
Fortran 90

Page 1 of 142

Ohio Supercomputer Center

 An Introduction to FORTRAN 90

 Dr. David J. Ennis

 Ohio Supercomputer Center

Fortran 90

Page 2 of 142

Ohio Supercomputer Center

Contents

-Preliminaries

-Source, Types and Control Structures

-Procedures and Modules

-Array Processing

-Pointers

-New I/O Features

-Intrinsic Procedures

Fortran 90

Page 3 of 142

Ohio Supercomputer Center

 PRELIMINARIES

Fortran 90

Page 4 of 142

Ohio Supercomputer Center

Preliminary Topics

-Objectives of Fortran 90

-Major new features

-Other new features

-Availability of compilers

-References

-Resource list

-Coding convention

-Acknowledgments

Fortran 90

Page 5 of 142

Ohio Supercomputer Center

Fortran 90 Objectives

Language evolution

Obsolescent features

Keep up with "rival" languages: C, C++, Pascal

Standardize vendor extensions

Portability

Modernize the language

Ease-of-use improvements through new features such as free source
form and derived types

Space conservation of a program with dynamic memory allocation

Modularisation through defining collections called modules

Numerical portability through selected precision

Provide data parallel capability

Parallel array operations for better use of vector and parallel processors

High Performance Fortran built on top of Fortran 90

Compatibility with Fortran 77

Fortran 77 is a subset of Fortran 90

Improve safety

Reduce risk of errors in standard code (improved argument checking)

Standard conformance

Compiler must report non standard code and obsolescent features

Fortran 90

Page 6 of 142

Ohio Supercomputer Center

 Major new features

Free-Form source style

Forget about those %&*# column numbers!!!!!

User-defined Data Types

Heterogeneous data structure: composed of different "smaller" data
types

Array processing

Shorthand for loop nests and more....

Dynamic memory allocation

Like C malloc & free

Subprogram Improvements

Function/Subroutine Interface (like C Function Prototype)

Optional/Keyword Arguments

Modules

 -replace COMMON block approach to make "global" variables

 -similar to C++ classes

Generic Procedures

Pointers

Long been needed

Fortran 90

Page 7 of 142

Ohio Supercomputer Center

 Other new features

Specifications/ IMPLICIT NONE

Parameterized data types (KIND)

Precision Portability

Operator overloading/defining

Like in C++

Recursive Functions

New Control structures

New intrinsic functions

A fairly large library

New I/O features

Fortran 90

Page 8 of 142

Ohio Supercomputer Center

 Obsolescent features

May be removed at the next major revision

Arithmetic IF

REAL and DOUBLE precision DO variables and control expressions

Shared DO termination, and DO termination on a statement other than
on a CONTINUE or an END DO statement

ASSIGN and assigned GO T O statements

Assigned FORMA T specifiers

Branching to END IF from outside IF block

Alternate RETURN

P AUSE statement

H edit descriptor

Fortran 90

Page 9 of 142

Ohio Supercomputer Center

 Availability Fortran 90 compilers

Cray CF90 - YMP (EL98), vectorising and autotasking, but
limited messages and some intrinsics not tuned

DEC Fortran 90 - DEC OSF/1 AXP, including HPF
extensions

EPC Fortran 90 - SPARC Solaris 1X and 2X, IBM RS/6000,
Intel 3/486, Motorola 88000

IBM XLF V3 - RISC System 6000

Lahey LF90 - for DOS, Windows

Microway - DOS, OS/2, Unix

NA Software F90+ - 386/486, Sparc, T800, T9000

NAG f90 - Variety of Unix platforms, and V AX VMS. Uses
C as intermediate language

Pacific Sierra V AST -90 - Uses F77 as intermediate
language

Parasoft - Uses F77 as intermediate language

Salford FTN90 - PC implementation of NAG f90, direct
generation of object code

Fortran 90

Page 10 of 142

Ohio Supercomputer Center

 References

Information Technology - Programming Languages -
Fortran

on-line or paper, the official standard, ISO/IEC 1539:1991 or ANSI
x3.198-1992

Fortran 90 Handbook

Complete ANSI/ISO Reference

 J C Adams et. al., McGraw-Hill, 1992

Programmer ' s Guide to Fortran 90

2nd edition, W S Brainerd et. al., Unicomp, 1994

Fortran 90

 M Counihan, Pitman, 1991

Fortran 90 Programming

 T M R Ellis et. al., Wesley , 1994

Fortran 90 for Scientists and Engineers

B D Hahn, Edward Arnold, 1994

Migrating to Fortran 90

J Kerrigan, O'Reilly and Associates, 1993

Fortran 90

Page 11 of 142

Ohio Supercomputer Center

Fortran 90 Explained

M Metcalf & J Ried, Oxford University Press, 1992

Programming in Fortran 90

J S Morgan & J L Schonfelder , Alfred W aller Ltd., 1993

Programming in Fortran 90

I M Smith, Wiley

Fortran 90

Page 12 of 142

Ohio Supercomputer Center

WWW Resources

Fortran market

Fortran 90 FAQ

Tutorials and articles available

NAG Fortran 90 software repository

Fortran 90/HPF email discussion group

Fortran newsgroup in Netnews/Usenet

Fortran 90

Page 13 of 142

Ohio Supercomputer Center

 Coding convention

Put all Fortran 90 keywords and intrinsic function names
in upper case, everything else in lower case

Fortran 90 is NOT case sensitive

Indent by 2 columns in the body of program units and
INTERF ACE blocks, DO - loops, IF -blocks, CASE -blocks
etc.

Always include the name of a program, a subroutine and a
function on its END statement

In USE statements, use the ONLY clause to document
explicitly all entities which are actually accessed from that
module

In CALL statement and function references, always use
argument keywords for optional arguments

Improve program readability and avoid confusion

Fortran 90

Page 14 of 142

Ohio Supercomputer Center

Acknowledgments

The Manchester and North HPC: Training and Education
Centre

For material on which part of this course is based

Fortran 90

Page 15 of 142

Ohio Supercomputer Center

 SOURCES

 TYPES

 CONTROL STRUCTURES

Fortran 90

Page 16 of 142

Ohio Supercomputer Center

Topics

-Source form

-Specifications

-IMPLICIT NONE

-Kind values

-Derived types

-Control structures

Fortran 90

Page 17 of 142

Ohio Supercomputer Center

 Free source form

Type in any column you want!

Line lengths up to 132 columns

Lowercase letters permitted

Names up to 31 characters (including underscore)

Semicolon to separate multiple statements on one line

 Don’t confuse with C’s use of ; to mark the end of a statement

Comments may follow exclamation (!)

Ampersand (&) is a continuation symbol

Character set includes + < > ; ! ? % - " &

New C-like relational operators: '<', '<=', '==', '/=', '>=', '>'

Fortran 90

Page 18 of 142

Ohio Supercomputer Center

Free Form Example

PROGRAM free_source_form

 ! Long names with underscores

 ! No special columns

 IMPLICIT NONE

 ! upper and lower case letters

 REAL :: tx, ty, tz ! trailing comment

 ! Multiple statements per line

 tx = 1.0; ty = 2.0; tz = tx * ty;

 ! Continuation symbol on line to be continued

 PRINT *, &

 tx, ty, tz

END PROGRAM free_source_form

Fortran 90

Page 19 of 142

Ohio Supercomputer Center

 Specifications

type [[, attribute]... ::] entity list

type can be INTEGER, REAL, COMPLEX, LOGICAL or
CHARACTER with optional kind value:

INTEGER [(KIND=] kind-value)]

CHARACTER ([actual parameter list]) ([LEN=] len-value and/or
[KIND=] kind-value)

TYPE (type name)

attribute can be PARAMETER, PUBLIC, PRIVATE,
ALLOCATABLE, POINTER, TARGET, INTENT(inout),
DIMENSION (extent-list), OPTIONAL, SAVE,
EXTERNAL, INTRINSIC

Can initialize variables in specifications

 INTEGER :: ia, ib

 INTEGER, PARAMETER :: n=100, m=1000

 REAL :: a = 2.61828, b = 3.14159

 CHARACTER (LEN = 8) :: ch

 INTEGER, DIMENSION(-3:5, 7) :: ia

Fortran 90

Page 20 of 142

Ohio Supercomputer Center

 IMPLICIT NONE

In Fortran 77, implicit typing permitted use of undeclared
variables. This has been the cause of many programming
errors.

IMPLICIT NONE forces you to declare all variables.

As is naturally true in other languages

IMPLICIT NONE may be preceded in a program unit only
by USE and FORMAT statements (see Order of
statements).

