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Numerov method for integrating the one-dimensional Schrödinger equation.

Peter Young

The one-dimensional time-independent Schrödinger equation is

−
h̄2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x), (1)

where ψ(x) is the wavefunction, V (x) is the potential energy, m is the mass, and h̄ is Planck’s

constant divided by 2π. This is an eigenvalue problem since one can only find a solution which

vanishes at ±∞ (the boundary conditions) for certain discrete values of E.

In order to find the energy eigenvalues, we need to be able to integrate the equation with respect

to x, for a given value of E, starting at x = x0, say, with some specified values for x = x0 and

x = x1 = x0 +h, where h is the step interval. Using the notation xn = x0 +nh and ψn ≡ ψ(xn), we

have to solve for ψ2, ψ3, · · · , given ψ0 and ψ1. Having solved the equation for a given value of E

we need to vary E until we find a solution which satisfies the boundary conditions, which requires

re-solving the equation for each value of E. We will discuss this aspect of the problem, using what

is called the “shooting method”, in more detail in class.

Here we focus on the problem of integrating the equation for a given value of E. One method

would be to use 4-th order Runge-Kutta (RK4), since it is is quite accurate. RK4 involves writing

Schrödinger’s equation, which is second order, as two first order equations:

dψ

dx
= φ(x)

dφ

dx
= −k2(x)ψ(x), (2)

where

k2(x) =
2m

h̄2 (E − V (x)) . (3)

You will recall that this a fourth order method, i.e. the error is proportional to h4.

An alternative, is to leave the Schrödinger equation as one second order equation,

(

d2ψ

dx2
+ k2(x)

)

ψ(x) = 0, (4)

and take advantage of its particular structure (it is linear in ψ and there is no term involving the

first derivative.) A suitable algorithm for this type of problem is the Numerov algorithm, which is

simpler than RK4 and is one one higher order (fifth).
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We now describe the Numerov method (see also Landau and Páez). A Taylor series for ψ(x+h)

gives

ψ(x+ h) = ψ(x) + hψ′(x) +
h2

2
ψ(2)(x) +

h3

6
ψ(3)(x) +

h4

24
ψ(4)(x) + · · · . (5)

Adding this to the series for ψ(x− h) all the odd powers of h vanish:

ψ(x+ h) + ψ(x− h) = 2ψ(x) + h2ψ(2)(x) +
h4

12
ψ(4)(x) +O(h6) . (6)

We can therefore write the second derivative which occurs in the Schrödinger equation, Eq. (4), as

ψ(2)(x) =
ψ(x+ h) + ψ(x− h) − 2ψ(x)

h2
−
h2

12
ψ(4)(x) +O(h4). (7)

We would like to evaluate the term involving the 4th derivative. To do so, we act on Eq. (4) with

1 + (h2/12)d2/dx2, which gives

ψ(2)(x) +
h2

12
ψ(4)(x) + k2(x)ψ(x) +

h2

12

d2

dx2

[

k2(x)ψ(x)
]

= 0. (8)

Substituting for ψ(2)(x) + h
2

12ψ
(4)(x) from Eq. (8) into Eq. (7) gives

ψ(x+ h) + ψ(x− h) − 2ψ(x) + h2k2(x)ψ(x) +
h4

12

d2

dx2

[

k2(x)ψ(x)
]

+O(h6) = 0. (9)

We evaluate d
2

dx2

[

k2(x)ψ(x)
]

by using an elementary difference formula (this has an error O(h2)

but is accurate enough because this term is already multiplied by h4 in Eq. (9)):

d2

dx2

[

k2(x)ψ(x)
]

≃
k2(x+ h)ψ(x+ h) + k2(x− h)ψ(x− h) − 2k2(x)ψ(x)

h2
. (10)

Substituting Eq. (10) into Eq. (9) and rearranging we get the Numerov algorithm for one time

step:

ψ(x+ h) =
2

(

1 −
5
12h

2k2(x)
)

ψ(x) −
(

1 + 1
12h

2k2(x− h)
)

ψ(x− h)

1 + 1
12h

2k2(x+ h)
+O(h6). (11)

Setting x = xn ≡ x0 + nh, and defining kn ≡ k(xn), this can be written more tidily as

ψn+1 =
2

(

1 −
5
12h

2k2
n

)

ψn −
(

1 + 1
12h

2k2
n−1

)

ψn−1

1 + 1
12h

2k2
n+1

, (12)

with an error of order h6. The Numerov method, Eq. (12), can be used to determine ψn for

n = 2, 3, 4, · · · , given two initial values, ψ0 and ψ1.

The error in one time step is O(h6). However, as we have also discussed in other contexts, the

number of steps needed to integrate over a fixed range of x from x0 to x0 + ∆x, say, is ∆x/h. The

errors in each step can add up and so the total error in the Numerov method is O(h5), i.e. it is a

5-th order method, one higher than RK4. However, there can be problems with roundoff errors

in using Eq. (12) so make sure you use double precision arithmetic.


