Radioactive Decay
1. Background

It is well known that many nuclei are unstable and are transformed into other nuclear
species by means of either alpha decay or beta decay. The rate at which those radioactive
nuclei decay in a sample of material is called the activity of the sample. The greater the
activity, the more nuclei decay per second. The decay probability per nucleus per second
is call the decay constant X\. One assumes that A is a small number, and that it is constant
in time for any particular material, i.e. the probability of any one nucleus decaying does
not depend on the age of the sample. The activity A depends on the number N of
radioactive nuclei in the sample and also on the probability A for each nucleus to decay,
A = AN. As the radioactive nuclei in the sample decay, there are fewer of them left. If
N decreases and A\ is a constant, then the number of radioactive nuclei in the sample is
governed by the differential equation

dN
dt
This equation can be directly integrated to yield

“AN. (1)

N = Noe™, (2)

where Ny represent the number of radioactive nuclei originally present at t = 0. Eq. (2)
is the exponential law of radioactive decay, which tells us how the number of radioactive
nuclei in a sample decreases with time. Similarly, for the activity holds

A= Age™. (3)

The half-life t,/, of the decay is the time that it takes for the activity to be reduced by
half, i.e. A = Ay/2 when t = t;/,. From that follows a simple relation of ¢, to the decay
constant
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Another useful parameter is the mean lifetime T,
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2. Numerical Approach

While the differential equation Eq. (2) can be solved without resorting to a numerical
approach, this problem is useful for introducing a computational method for differential



equations. Starting from the simplest method for obtaining a numerical derivative, the
forward different method, we now consider a simple method for solving this problem
numerically. Given a value N, at one particular value of ¢ (usually ¢t = 0), we want to
estimate its value at later times. One line of attack can be derived by examining the
Taylor expansion for Ny
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where N(At) is the value of N at ¢ = At, and the derivatives are evaluated at ¢t = 0.
If we take At to be small, then it is usually a good approximation to simply ignore the

terms that involve second and higher powers of At, leaving

dN
N(At) =~ Ny(0) + %At. (7)
The same result can be obtained from the definition of the derivative
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where in the last approximation we have assumed that At is small, but nonzero. Rear-
ranging the terms gives

dN
dt
which is equivalent to (7). It is important to recognize that this is an approzimation.
The error terms that were dropped in deriving this result are of order (At)?, which makes
them at least one factor of At smaller than any of the other terms in (9). Hence, by
making At small, one would expect that the error terms can be made negligible. From
our study of differentiation, we already know that one has to pay attention. The above
simple approximation to solve a first order differential equation is called Euler method.

N(t+ A ~ N(t) + ZL A, 9)

For the physics problem we want to solve we know the functional form of the derivative.
Inserting this into Eq. (9) and rearranging the terms leads to

N(t + At) ~ N(t) — ANAt, (10)

which forms the basis for a numerical solution of our radioactive decay problem. Given
that we know the value of NV at some value of T', we can use (10) to estimate its value at
time At later. In our case the number of radioactive nuclei at t = 0 is given.

The overall structure of a program to simulate the radioactive decay consists of three
basic tasks:

1. Initialize all variables and parameters

2. Carrying out the calculation according to (10) for a finite number of time steps.
3. Display the results.
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. Estimate the numerical error.