Fortran 90

Page 21 of 142

Ohio Supercomputer Center

Kind values

5 intrinsic types: REAL, INTEGER, COMPLEX,
CHARACTER, LOGICAL

Each type has an associated non negative integer value
called the KIND type parameter

Useful feature for writing portable code requiring specified
precision

A processor must support at least 2 kinds for REAL and
COMPLEX, and 1 for INTEGER, LOGICAL and
CHARACTER

Many intrinsics for enquiring about and setting kind
values

Fortran 90

Page 22 of 142

Ohio Supercomputer Center

Kind values: REAL

 REAL (KIND = wp) :: ra ! or

 REAL(wp) :: ra

Declare a real variable, ra, whose precision is determined
by the value of the kind parameter, wp

Kind values are system dependent

An 8 byte (64 bit) real variable usually has kind value 8 or 2

A 4 byte (32 bit) real variable usually has kind value 4 or 1

Literal constants set with kind value: const = 1.0_wp

Common use is to replace DOUBLE PRECISION:

 INTEGER, PARAMETER :: idp = KIND(1.0D0)

 REAL (KIND = idp) :: ra

ra is declared as 'double precision', but this is system
dependent.

Fortran 90

Page 23 of 142

Ohio Supercomputer Center

To declare real in system independent way, specify kind
value associated with precision and exponent range
required:

INTEGER, PARAMETER :: i10 = SELECTED_REAL_KIND(10, 200)

REAL (KIND = i10) :: a, b, c

 a, b and c have at least 10 decimal digits of precision and
the exponent range 200 on any machine.

Fortran 90

Page 24 of 142

Ohio Supercomputer Center

Kind values: INTEGER

Integers usually have 16, 32 or 64 bit

16 bit integer normally permits -32768 < i < 32767

Kind values for each supported type

To declare integer in system independent way, specify kind
value associated with range of integers required:

INTEGER, PARAMETER :: i8 = SELECTED_INT_KIND(8)

INTEGER (KIND = i8) :: ia, ib, ic

ia, ib and ic can have values between and at least
(if permitted by processor).

10
8

– 10
8

Fortran 90

Page 25 of 142

Ohio Supercomputer Center

Kind values: Intrinsic Functions

INTEGER, PARAMETER :: & i8 =
SELECTED_INT_KIND(8)

INTEGER (KIND = i8) :: ia

PRINT *, HUGE(ia), KIND(ia)

This will print the largest integer available for this integer
type (2147483674), and its kind value.

INTEGER, PARAMETER :: & i10 =
SELECTED_REAL_KIND(10, 200)

REAL (KIND = i10) :: a

PRINT *, RANGE(a), PRECISION(a), KIND(a)

This will print the exponent range, the decimal digits of
precision and the kind value of a.

Fortran 90

Page 26 of 142

Ohio Supercomputer Center

 Derived types

Defined by user (also called structures)

Can include different intrinsic types and other derived
types

Like C structures and Pascal records

Components accessed using percent operator (%)

Only assignment operator (=) is defined for derived types

Can (re)define operators - see later operator overloading

Fortran 90

Page 27 of 142

Ohio Supercomputer Center

Derived types: Examples

Define the form of derived type:

 TYPE card

 INTEGER :: pips

 CHARACTER (LEN = 8) :: suit

 END TYPE card

Create the structures of that type:

 TYPE (card) :: card1, card2

Assign values to the structure components:

 card1 = card(8,'Hearts')

Use % to select a component of the structure

 print *,’The suit of the card is ’,card1%suit

Assigning structures to each other done component by
component

 card2=card1 ! card2%pips would get 8

Fortran 90

Page 28 of 142

Ohio Supercomputer Center

Arrays of derived types are possible:

 TYPE (card), DIMENSION (52) :: deck

 deck(34)=card(13,’Diamonds’)

Fortran 90

Page 29 of 142

Ohio Supercomputer Center

 Control structures

Three block constructs

 IF

 DO

 CASE (new to Fortran 90)

All can be nested

All may have construct names to help readability or to
increase flexibility

Fortran 90

Page 30 of 142

Ohio Supercomputer Center

IF..THEN..ELSE Statement

General form

 [name:] IF (logical expression) THEN

 block

 [ELSE IF (logical expression) THEN [name]

 block]...

 [ELSE [name]

 block]

 END IF [name]

Example:

 selection: IF (i < 0) THEN

 CALL negative

 ELSE IF (i == 0) THEN

 CALL zero

 ELSE

 CALL positive

 END IF selection

Fortran 90

Page 31 of 142

Ohio Supercomputer Center

DO Loops

General form

 [name:] DO [control clause]

 block

 END DO [name]

control clause may be:

an iteration control clause count = initial, final [,inc]

a WHILE control clause WHILE (logical expression)

or nothing (no control clause at all)

Iteration control clause:

 rows: DO i = 1, n

 cols: DO j = 1, m

 a(i, j) = i + j

 END DO cols

 END DO rows

WHILE control clause:

true: DO WHILE (i <= 100)

 ... body of loop ...

 END DO true

Fortran 90

Page 32 of 142

Ohio Supercomputer Center

 DO loops: EXIT and CYCLE Features

Use of EXIT and CYCLE:

smooth exit from loop with EXIT

transfer to END DO with CYCLE (i.e.,skip the rest of the loop)

EXIT and CYCLE apply to inner loop by default but can refer to specific,
named loop

Example:

 DO

 READ *,number

 IF(number==0.0) EXIT

 IF(number<=0.0) CYCLE

 sum=sum+SQRT(number)

 END DO

Fortran 90

Page 33 of 142

Ohio Supercomputer Center

CASE construct

Structured way of selecting different options, dependent
on value of single expression

Similar to C switch statement

Replacement for

computed GOTO

"else if" ladders

General form:

 [name:] SELECT CASE (expression)

 [CASE (selector) [name]

 block]

 ...

 END SELECT [name]

expression = character, logical or integer

selector =one or more values of same type as expression:

-single value

-range of values separated by: (character or integer only), upper or
lower value may be absent

-list of values separated by commas

-keyword DEFAULT

Fortran 90

Page 34 of 142

Ohio Supercomputer Center

Example

 SELECT CASE (ch)

 CASE ('C', 'D', 'G':'M')

 color = 'red'

 CASE ('X':)

 color = 'green'

 CASE DEFAULT

 color = 'blue'

 END SELECT

Fortran 90

Page 35 of 142

Ohio Supercomputer Center

 PROCEDURES

 AND

 MODULES

Fortran 90

Page 36 of 142

Ohio Supercomputer Center

 Topics

-Program units

-Procedures

-Internal procedures

-INTERFACE blocks

-Procedure arguments

-Array-valued functions

-Recursive procedures

-Generic procedures

-Modules

-Overloading operators

-Defining operators

-Assignment overloading

-Program Structure

Fortran 90

Page 37 of 142

Ohio Supercomputer Center

Program Units

Fortran 90

Page 38 of 142

Ohio Supercomputer Center

 Main Program

Form:

 PROGRAM [name]

 [specification statements]

 [executable statements]

 ...

 END [PROGRAM [name]]

Example:

 PROGRAM test

 ...

 ...

 ! END

 ! END PROGRAM

 END PROGRAM test

Fortran 90

Page 39 of 142

Ohio Supercomputer Center

Procedures: Functions and subroutines

Structurally, procedures may be:

External - self contained (not necessarily Fortran, but good luck with
type conversion for arguments)

Internal - inside a program unit (new to Fortran 90)

Module - member of a module (new to Fortran 90)

Fortran 77 has only external procedures

Fortran 90

Page 40 of 142

Ohio Supercomputer Center

 External procedures

 SUBROUTINE name (dummy-argument-list)

 [specification-statements]

 [executable-statements]

 ...

 END [SUBROUTINE [name]]

 or

 FUNCTION name (dummy-argument-list)

 [specification-statements]

 [executable-statements]

 ...

 END [FUNCTION [name]]

Note: RETURN statement no longer needed

Fortran 90

Page 41 of 142

Ohio Supercomputer Center

 Internal procedures

Each program unit can contain internal procedures

Internal procedures are collected together at the end of a
program unit and preceded by a CONTAINS statement

Same form as external procedures except that the word
SUBROUTINE / FUNCTION must be present on the END
statement

Variables defined in the program unit remain defined in
the internal procedures, unless redefined there

New way of making "global" variables

Nesting of internal procedures is not permitted

Fortran 90

Page 42 of 142

Ohio Supercomputer Center

Internal Procedure: Example

 PROGRAM main

 IMPLICIT NONE

 REAL :: a=6.0, b=30.34, c=98.98

 REAL :: mainsum

 mainsum = add()

 CONTAINS

 FUNCTION add ()

 REAL :: add ! a,b,c defined in 'main'

 add = a + b + c

 END FUNCTION add

 END PROGRAM main

Fortran 90

Page 43 of 142

Ohio Supercomputer Center

INTERFACE Blocks

If an 'explicit' interface for a procedure is provided,
compiler can check argument inconsistency

Module and internal procedures have an 'explicit' interface
by default

External procedures have an 'implicit' interface by default

An INTERFACE block can be used to specify an 'explicit'
interface for external procedures

Always use an INTERFACE block in the calling program
unit for external procedures

