principle the properties of a pseudoinverse have to be checked.
\rightarrow for $m=n$ (square matrices)
$A=U \Sigma V^{+}$can be inverted to give

$$
A^{-1}=V\left(\begin{array}{cc}
D^{-1} & 0 \\
0 & 0
\end{array}\right) U^{+} \quad \text { with } \quad D^{-1}=\operatorname{diag}\left(\frac{1}{\sigma_{1}}, \cdots, \frac{1}{\sigma_{r}}\right)
$$

Application of SVD:

Solve system of homogeneous or inhomogeneous linear equations:

$$
A x=b \quad \rightarrow \quad x=A^{-1} b
$$

Since one can calculate A^{-1}, even if A singular or ill-determined \rightarrow good way to solve $x=A^{-1} b$. Considerations about solution space are easy:

Look at $A \cdot x=0=\left(U \Sigma V^{+}\right) x=0$.
Solution are in Ker A : then any column of V which corresponds to $\sigma_{i}=0$ are $\in \operatorname{Ker} A$.
For $A \cdot x=b$, has only solution if $b \in \operatorname{Im}(A)$.
If $b \in \operatorname{Im}(A)$, then one still can construct a "solution" vector, which will not solve $A \cdot x=b$, but be closest possible solution in a least square sense, i.e., one finds X which minimizes

$$
\begin{align*}
r & :=|A \cdot x-b| \tag{3.96}\\
r & \triangleq \text { residual solution }
\end{align*}
$$

(See Numerical Recipes, p. 54.)

Construct Orthonormal Basis:

$A \in M(m \times n, \mathbf{C}) \quad$ or $\quad M(m \times n, \mathbf{R})$
Matrix $U \in M(m \times m, \mathbf{C}(\mathbf{R}))$ represent the orthogonal eigenvectors of $A A^{+} \rightarrow$
Columns of U are desired orthonormal system of eigenvectors.
$\rightarrow \quad$ If some of the $\sigma_{i}^{2}=0$, then the space spanned by the column vectors of U has dimension $<m$.

Approximation of Matrices:

$A=U \Sigma V^{+}$
with elements

$$
\begin{align*}
A_{i j} & =\sum_{k m} U_{i k} \sum_{k m} \delta_{k m} V_{j m} \tag{3.97}\\
& =\sum_{k=1}^{m} \sigma_{k} U_{i k} V_{j k} \tag{3.98}
\end{align*}
$$

If only σ_{r} with $r<m$ are $\neq 0$, then matrix A can be approximated by 'smaller' matrix.
Then consider

$$
\begin{align*}
A \cdot X & =\sum_{j} A_{i j} x_{j}=\sum_{j} \sum_{k} \sigma_{k} u_{i k} v_{i k} \cdot x_{j} \tag{3.99}\\
& =\sum_{k} \sigma_{k} u_{i k} \sum_{j} v_{j k} x_{j} \tag{3.100}
\end{align*}
$$

If $k \leq m$, then the evaluation of $A \cdot x$ requires $k(m+n)$ multiplications which is in that sense smaller than $m \cdot n$ multiplications needed to evaluate $\sum_{j} A_{i j} x_{j}$ for all i.

