
Using the Sun Debugger dbx

1. Overview

Very often your programs may contain mistakes (bugs) which cause them to fail or give
incorrect results. Finding your bug is a process of confirming the many things
you believe are true, until you find one which is not true. This can be time
consuming. One way to find out what is happening in your code is to write out variables
at certain points in your code and see if those variables contain the values you think they
should have.

A debugger is a software utility which lets you follow the code during execution, stops at
specified points and lets you inspect the variables.

The debugger of the Sun Studio 12 is called dbx. The manual page is located at
http://docs.sun.com/app/docs/doc/819-5257.

dbx can do mainly four types of things to help you catch bugs in the act:

• Start your program, specifying anything that might affect its behavior.

• Make your program stop on specified conditions.

• Examine what has happened when your program stopped.

• Change things in your program so that you can experiment with correcting the
effects of one bug and go on to learn about another.

The program being debugged can be written in any of the languages the Sun Studio 12
supports. In our case this will be Fortran 90.

2. Preparations

Your code needs to be compiled in special way so that the executable is prepared for dbx.
Let us take the program example.f90. Compiled with
f95 -g -o example example.f90
produces an object file (executable) ‘example’ which contains a lot of extra information
needed by the debugger. So, without the -g option dbx is essentially useless, but for
normal execution you would not want to use the -g option, since it makes execution slow.

3. Running dbx

To start dbx type



dbx example

Once dbx is running, you should see the (dbx) prompt. At this point you can start issuing
dbx commands. You exit again by typing quit at the (dbx) prompt.

4. dbx commands

There are many dbx commands described in the manual. Some of the basic commands
are run, stop, next, cont, print which will get you started.

run [arguments] example
Begin executing the object file example, passing optional command-line arguments. The
arguments can include input or output redirection to named files, as in a normal command
line.

run will execute the object file, and if crashes will tell you where. If you want to examine
certain section in your code, you need to stop the execution, i.e. set break points. This
can be done several ways.

stop in subnam
where subnam is e.g. the name of a subroutine or function. stop in MAIN will stop at
the first executable statement of your main program. (Hint: It will be useful if you have
an output or a editor with line numbers, since dbx will refer to the line numbers of your
program.)

stop at n
will put a stop in the main program at the line n

stop at ”subroutine.f90”:n will put a stop in the subroutine at line n.

When you run the debugger will stop at the first breakpoint you set. Once at the first
break, you can examine all portions of the code which have been executed up to there.

print expression will print the current value of the variable expression, which can be
single variables or arrays. To print values of two-dimensional Fortran array elements use
the format print array[1,2].

next will execute the next line

cont will continue execution up to the next breakpoint.

list [n1 [,n2]] or func
lists the source text between lines n1 and n2, or on lines surrounding the first statement
of func. With no arguments, list lists the next ten lines from the current active line.

5. Specific example



You may want to start by using dbx to set some break points within your code. To step
through your code at the very beginning, you need to stop in the main routine.

(dbx) stop in MAIN

Now you can issue the run command to start execution of your object file. You will get
the process id and the name of the object file being executed.

(dbx) run

At this point, you may use the list command for the first 10-line listing of your source
code:

(dbx) list

Use the stop command to set break-points at various lines or procedures within the
object-file:

(dbx) stop at 10
(dbx) stop at sub123.f:10
(dbx) stop in sub123
(dbx) stop in sub456 if i == 24

The execution will stop in the example at line 10, or at line 10 in subroutine sub123, or
in the subroutine sub123, or in the subroutine sub456 when i is equal to 24. To continue
execution at any point in your debugging session, issue the cont command.

(dbx) cont

To restart your debugging session, issue the rerun command:

(dbx) rerun

To catch the place where floating point exceptions occured, enter at the beginning of the
dbx run catch FPE.

To exit dbx, type quit

(dbx) quit

6. Catch Floating Point Exceptions

Compile code with

f95 -g -ftrap=common example example.f90

then start dbx as usual with
dbx example



before running, issue command
(dbx) catch FPE
(dbx) run example
and the debugger will give the line in the code at which the floating point exception
occured.