Similar in form and justification for to C function
prototypes

Fortran 90

Page 44 of 142

Ohio Supercomputer Center

 INTERFACE blocks: Syntax

General form:

 INTERFACE

interface_body

 END INTERFACE

where interface_body is an exact copy of the subprogram
specification, its dummy argument specifications and its
END statement

Example

 INTERFACE

 REAL FUNCTION func(x)

 REAL, INTENT(IN) :: x

 END FUNCTION func

 END INTERFACE

Fortran 90

Page 45 of 142

Ohio Supercomputer Center

INTENT Attribute

Argument intent - can specify whether an argument is for:

 input (IN),

 output (OUT)

 or both (INOUT)

Examples

 INTEGER, INTENT(IN) :: in_only

 REAL, INTENT(OUT) :: out_only

 INTEGER, INTENT(INOUT) :: both_in_out

Fortran 90

Page 46 of 142

Ohio Supercomputer Center

Sample Program: NO INTERFACE

PROGRAM test

 INTEGER :: i=3,j=25

 PRINT *,'The ratio is ',ratio(i,j)

END PROGRAM test

REAL FUNCTION ratio(x,y)

 REAL,INTENT(IN):: x,y

 ratio=x/y

END FUNCTION ratio

Floating point exception

 Beginning of Traceback:

 Started from address 453c in routine 'RATIO'.

 Called from line 3 (address 421b) in routine 'TEST'.

 Called from line 316 (address 21531b) in routine '$START$'.

 End of Traceback.

Floating exception (core dumped)

Fortran 90

Page 47 of 142

Ohio Supercomputer Center

Sample Program: WITH INTERFACE

PROGRAM test

 INTEFACE

 REAL FUNCTION ratio(x,y)

 REAL, INTENT(IN)::x,y

 END FUNCTION ratio

 END INTERFACE

 INTEGER :: i=3,j=25

 PRINT *,'The ratio is ',ratio(i,j)

END PROGRAM test

REAL FUNCTION ratio(x,y)

 REAL,INTENT(IN):: x,y

 ratio=x/y

END FUNCTION ratio

cf90-1108 f90: ERROR TEST, File = ratio_int.f90, Line = 3, Column = 33

 The type of the actual argument, "INTEGER", does not match "REAL",

 the type of the dummy argument.

Fortran 90

Page 48 of 142

Ohio Supercomputer Center

Sample Program: INTERNAL PROCEDURE

PROGRAM test

 INTEGER :: i=3,j=25

 PRINT *,'The ratio is ',ratio(i,j)

CONTAINS

 REAL FUNCTION ratio(x,y)

 REAL,INTENT(IN):: x,y

 ratio=x/y

 END FUNCTION ratio

END PROGRAM test

cf90-1108 f90: ERROR TEST, File = ratio_int.f90, Line = 3, Column = 33

 The type of the actual argument, "INTEGER", does not match "REAL",

 the type of the dummy argument.

Fortran 90

Page 49 of 142

Ohio Supercomputer Center

Using Keywords with Arguments

With intrinsic Fortran functions, have always been able to
use a keyword with arguments

READ(UNIT=10,FMT=67,END=789) x,y,z

If interface provided, programmer can use keywords with
their own f90 procedure arguments

ADVANTAGES: Readability and override order of arguments

Example Interface:

 REAL FUNCTION area (start, finish, tol)

 REAL, INTENT(IN) :: start, finish, tol

 ...

 END FUNCTION area

Call with:

 a = area(0.0, 100.0, 0.01)

 b = area(start = 0.0, tol = 0.01, finish = 100.0)

 c = area(0.0, finish = 100.0, tol = 0.01)

Once a keyword is used, all the rest must use keywords

Fortran 90

Page 50 of 142

Ohio Supercomputer Center

Optional arguments

If interface provided, programmer can specify some
arguments to be optional. Coder’s responsibility to ensure
a default value if necessary (use PRESENT function)

Example Interface:

 REAL FUNCTION area (start, finish, tol)

 REAL, INTENT(IN), OPTIONAL :: start, finish, tol

 ...

 END FUNCTION area

Call with:

 a = area(0.0, 100.0, 0.01)

 b = area(start=0.0, finish=100.0, tol=0.01)

 c = area(0.0)

 d = area(0.0, tol=0.01)

The PRESENT intrinsic function will test to see if an actual
argument has been provided

Fortran 90

Page 51 of 142

Ohio Supercomputer Center

Example

REAL FUNCTION area (start, finish, tol)

 IMPLICIT NONE

 REAL, INTENT(IN), OPTIONAL :: start, finish, tol

 REAL :: ttol

 ...

 IF (PRESENT(tol)) THEN

 ttol = tol

 ELSE

 ttol = 0.01

 END IF

 ...

END FUNCTION area

Need to use local variable ttol because dummy argument
tol cannot be changed because of its INTENT attribute

Fortran 90

Page 52 of 142

Ohio Supercomputer Center

Using Structures as Arguments

Procedure arguments can be of derived type if:

-the procedure is internal to the program unit in which the
derived type is defined

-or the derived type is defined in a module which is
accessible from the procedure

Fortran 90

Page 53 of 142

Ohio Supercomputer Center

Array-valued functions

In Fortran 90 functions may have an array-valued result:

FUNCTION add_vec (a, b, n)

 IMPLICIT NONE

 INTEGER, INTENT(IN) :: n

 REAL, DIMENSION (n), INTENT(IN) :: a, b

 REAL, DIMENSION (n) :: add_vec

 INTEGER :: i

 DO i = 1, n

 add_vec(i) = a(i) + b(i)

 END DO

END FUNCTION add_vec

Fortran 90

Page 54 of 142

Ohio Supercomputer Center

Recursive procedures

In Fortran 90, procedures may be called recursively:

either A calls B calls A, or

A calls A directly (RESUL T clause required).

Must be defined as recursive procedure:

RECURSIVE FUNCTION fact(n) RESULT(res)

 IMPLICIT NONE

 INTEGER, INTENT(IN) :: n

 INTEGER :: res

 IF (n == 1) THEN

 res = 1

 ELSE

 res = n * fact(n - 1)

 END IF

 END FUNCTION fact

The RESULT clause specifies an alternate name (instead of
the function name) to contain the value the function
returns.

RESULT clause required for recursion

Fortran 90

Page 55 of 142

Ohio Supercomputer Center

 Generic procedures

In Fortran 90, can define your own generic procedures

Need distinct procedures for specific type of arguments
and a 'generic interface':

 INTERFACE generic_name

 specific_interface_body

 specific_interface_body

 ...

 END INTERFACE

Each distinct procedure can be invoked using the generic
name only. The actual procedure used will depend on the
type of arguments

Fortran 90

Page 56 of 142

Ohio Supercomputer Center

Example Generic Subroutine swap

Consider the following two external subroutines for
swapping the values REAL and INTEGER variables:

 SUBROUTINE swapreal (a, b)

 REAL, INTENT(INOUT) :: a, b

 REAL :: temp

 temp = a;

 a = b;

 b = temp

 END SUBROUTINE swapreal

 SUBROUTINE swapint (a, b)

 INTEGER, INTENT(INOUT) :: a, b

 INTEGER :: temp

 temp = a;

 a = b;

 b = temp

 END SUBROUTINE swapint

The extremely similar routines can be used to make a
generic swap routine with the following interface:

Fortran 90

Page 57 of 142

Ohio Supercomputer Center

 INTERFACE swap ! generic name

 SUBROUTINE swapreal (a, b)

 REAL, INTENT(INOUT) :: a, b

 END SUBROUTINE swapreal

 SUBROUTINE swapint (a, b)

 INTEGER, INTENT(INOUT) :: a, b

 END SUBROUTINE swapint

 END INTERFACE

In the main program, only the generic name is used

 INTEGER :: m,n

 REAL :: x,y

 CALL swap(m,n)

 CALL swap(x,y)

Fortran 90

Page 58 of 142

Ohio Supercomputer Center

 Modules

Very powerful facility with many applications in terms of
program structure

Method of sharing data and/or procedures to different
units within a single program

Allows data/procedures to be reused in many programs

Library of useful routines

"Global" data

Combination of both (like C++ class)

Very useful role for definitions of types and associated
operators

Form:

 MODULE module-name

 [specification-stmts]

 [executable-stmts]

 [CONTAINS

 module procedures]

 END [MODULE [module-name]]

Accessed via the USE statement

Fortran 90

Page 59 of 142

Ohio Supercomputer Center

 Modules: Global data

Can put global data in a module and each program unit
that needs access to the data can simply "USE" the module

Replaces the old common block trick

Example:

 MODULE globals

 REAL, SAVE :: a, b, c

 INTEGER, SAVE :: i, j, k

 END MODULE globals

Note the new variable attribute SAVE

Examples of the USE statements:

USE globals ! allows all variables in the module to be accessed

 USE globals, ONLY: a, c

 ! allows only variables a and c to be accessed

 USE globals, r => a, s => b

 ! allows a, b and c to be accessed with local variables r, s and c

USE statement must appear at very beginning of the
program unit (right after PROGRAM statement)

Fortran 90

Page 60 of 142

Ohio Supercomputer Center

Module procedures

Modules may contain procedures that can be accessed by
other program units

Same form as external procedure except:

Procedures must follow a CONT AINS statement

The END statement must have SUBROUTINE or FUNCTION specified.

Particularly useful for a collection of derived types and
associated functions that employ them

Fortran 90

Page 61 of 142

Ohio Supercomputer Center

Module Example: Adding Structures

 MODULE point_module

 TYPE point

 REAL :: x, y

 END TYPE point

 CONTAINS

 FUNCTION addpoints (p, q)

 TYPE (point), INTENT(IN) :: p, q

 TYPE (point) :: addpoints

 addpoints%x = p%x + q%x

 addpoints%y = p%y + q%y

 END FUNCTION addpoints

 END MODULE point_module

A program unit would contain:

 USE point_module

 TYPE (point) :: px, py, pz

 ...

 pz = addpoints(px, py)

Fortran 90

Page 62 of 142

Ohio Supercomputer Center

Modules: Generic procedures

A common use of modules is to define generic procedures,
especially those involving derived types.

MODULE genswap

 TYPE point

 REAL :: x, y

 END TYPE point

 INTERFACE swap ! generic interface

 MODULE PROCEDURE swapreal, swapint, swaplog, swappoint

 END INTERFACE

CONTAINS

 SUBROUTINE swappoint (a, b)

 TYPE (point), INTENT(INOUT) :: a, b

 TYPE (point) :: temp

 temp = a; a=b; b=temp

 END SUBROUTINE swappoint

 ... ! swapint, swapreal, swaplog procedures are defined here

 END MODULE genswap

Fortran 90

Page 63 of 142

Ohio Supercomputer Center

Modules: Public and private objects

By default all objects in a module are available to a
program unit which includes the USE statement

Can restrict the use of certain objects to the guest program

May wish to update module subroutines at any time,
keeping the purpose and interface the same, but changing
the meaning of specific variables

Achieved via PRIVATE attribute or PRIVATE statement:

 INTEGER, PRIVATE :: keep, out

Fortran 90

Page 64 of 142

Ohio Supercomputer Center

Overloading operators

Can extend the meaning of an intrinsic operator to apply to
additional data types - operator overloading

Need an INTERFACE block with the form

 INTERFACE OPERATOR (intrinsic_operator)

 interface_body

 END INTERFACE

Example: Define '+' for character variables

 MODULE over

 INTERFACE OPERATOR (+)

 MODULE PROCEDURE concat

 END INTERFACE

 CONTAINS

 FUNCTION concat(cha, chb)

 CHARACTER (LEN=*), INTENT(IN) :: cha, chb

 CHARACTER (LEN=LEN_TRIM(cha) + & LEN_TRIM(chb)) :: concat

 concat = TRIM(cha) // TRIM(chb)

 END FUNCTION concat

END MODULE over

Fortran 90

Page 65 of 142

Ohio Supercomputer Center

Here is how this module could be used in a program:

 PROGRAM testadd

 USE over

 CHARACTER (LEN=23) :: name

 CHARACTER (LEN=13) :: word

 name='Balder'

 word='convoluted'

 PRINT *,name // word

 PRINT *,name + word

 END PROGRAM testadd

 Balder convoluted

 Balderconvoluted

Fortran 90

Page 66 of 142

Ohio Supercomputer Center

Defining operators

Can define new operators - especially useful for user
defined types

Operator name must have a '.' at the beginning and end

Need to define the operation via a function which has one
or two non- optional arguments with INTENT(IN)

Example - find the straight line distance between two
derived type 'points'

 PROGRAM main

 USE distance_module

 TYPE (point) :: p1, p2

 REAL :: distance

 ...

 distance = p1 .dist. p2

 ...

 END PROGRAM main

Fortran 90

Page 67 of 142

Ohio Supercomputer Center

Where the "distance_module" looks like this:

 MODULE distance_module

 TYPE point

 REAL :: x, y

 END TYPE point

 INTERFACE OPERATOR (.dist.)

 MODULE PROCEDURE calcdist

 END INTERFACE

 CONTAINS

 REAL FUNCTION calcdist (px, py)

 TYPE (point), INTENT(IN) :: px, py

 calcdist = SQRT ((px%x-py%x)**2 & + (px%y-py%y)**2)

 END FUNCTION calcdist

END MODULE distance_module

Fortran 90

Page 68 of 142

Ohio Supercomputer Center

Assignment overloading

When using derived data types, may need to extend the
meaning of assignment (=) to new data types:

 REAL :: ax

 TYPE (point) :: px

 ...

 ax = px ! type point assigned to type real

 ! not valid until defined

Need to define this assignment via a subroutine with two
non-optional arguments, the first having INTENT(OUT) or
INTENT(INOUT), the second having INTENT(IN) and
create an interface assignment block:

 INTERFACE ASSIGNMENT (=)

 subroutine interface body

 END INTERFACE

In the following example we will define the above
assignment to give ax the maximum of the two
components of px

Fortran 90

Page 69 of 142

Ohio Supercomputer Center

 MODULE assignoverload_module

 TYPE point

 REAL :: x, y

 END TYPE point

 INTERFACE ASSIGNMENT (=)

 MODULE PROCEDURE assign_point

 END INTERFACE

 CONTAINS

 SUBROUTINE assign_point(ax, px)

 REAL, INTENT(OUT) :: ax

 TYPE (point), INTENT(IN) :: px

 ax = MAX(px%x, px%y)

 END SUBROUTINE assign_point

 END MODULE assignoverload_module

Fortran 90

Page 70 of 142

Ohio Supercomputer Center

Program structure: Using Interface Blocks

When a module/external procedure is called:

Which defines or overloads an operator, or the assignment

Using a generic name

 Additionally, when an external procedure:

Is called with keyword/optional argument

Is an array-valued/pointer function or a character function which is
neither a constant nor assumed length

Has a dummy argument which is an assumed-shape array, a pointer/
target

Is a dummy or actual argument (not mandatory but recommended)

Fortran 90

Page 71 of 142

Ohio Supercomputer Center

Program structure: Summary

Fortran 77 style:

-Main program with external procedures, possibly in a
library.

-No explicit interfaces, so argument inconsistencies are not
checked by compiler.

Simple Fortran 90:

-Main program with internal procedures.

-Interfaces are 'explicit', so argument inconsistencies are
trapped by compiler.

Fortran 90 with modules:

-Main program and module(s) containing interfaces and
possibly specifications, and external procedures (possibly
precompiled libraries).

 A Fortran 90 version of the Fortran 77 style - with
interfaces to permit compiler checking of argument
inconsistencies.

Fortran 90

Page 72 of 142

Ohio Supercomputer Center

-Main program and module(s) containing specifications,
interfaces and procedures. No external procedures.

 Expected for sophisticated Fortran 90 programs.

Fortran 90

Page 73 of 142

Ohio Supercomputer Center

 ARRAY PROCESSING

Fortran 90

Page 74 of 142

Ohio Supercomputer Center

Topics

-Terminology

-Specifications

-Whole array operations

-WHERE statement and construct

-Array sections

-Array constructors

-Allocatable arrays

-Automatic arrays

-Assumed shape arrays

-Array intrinsic procedures

Fortran 90

Page 75 of 142

Ohio Supercomputer Center

 Terminology

Rank =Number of dimensions

Extent =Number of elements in a dimension

Shape= Vector of extents

Size =Product of extents

Conformance =Same shape

Example

 REAL, DIMENSION :: a(-3:4, 7)

 REAL, DIMENSION :: b(8, 2:8)

 REAL, DIMENSION :: d(8, 1:8)

a has

rank 2

extents 8 and 7

shape (/ 8, 7 /)

size 56

a is conformable with b, but not with d

Fortran 90

Page 76 of 142

Ohio Supercomputer Center

Array Specifications

type [[,DIMENSION (extent-list)] [, attribute]... ::] entity-list

where:

 type - INTRINSIC or derived type

 DIMENSION - Optional, but required to define default
dimensions

 (extent-list) - Gives array dimension:

Integer constant

integer expression using dummy arguments or constants.

: if array is allocatable or assumed shape.

 attribute - as given earlier

entity-list - list of array names optionally with dimensions
and initial values.

Example specifications

Two dimensions:

 REAL, DIMENSION(-3:4, 7) :: ra, rb

Initialization (replace DATA statement):

 INTEGER, DIMENSION (3) :: ia = (/ 1, 2, 3 /), ib = (/ (i, i = 1, 3) /)

Fortran 90

Page 77 of 142

Ohio Supercomputer Center

Automatic arrays:

 LOGICAL, DIMENSION (SIZE(loga)) :: logb

 where loga is a dummy array argument

Allocatable arrays (deferred shape):

 REAL, DIMENSION (:, :), ALLOCATABLE :: a, b

 Dimensions are defined in subsequent ALLOCA TE
statement.

Assumed shape arrays:

 REAL, DIMENSION (:, :, :) :: a, b

 Dimensions taken from actual arguments in calling
routine.

Fortran 90

Page 78 of 142

Ohio Supercomputer Center

Whole array operations (Array Syntax)

Can use entire arrays in simple operations c=a+b

Very handy shorthand for nested loops

PRINT *, c

Arrays for whole array operation must be conformable

Evaluate element by element, i.e., expressions evaluated
before assignment

c=a*b is NOT conventional matrix multiplication

RHS of array syntax expression completely computed
before any assignment takes place

 So be careful when the same array appears on both sides of the = sign

Scalars broadcast-scalar is transformed into a conformable
array with all elements equaling itself b=a+5

Fortran 90

Page 79 of 142

Ohio Supercomputer Center

Array Syntax Examples

Fortran 77:

 REAL a(20), b(20), c(20)

 DO 10 i = 1, 20

 a(i) = 0.0

 10 CONTINUE

 DO 20 i = 1, 20

 a(i) = a(i) / 3.1 + b(i) * SQRT(c(i))

 20 CONTINUE

Fortran 90:

 REAL, DIMENSION (20) :: a, b, c

 a = 0.0

 a = a / 3.1 + b * SQRT(c)

Fortran 90

Page 80 of 142

Ohio Supercomputer Center

Fortran 77:

 REAL a(5, 5), b(5, 5), c(5, 5)

 DO 20 j = 1, 5

 DO 10 i = 1, 5

 c(i,j) = a(i,j) +b(i,j)

 10 CONTINUE

 20 CONTINUE

Fortran 90:

 REAL, DIMENSION (5, 5) :: a, b, c

 c = a + b

Fortran 90

Page 81 of 142

Ohio Supercomputer Center

Using Array Syntax with Intrinsic Procedures

Elemental procedures specified for scalar arguments

-May also be applied to conforming array arguments

-Work as if applied to each element separately.

Example

 ! To find square root of all elements of array, a

 a = SQRT(a)

 ! To find the string length excluding trailing blanks

 ! for all elements of a character array, words

 lengths = LEN_TRIM(words)

Fortran 90

Page 82 of 142

Ohio Supercomputer Center

WHERE statement

Form:

 WHERE (logical-array-expr) array-assignment

Operation: assignment is performed if logical condition is
true [again, element by element]

 REAL DIMENSION (5, 5) :: ra, rb

 WHERE (rb > 0.0) ra = ra / rb

Note mask (rb > 0.0) must conform with LHS ra

Equivalent to:

 DO j=1,5

 DO i=1,5

 IF (rb(i,j)>0.0) ra(i,j)=ra(i,j)/rb(i,j)

 END DO

 END DO

Fortran 90

Page 83 of 142

Ohio Supercomputer Center

 WHERE construct

Used for multiple assignments:

 WHERE (logical-array-expr)

array-assignments

 END WHERE

Or, used for IF/ELSE decision making:

 WHERE (logical-array-expr)

array-assignments

 ELSEWHERE

other-array-assignments

 END WHERE

Example

 REAL DIMENSION (5, 5) :: ra, rb

 WHERE (rb > 0.0)

 ra = ra / rb

 ELSEWHERE

 ra = 0.0

 END WHERE

Fortran 90

Page 84 of 142

Ohio Supercomputer Center

Array sections

 A subarray, called a section, of an array may be referenced
by specifying a range of sub-scripts, either:

-A simple subscript a (2, 3, 1) ! single array element

-A subscript triplet

 [lower bound]:[upper bound] [:stride]

 defaults to declared bounds and stride 1

-A vector subscript

Array sections-like whole arrays- can also be used in array
syntax calculations

Fortran 90

Page 85 of 142

Ohio Supercomputer Center

Array Sections: Examples

 REAL, DIMENSION(5,5) :: ra

ra(2,2) or ra(2:2:1,2:2:1)

 An Array Element

 Shape (/1/)

 ra(3,3:5)

 Sub-Row

 Shape (/3/)

Fortran 90

Page 86 of 142

Ohio Supercomputer Center

 ra(:,3)

 Whole Column

 Shape (/5/)

 ra=(1::2,2:4)

 Stride 2 for rows

 Shape (/3,3/)

Fortran 90

Page 87 of 142

Ohio Supercomputer Center

Vector subscripts

1D integer array used as an array of subscripts

 (/ 3, 2, 12, 2, 1 /)

Example

 REAL, DIMENSION :: ra(6), rb(3)

 INTEGER, DIMENSION (3) :: iv

 iv = (/ 1, 3, 5 /) ! initialize iv

 ra = (/ 1.2, 3.4, 3.0, 11.2, 1.0, 3.7 /)

 rb = ra(iv) ! iv is the vector subscript

Last line equivalent to:

 rb(1)=ra(1) <- 1.2

 rb(2)=ra(3) <- 3.0

 rb(3)=ra(5) <- 1.0

Fortran 90

Page 88 of 142

Ohio Supercomputer Center

Vector subscript can be on LHS of expression

 iv = (/ 1, 3, 5 /)

 ra(iv) = (/ 1.2, 3.4, 5.6 /)

 ! same as ra((/ 1, 3, 5 /)) = (/ 1.2, 3.4, 5.6 /)

Must not repeat values of elements on LHS (many to one)

 iv = (/ 1, 3, 1 /)

 ra(iv) = (/ 1.2, 3.4, 5.6 /) ! not permitted

 ! tries to be ra((/ 1, 3, 1 /)) = (/ 1.2, 3.4, 5.6 /)

 iv = (/ 1, 3, 5 /)

 ra(iv) = (/ 1.2, 3.4, 5.6 /) ! permitted

Fortran 90

Page 89 of 142

Ohio Supercomputer Center

Array Section Assignments

Operands must be conformable

Example

 REAL, DIMENSION (5, 5) :: ra, rb, rc

 INTEGER :: id

 ra = rb + rc * id ! Shape(/ 5, 5 /)

 ra(3:5, 3:4) = rb(1::2, 3:5:2) + rc(1:3, 1:2) !Shape(/ 3, 2 /)

 ra(:, 1) = rb(:, 1) + rb(:, 2) + rb(:, 3) ! Shape(/ 5 /)

Fortran 90

Page 90 of 142

Ohio Supercomputer Center

Array constructor

Have already used in previous pages: method to explicitly
create and fill up a 1D array

Construction of rank 1 array:

 REAL, DIMENSION (6) :: a, b(6,6)

 a = (/ array-constructor-value-list /)

where array-constructor -value-list can be:

-Explicit values: (/ 1.2, 3.4, 3.0, 1 1.2, 1.0, 3.7 /)

-Array Sections: (/ b(i,2:4), b(1:5:2, i+3) /)

 ! = (/ b(i,2),b(i,3),b(i,4),b(1,i+3),b(3,i+3),b(5,i+3) /)

-Implied DO-lists: (/ ((i + j, i = 1, 3), j = 1, 2) /)

 ! = (/ 2, 3, 4, 3, 4, 5 /)

-Arithmetic Expressions: (/ (1.0 / REAL(i), i = 1, 6) /)

 !=(/ 1.0/1.0,1.0/2.0,1.0/3.0,1.0/4.0, 1.0/5.0,1.0/6.0 /)

 !=(/ 1.0,0.5,0.33,0.25,.0.20,0.167 /)

Fortran 90

Page 91 of 142

Ohio Supercomputer Center

RESHAPE Array Intrinsic Function

Once you have used a constructor to make a 1D array can
change its shape with the RESHAPE functions

Syntax:

 RESHAPE(SOURCE, SHAPE [,PAD] [,ORDER])

Operation: RESHAPE returns takes an array SOURCE and
returns a new array with the elements of SOURCE
rearranged to form an array of shape SHAPE

2D array constructed from 1D array elements a column at a time (by
default)

Example:

 REAL, DIMENSION (3, 2) :: ra

 ra = RESHAPE((/ ((i + j, i = 1, 3), j = 1, 2) /), SHAPE = (/ 3, 2 /))

Resulting array ra looks like:

 2 3

 3 4 Shape(/ 3, 2 /)

 4 5

Fortran 90

Page 92 of 142

Ohio Supercomputer Center

Dynamic arrays

Fortran 77

-static (fixed) memory allocation at compile time

Fortran 90

-allocate and deallocate storage as required via allocatable
arrays (done during run time)

-allow local arrays in a procedure to have different size and
shape every time the procedure is invoked via automatic
arrays

-reduce overall storage requirement

-simplify subroutine arguments

Fortran 90

Page 93 of 142

Ohio Supercomputer Center

Allocatable arrays

A run-time array which is declared with the
ALLOCATABLE attribute

 ALLOCATE(allocate_object_list [, STAT= status])

 DEALLOCATE(allocate_obj_list [, STAT= status])

 When STAT= is present, status = 0 (success) or status > 0 (error).

 When STAT= is not present and an error occurs, the program
execution aborts

Example:

REAL, DIMENSION (:, :), ALLOCATABLE :: ra

 INTEGER :: status

 READ (*, *) nsize1, nsize2

 ALLOCATE (ra(nsize1, nsize2), STAT = status)

 IF (status > 0) ! Error processing code goes here

 ! Now just use ra as if it were a "normal" array

 IF (ALLOCATED(ra)) DEALLOCATE (ra)

 ...

Intrinsic function ALLOCATED returns present status of
its array argument

Fortran 90

Page 94 of 142

Ohio Supercomputer Center

Automatic arrays

Automatic arrays typically used as scratch storage within a
procedure. Advantage: no storage allocated for the
automatic array unless the procedure is actually executing.

An automatic array is an explicit shape array in a
procedure (not a dummy argument), whose bounds are
provided when the procedure is invoked via:

-dummy arguments

-variables defined by use or host (internal procedure) associations

Automatic arrays must not appear in SAVE or NAMELIST
statement, nor be initialized in type declaration

Be aware that Fortran 90 provides no mechanism for
checking whether there is sufficient memory for automatic
arrays. If there is not, the outcome is unpredictable - the
program will probably abort

Fortran 90

Page 95 of 142

Ohio Supercomputer Center

Automatic arrays: Examples

Example 1: Bounds of automatic arrays depend on dummy
arguments (work1 and work2 are the automatic arrays)

 SUBROUTINE sub(n, a)

 IMPLICIT NONE

 INTEGER :: n

 REAL, DIMENSION(n, n) :: a

 REAL, DIMENSION (n, n) :: work1

 REAL, DIMENSION (SIZE(a, 1)) :: work2

 ...

 END SUBROUTINE sub

Example 2: Bounds of an automatic array are defined by
the global variable in a module

Fortran 90

Page 96 of 142

Ohio Supercomputer Center

 MODULE auto_mod

 INTEGER :: n

 CONTAINS

 SUBROUTINE sub

 REAL, DIMENSION(n) :: w

 WRITE (*, *) 'Bounds and size of a: ', &

 LBOUND(w), UBOUND(w), SIZE(w)

 END SUBROUTINE sub

 END MODULE auto_mod

 PROGRAM auto_arrays

 USE auto_mod

 n = 10

 CALL sub

 END PROGRAM auto_arrays

Fortran 90

Page 97 of 142

Ohio Supercomputer Center

Assumed shape arrays

Shape of actual and dummy array arguments must agree
(in all Fortrans)

Fortran 77: pass array dimensions as arguments

Fortran 90: not necessary to pass array dimensions

 -Assumed shape array uses dimension of actual
arguments

 -Can specify a lower bound of the assumed shape array

 -Interface required, so must provide an INTERF ACE block
if using an external procedure

Fortran 90

Page 98 of 142

Ohio Supercomputer Center

Assumed shape arrays: Example

 ... ! calling program unit

 INTERFACE

 SUBROUTINE sub (ra, rb, rc)

 REAL, DIMENSION (:, :) :: ra, rb

 REAL, DIMENSION (0:, 2:) :: rc

 END SUBROUTINE sub

 END INTERFACE

 REAL, DIMENSION (0:9,10) :: ra ! Shape (/ 10, 10 /)

 CALL sub(ra, ra(0:4, 2:6), ra(3:7, 5:9))

 ...

 SUBROUTINE sub(ra, rb, rc) ! External

 REAL, DIMENSION (:, :) :: ra ! Shape (/10, 10/)

 REAL, DIMENSION (:, :) :: rb ! Shape (/ 5, 5 /)

 ! = REAL, DIMENSION (1:5, 1:5) :: rb

 REAL, DIMENSION (0:, 2:) :: rc ! Shape (/ 5, 5 /)

 ! = REAL, DIMENSION (0:4, 2:6) :: rc

 ...

 END SUBROUTINE sub

Fortran 90

Page 99 of 142

Ohio Supercomputer Center

Array intrinsic functions

Reduction:

 ALL(MASK[,DIM])

 ANY(MASK[,DIM])

 COUNT(MASK[,DIM])

 MAXV AL(ARRA Y[,DIM][,MASK])

 MINV AL(ARRA Y[,DIM][,MASK])

 PRODUCT(ARRA Y[,DIM][,MASK])

 SUM(ARRA Y[,DIM][,MASK])

Inquiry:

 ALLOCA TED(ARRA Y)

 LBOUND(ARRA Y[,DIM])

 SHAPE(SOURCE)

 SIZE(ARRA Y[,DIM])

 UBOUND(ARRA Y[,DIM])

Fortran 90

Page 100 of 142

Ohio Supercomputer Center

Construction:

 MERGE(TSOURCE,FSOURCE,MASK)

 PACK(ARRAY,MASK[,VECT OR])

 UNPACK(VECT OR,MASK,FIELD)

 SPREAD(SOURCE,DIM,NCOPIES)

RESHAPE(SOURCE,SHAPE[,P AD][,ORDER])

Array Location

 MAXLOC(ARRA Y[,MASK])

 MINLOC(ARRA Y[,MASK])

Array manipulation:

 CSHIFT(ARRAY,SHIFT[,DIM])

 EOSHIFT(ARRAY,SHIFT[,BOUND-AR Y][,DIM])

 TRANSPOSE(MATRIX)

Vector and matrix arithmetic:

 DOT_PRODUCT(VEC OR_A,VECTOR_B)

 MATMUL(MATRIX_A, MATRIX_B)

Fortran 90

Page 101 of 142

Ohio Supercomputer Center

Array Intrinsic Functions: Example

Three students take four exams. The results are stored in
an INTEGER array:

 85 76 90 60

 score(1:3,1:4) 71 45 50 80

 66 45 21 55

Largest score:

 MAXVAL (score) ! = 90

Largest score for each student:

 MAXVAL (score, DIM = 2) ! = (/ 90, 80, 66 /)

Student with largest score:

 MAXLOC (MAXVAL (score, DIM = 2))

 ! = MAXLOC((/ 90, 80, 66 /)) = (/ 1 /)

Average score:

 average = SUM (score) / SIZE (score) ! = 62

Fortran 90

Page 102 of 142

Ohio Supercomputer Center

Number of scores above average:

 above = score > average

 ! above(3, 4) is a LOGICAL array

 ! T T T F

 ! above = T F F T

 ! T F F F

 n_gt_average = COUNT (above) ! = 6

Pack all scores above the average:

 INTEGER, ALLOCATABLE, DIMENSION (:) :: &

 score_gt_average

 ALLOCATE (score_gt_average(n_gt_average))

 scores_gt_average = PACK (score, above)

 ! = (/ 85, 71, 66, 76, 90, 80 /)

Fortran 90

Page 103 of 142

Ohio Supercomputer Center

Did any student always score above the average?

 ANY (ALL (above, DIM = 2)) ! = .FALSE.

Did all students score above the average on any of the
tests?

 ANY (ALL (above, DIM = 1)) ! = .TRUE.

Fortran 90

Page 104 of 142

Ohio Supercomputer Center

Array example Conjugate gradient algorithm

 INTEGER :: iters, its, n

 LOGICAL :: converged

 REAL :: tol, up, alpha, beta

 REAL, ALLOCATABLE :: a(:,:), b(:), x(:), r(:),

 & u(:), p(:), xnew(:)

 READ (*,*) n, tol, its

 ALLOCATE (a(n,n), b(n), x(n), r(n), u(n), p(n), xnew(n))

 OPEN (10, FILE='data')

 READ (10,*) a; READ(10,*) b

 x = 1.0

 r = b - MATMUL(a,x)

 p = r

 iters = 0

Fortran 90

Page 105 of 142

Ohio Supercomputer Center

DO

 iters = iters + 1

 u = MATMUL(a, p)

 up = DOT_PRODUCT(r, r)

 alpha = up / DOT_PRODUCT(p, u)

 xnew = x + p * alpha

 r = r - u * alpha

 beta = DOT_PRODUCT(r, r) / up

 p = r + p * beta

 converged = (MAXVAL(ABS(xnew-x)) / &

 MAXVAL(ABS(x)) < tol)

 x = xnew

 IF (converged .OR. iters == its) EXIT

 END DO

Fortran 90

Page 106 of 142

Ohio Supercomputer Center

 POINTERS

Fortran 90

Page 107 of 142

Ohio Supercomputer Center

Topics

-What is a pointer

-Specifications

-Pointer Operation

-Pointer assignment

-Array Pointers

-Pointer status

-Dynamic storage

-Pointer arguments

-Pointer functions

-Arrays of pointer

-Linked list

Fortran 90

Page 108 of 142

Ohio Supercomputer Center

What is a Fortran 90 pointer?

 A pointer variable has the POINTER attribute and may
point to:

 -Another data object of the same type, which has the
TARGET attribute, or

 -An area of dynamically allocated memory

The use of pointers provides:

-A more flexible alternative to allocatable arrays

-The tool to create and manipulate linked lists and other
dynamic data structures (binary trees)

Fortran 90 pointer does not contain any data itself and
should not be thought of containing an address (as in C)

A Fortran 90 pointer is best viewed as an alias for another
"normal" variable that actually contains data

Fortran 90

Page 109 of 142

Ohio Supercomputer Center

Specifications

 type [[, attribute]... ::] list of variables

Where attribute must include:

-POINTER for a pointer variable, or

-TARGET for a target variable

The type, type parameters and rank of a pointer must be
the same as the type and rank of any target to which it is
pointing

If a pointer is an array pointer, only the rank, not the shape,
should be defined

REAL, DIMENSION(:), POINTER :: p ! legal

REAL, DIMENSION(20), POINTER :: p ! illegal

Fortran 90

Page 110 of 142

Ohio Supercomputer Center

Pointer Operation

Once a pointer is associated with a target (see next page),
and is then used in a Fortran statement where a value is
expected, the value returned is that of the target variable.

I.e., the pointer just acts as an alias for the target variable.

Fortran 90

Page 111 of 142

Ohio Supercomputer Center

 Pointer Assignment Operator =>

 REAL, POINTER :: p1, p2

 REAL, TARGET :: t1 = 3.4, t2 = 4.5

 p1 => t1

 PRINT *, t1, p1 ! 3.4 printed out twice

 p2 => t2

 PRINT *, t2, p2 ! 4.5 printed out twice

 p2 => p1 ! Valid: p2 points to the target of p1

 PRINT *, t1, p1, p2 ! 3.4 printed out three times

p1 p2

t1 t2

3.4 4.5

t1 t2

p1

p2
3.4 4.5

Fortran 90

Page 112 of 142

Ohio Supercomputer Center

Pointer Assignment vs Ordinary Assignment

 REAL, POINTER :: p1, p2

 REAL, TARGET :: t1 = 3.4, t2 = 4.5

 p1 => t1

 PRINT *, t1, p1 ! 3.4 printed out twice

 p2 => t2

 PRINT *, t2, p2 ! 4.5 printed out twice

 p2 = p1 ! Valid: equivalent to t2=t1

 PRINT *, t1,t2, p1, p2 ! 3.4 printed out four times

p1 p2

t1 t2

3.4 4.5

t1 t2

3.4 3.4p1 p2

Fortran 90

Page 113 of 142

Ohio Supercomputer Center

Array Pointers: Target of a pointer can be an array

 REAL, DIMENSION (:), POINTER :: pv1

 REAL, DIMENSION (-3:5), TARGET :: tv1

 pv1 => tv1 ! pv1 aliased to tv1

 pv1=tv1(:) ! aliased with section subscript

 pv1=tv(1:5:2) ! aliased to section triplet

pv1(-3:5)

tv1(-3:5)

tv1(-3:5)
pv1(1:9)

tv1(1:5:2)
pv1(1:3)

Fortran 90

Page 114 of 142

Ohio Supercomputer Center

Array Pointers: 2D

 REAL, DIMENSION (:), POINTER :: pv1

 REAL, DIMENSION (:, :), POINTER :: pv2

 REAL, DIMENSION (4, 8), TARGET :: tv

 pv1 => tv(4, :) ! pv1 aliased to the 4th row of tv

 pv2 => tv(2:4,4:8)

tv(4,:)

pv1(1:8)

tv(2:4,4:8)

pv2(1:3,1:5)

Fortran 90

Page 115 of 142

Ohio Supercomputer Center

Pointer status

Undefined - As at start of program (after declaration)

Null - Not the alias of any data object

 Must not reference undefined pointer, so set to null with NULLIFY
statement

Associated - The alias of a data object

The status can be tested by ASSOCIATED intrinsic
function, for example:

 REAL, POINTER :: p ! p undefined

 REAL, TARGET :: t

 PRINT *, ASSOCIATED (p) ! not valid

 NULLIFY (p) ! point at "nothing"

 PRINT *, ASSOCIATED (p) ! .FALSE.

 p => t

 PRINT *, ASSOCIATED (p) ! .TRUE.

Fortran 90

Page 116 of 142

Ohio Supercomputer Center

Dynamic storage for pointers

Can allocate storage for a pointer to create an un-named
variable or array of specified size with implied target
attribute:

 REAL, POINTER :: p

 REAL, DIMENSION (:, :), POINTER :: pv

 INTEGER :: m, n

 ALLOCATE (p, pv(m, n))

Can release storage when no longer required:

 DEALLOCATE (pv) ! pv is in null status

Before assignment like p = 3.4 is made, p must be
associated with its target via ALLOCATE, or aliased with
target via pointer assignment statement (as before)

Fortran 90

Page 117 of 142

Ohio Supercomputer Center

Potential problems

Dangling pointer:

 REAL, POINTER :: p1, p2

 ALLOCATE (p1)

 p1 = 3.4

 p2 => p1

 DEALLOCATE (p1)

 ! Dynamic variable p1 and p2 both pointed to is gone.

 ! Reference to p2 now gives unpredictable results

Unreferenced storage

 REAL, DIMENSION(:), POINTER :: p

 ALLOCATE(p(1000))

 NULLIFY(p)

 ! nullify p without first deallocating it!

 ! big block of memory not released and unusable

Fortran 90

Page 118 of 142

Ohio Supercomputer Center

Pointer arguments

Pointers, whether allocated or not, are allowed to be
procedure arguments (efficient way to pass an entire array)

- In contrast, allocatable arrays can not be used as dummy arguments:
must therefore be allocated and deallocated in the same program unit.

Rules:

-If a procedure has a pointer or target dummy argument,
the interface to the procedure must be explicit

-If a dummy argument is a pointer, then the actual
argument must be a pointer with the same type, type
parameter and rank

-A pointer dummy argument can not have the intent
attribute

-If the actual argument is a pointer but the dummy
argument is not, the dummy argument becomes associated
with the target of the pointer

Fortran 90

Page 119 of 142

Ohio Supercomputer Center

Pointers as arguments: Sample Program

 INTERFACE ! do not forget interface in calling unit

 SUBROUTINE sub2(b)

 REAL, DIMENSION(:, :), POINTER :: b

 END SUBROUTINE sub2

 END INTERFACE

 REAL, DIMENSION(:, :), POINTER :: p

 ALLOCATE (p(50, 50))

 CALL sub1(p) ! both sub1 and sub2

 CALL sub2(p) ! are external procedures

 ...

 SUBROUTINE sub1(a) ! a is not a pointer

 REAL, DIMENSION(:, :) :: a

 ...

 END SUBROUTINE sub1

 SUBROUTINE sub2(b) ! b is a pointer

 REAL, DIMENSION(:, :), POINTER :: b

 DEALLOCATE(b)

 END SUBROUTINE sub2

Fortran 90

Page 120 of 142

Ohio Supercomputer Center

Pointer functions

A function result may also have the POINTER attribute

Useful if the result size depends on calculations performed
in the function

The result can be used in an expression, but must be
associated with a defined target

The interface to a pointer function must be explicit

Fortran 90

Page 121 of 142

Ohio Supercomputer Center

 Pointer functions: Sample Program

 INTEGER, DIMENSION(100) :: x

 INTEGER, DIMENSION(:), POINTER :: p

 ...

 p => gtzero(x)

 ...

 CONTAINS

 ! function to get all values .gt. 0 from a

 FUNCTION gtzero(a)

 INTEGER, DIMENSION(:), POINTER :: gtzero

 INTEGER, DIMENSION(:) :: a

 INTEGER :: n

 ... ! find the number of values .gt. 0 (put in n)

 ALLOCATE (gtzero(n))

 ... ! put the found values into gtzero

 END FUNCTION gtzero

 ...

 END

Fortran 90

Page 122 of 142

Ohio Supercomputer Center

Arrays of pointers

An array of pointers can not be declared directly:

 REAL, DIMENSION(20), POINTER :: p ! illegal

An array of pointers can be simulated by means of a
derived type having a pointer component:

 TYPE real_pointer

 REAL, DIMENSION(:), POINTER :: p

 END TYPE real_pointer

 TYPE(real_pointer), DIMENSION(100) :: a

 INTEGER :: i

 ...

 ! possible to refer to the ith pointer by a(i)%p

 DO i = 1, 100

 ALLOCATE (a(i)%p(i))

 END DO

Q: Just what is a(10)%p ??????

Fortran 90

Page 123 of 142

Ohio Supercomputer Center

Linked list

A pointer component of a derived type can point at an
object of the same type; this enables a linked list to be
created

 TYPE node

 INTEGER :: value ! data field

 TYPE (node), POINTER :: next ! pointer field

 END TYPE node

A linked list typically consists of objects of a derived type
containing fields for the data plus a field that is a pointer to
the next object of the same type in the list

Fortran 90

Page 124 of 142

Ohio Supercomputer Center

Linked list Properties

Dynamic alternative to arrays

In a linked list, the connected objects

-Are not necessarily stored contiguously

-Can be created dynamically at execution time

-May be inserted at any position in the list

-May be removed dynamically

The size of a list may grow to an arbitrary size as a
program is executing

Trees or other dynamic data structures can be constructed
in a similar way

Fortran 90

Page 125 of 142

Ohio Supercomputer Center

Linked list: Creation Program

 TYPE node

 INTEGER :: value ! data field

 TYPE (node), POINTER :: next ! pointer field

 END TYPE node

 INTEGER :: num

 TYPE (node), POINTER :: list, current

 NULLIFY(list) ! initially nullify list (mark its end)

 DO

 READ *, num ! read num from keyboard

 IF (num == 0) EXIT ! until 0 is entered

 ALLOCATE(current) ! create new node

 current%value = num

 current%next => list ! point to previous one

 list => current ! update head of list

 END DO

 ...

Fortran 90

Page 126 of 142

Ohio Supercomputer Center

If, for example, the values 1, 2, 3 are entered in that order,
the list looks like (progressively):

After NULLIFY(list)

After the first num is read

After all 3 numbers are read

Fortran 90

Page 127 of 142

Ohio Supercomputer Center

 NEW I/O FEATURES

Fortran 90

Page 128 of 142

Ohio Supercomputer Center

Topics

-Non-advancing I/O

-INQUIRE by I/O list

-New edit descriptors

-New statement specifiers

Fortran 90

Page 129 of 142

Ohio Supercomputer Center

Non-advancing I/O

Each READ or WRITE normally involves full records

Non-advancing I/O permits READ or WRITE without
advancing position to new record

ADVANCE='NO' specifier:

 WRITE(*, '("Input size:")', ADVANCE='NO')

 READ(*, '(I5)') n

 On Screen would see: Input size:34

Non-advancing I/O not applicable with list directed I/O

Fortran 90

Page 130 of 142

Ohio Supercomputer Center

INQUIRE by I/O list

Syntax:

 INQUIRE (IOLENGTH=length) output-list

To determine the length of an unformatted output item list

May be used as value of RECL specifier in subsequent
OPEN statement

Example:

 INTEGER :: rec_len

 INQUIRE (IOLENGTH = rec_len) name, title, &

 age, address, tel

 OPEN (UNIT = 1, FILE = 'test', RECL = rec_len, &

 FORM = 'UNFORMATTED')

 WRITE(1) name, title, age, address, tel

Fortran 90

Page 131 of 142

Ohio Supercomputer Center

New edit descriptors

EN - (Engineering) Same as E but exponent divisible by 3,
value before decimal point between 1 and 1000

ES - (Scientific) Same as E but value before decimal point is
between 1 and 10

B - Binary

O - Octal

Z - Hexadecimal

G - Generalized edit descriptor now applicable for all
intrinsic types

To compare the differences among E, EN, ES and G edit
descriptors consider the following code:

 PROGRAM e_en_es_g_compare

 REAL, DIMENSION(4) :: &

 x=(/1.234, -0.5, 0.00678, 98765.4/)

 PRINT '(4E14.3/4EN14.3/4ES14.3/4G14.3)', x, x, x, x

 END PROGRAM e_en_es_g_compare

Fortran 90

Page 132 of 142

Ohio Supercomputer Center

Which produces this output:

 0.123E+01 -0.500E+00 0.678E-02 0.988E+05

 1.234E+00 -500.000E-03 6.780E-03 98.765E+03

 1.234E+00 -5.000E-01 6.780E-03 9.877E+04

 1.23 -0.500 0.678E-02 0.988E+05

Fortran 90

Page 133 of 142

Ohio Supercomputer Center

New statement specifiers

INQUIRE

 POSITION = 'ASIS' 'REWIND' 'APPEND'

 ACTION = 'READ' 'WRITE' 'READWRITE'

 DELIM = 'APOSTROPHE' 'QUOTE' 'NONE'

 PAD = 'YES' 'NO'

 READWRITE =)

 READ =) 'YES' 'NO' 'UNKNOWN'

 WRITE =)

OPEN

 POSITION, ACTION, DELIM, PAD are same as above

 STATUS = 'REPLACE'

READ/WRITE

 NML = namelist_name

 ADVANCE = 'YES' 'NO'

READ

 EOR = label

 SIZE = character_count

Fortran 90

Page 134 of 142

Ohio Supercomputer Center

 INTINSIC PROCEDURES

Fortran 90

Page 135 of 142

Ohio Supercomputer Center

Topics

-Intrinsic procedure categories

-List of new intrinsic procedures

Fortran 90

Page 136 of 142

Ohio Supercomputer Center

Categories

1. Elemental procedures

 A set of functions and one subroutine, specified for scalar
arguments, but applicable for conforming array
arguments,

2. Inquiry functions

Return properties of principal arguments that do not
depend on their values

3. Transformational functions

Usually have array arguments and an array result whose
elements depend on many of the elements of the
arguments

4. Nonelemental subroutines

Fortran 90

Page 137 of 142

Ohio Supercomputer Center

New intrinsic procedures

Elemental functions:

 Numeric

 CEILING (A)

 FLOOR (A)

 MODULO (A, P)

 Character

 ACHAR (I)

 ADJUSTL (STRING)

 ADJUSTR (STRING)

 IACHAR (C)

 INDEX (STRING, SUBSTRING [, BACK])

 LEN_TRIM (STRING)

 SCAN (STRING, SET [, BACK])

 VERIFY (STRING, SET [, BACK])

Fortran 90

Page 138 of 142

Ohio Supercomputer Center

 Bit manipulation

 BTEST (I, POS)

 IAND (I, J)

 IBCLR (I, POS)

 IBITS (I, POS, LEN)

 IBSET (I, POS)

 IEOR (I, J)

 IOR (I, J)

 ISHFT (I, SHIFT)

 ISHFTC (I, SHIFT [, SIZE])

 NOT (I)

 Kind

 SELECTED_INT_KIND (R)

 SELECTED_REAL_KIND (P,R)

Fortran 90

Page 139 of 142

Ohio Supercomputer Center

 Floating point manipulation

 EXPONENT (X)

 FRACTION (X)

 NEAREST (X, S)

 RRSPACING (X)

 SCALE (X, I)

 SET_EXPONENT (X, I)

 SPACING (X)

 Logical:

 LOGICAL (L [,KIND])

Elemental subroutine:

 MVBITS (FROM, FROMPOS, LEN, T O, T OPOS)

Fortran 90

Page 140 of 142

Ohio Supercomputer Center

 Inquiry functions:

 PRESENT (A)

 ASSOCIA TED (POINTER [,T ARGET])

 KIND (X)

 BIT_SIZE (I)

Numeric

 DIGITS (X)

 EPSILON (X)

 HUGE (X)

 MAXEXPONENT (X)

 MINEXPONENT (X)

 PRECISION (X)

 RADIX (X)

 TINY (X)

Fortran 90

Page 141 of 142

Ohio Supercomputer Center

Transformational functions:

REPEAT (STRING, NCOPIES)

 TRIM (STRING)

 TRANSFER (SOURCE, MOLD [, SIZE])

Non elemental intrinsic subroutines:

 DA TE_AND_TIME ([DA TE][,TIME][,ZONE][V ALUES])

 SYSTEM_CLOCK ([COUNT][,COUNT_RA TE][COUNT_MAX])

 RANDOM_NUMBER (HAR VEST)

 RANDOM_SEED ([SIZE] [,PUT] [,GET])

Array intrinsic procedures:

 See section on array processing

Fortran 90

Page 142 of 142

Ohio Supercomputer Center

Random Number Program: Clock Seed

PROGRAM random

 INTEGER, DIMENSION(8):: time_info

 INTEGER :: msec,i,n

 REAL, DIMENSION(10) :: num

 CALL DATE_AND_TIME(VALUES=time_info)

 msec=time_info(7)*1000+time_info(8)

 CALL RANDOM_SEED(SIZE=n)

 CALL RANDOM_SEED(PUT=(/ (msec,i=1,n) /))

 CALL RANDOM_NUMBER(num)

 WRITE (*,'(10F5.2)') num

END PROGRAM random

Output from several runs of the program:

 0.80 0.44 0.46 0.27 0.17 0.45 0.29 0.05 0.64 0.21

 0.92 0.47 0.05 0.99 0.87 0.36 0.37 0.03 0.68 0.81

 0.12 0.19 0.41 0.81 0.47 0.49 0.08 0.00 0.92 0.46

 0.55 0.52 0.88 0.38 0.51 0.70 0.45 0.49 0.45 0.85

