Assignment VI: Eigensystems

Due 10/17/2016 (4 pm)

1. Testing Matrix Calls (partially in Class)

Before using subroutines from external libraries such as lapack or linpack, it is a good idea to test those routines with small matrices, for which you know the correct answer. In this way it will only take a short time to realize how hard it is to get the calling procedure perfectly correct.

The subroutine dminv.f90 inverts a matrix and computes its determinant. Write a driver routine to test this subroutine with the matrix

$$
A=\left(\begin{array}{ccc}
4 & -2 & 1 \tag{1}\\
3 & 6 & -4 \\
2 & 1 & 8
\end{array}\right)
$$

(a) Verify that the inverse of A is [R.L. Eq. (15.39)]

$$
A^{-1}=\frac{1}{263}\left(\begin{array}{ccc}
52 & 17 & 2 \tag{2}\\
-32 & 30 & 19 \\
-9 & -8 & 30
\end{array}\right)
$$

(b) As a general procedure, applicable even if you do not know the analytic answer, check the your inverse in both directions, i.e. verify that

$$
\begin{equation*}
A A^{-1}=A^{-1} A=1 \tag{3}
\end{equation*}
$$

(c) Compute the determinant of A and compare with your analytic answer.
(d) Consider the same matrix A as in Eq. (1), but now used to describe a system of three linear equations of the form

$$
\begin{equation*}
A X=B \tag{4}
\end{equation*}
$$

Here the vector B on the RHS is assumed to be known, and the problem is to solve for the vector X. Use the routine dgesv.f from LAPACK to solve the system for

$$
B_{1}=\left(\begin{array}{c}
+4 \tag{5}\\
-10 \\
+22
\end{array}\right)
$$

The LAPACK and BLAS libraries are available on the Suse-Linux computers under /usr/local/lib
(e) Consider the symmetric matrix

$$
A=\left(\begin{array}{ccc}
1 & -4 & 2 \tag{6}\\
-4 & 1 & -2 \\
2 & -2 & -2
\end{array}\right)
$$

Use the LAPACK routine dsyev.f to verify that the eigenvalues are $6,-3,-3$, and compute the eigenvectors. Do the same using the LAPACK routine dgeev.f.
(e) Consider the matrix

$$
A=\left(\begin{array}{ccc}
-2 & +2 & -3 \tag{7}\\
+2 & +1 & -6 \\
-1 & -2 & 0
\end{array}\right)
$$

Use the LAPACK routine dgeev.f to verify that the eigenvalues are $\lambda_{1}=5, \lambda_{2}=$ $\lambda_{3}=-3$.
Notice that double roots can cause problems. In particular, there is a uniqueness problem with their eigenvectors since any combination of these eigenvectors would also be an eigenvector.

1. Verify that the eigenvector for $\lambda_{1}=5$ is proportional to

$$
X_{1}=\left(\begin{array}{c}
-1 \tag{8}\\
-2 \\
+1
\end{array}\right)
$$

2. The eigenvalue -3 corresponds to a double root. This means that the corresponding eigenvectors are degenerate, i.e. their are not unique. Two linearly independent ones are

$$
X_{2}=\left(\begin{array}{c}
-2 \tag{9}\\
+1 \\
0
\end{array}\right), \quad X_{3}=\left(\begin{array}{c}
3 \\
0 \\
1
\end{array}\right)
$$

In this case it is not clear what your eigenproblem solver will give as eigenvectors. Try to find a relationship between your computed eigenvectors to the above given ones.

2. Schrödinger Equation via Diagonalization (M.H-J_07 12.6)

Instead of solving the Schrödinger equation in coordinate space as differential equation, we will solve it through diagonalization of a large matrix. Please see Section 12.6 in the handout for details. However, you will solve the three-dimensional harmonic oscillator. Please review your quantum mechanics notes.

The radial part of the wave function, $R(r)$ is the solution to

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}\right) R(r)+V(r) R(r)=E R(r) \tag{10}
\end{equation*}
$$

Then one substitutes $R(r)=(1 / r) u(r)$ to obtain the differential equation for $u(r)$. Furthermore, it is convenient to introduce the dimensionless variable $\rho=(1 / \alpha) r$, where α is a constant with dimension length to obtain the radial equation as

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m \alpha^{2}} \frac{d^{2}}{d \rho^{2}} u(\rho)+\left(V(\rho)+\frac{l(l+1)}{\rho^{2}} \frac{\hbar^{2}}{2 m \alpha^{2}}\right) u(\rho)=E u(\rho) \tag{11}
\end{equation*}
$$

Concentrate on the special case $l=0$ and use $V(\rho)=\frac{1}{2} k \alpha^{2} \rho^{2}$, which leads to

$$
\begin{equation*}
-\frac{d^{2}}{d \rho^{2}} u(\rho)+\frac{m k}{\hbar^{2}} \alpha^{4} \rho^{2} u(\rho)=\frac{2 m \alpha^{2}}{\hbar^{2}} E u(\rho) . \tag{12}
\end{equation*}
$$

The constant α can now be fixed so that

$$
\begin{equation*}
\frac{m k}{\hbar^{2}} \alpha^{4}=1 \tag{13}
\end{equation*}
$$

Define

$$
\begin{equation*}
\lambda=\frac{2 m \alpha^{2}}{\hbar^{2}} E \tag{14}
\end{equation*}
$$

and show that you can rewrite the Schrödinger equation as

$$
\begin{equation*}
-\frac{d^{2}}{d \rho^{2}} u(\rho)+\rho^{2} u(\rho)=\lambda u(\rho) \tag{15}
\end{equation*}
$$

Include your derivation of the final equation in your write-up, and give the expression for the expected eigenvalues $E_{n l}$ for the 3D harmonic oscillator. Here $n=0,1,2, \ldots$, and $l=0,1,2, \ldots$.

In your calculation use units such that $k=\hbar=m=\alpha=1$. Using a 3-point discretization (see Homework III) for the second derivative this differential equation is turned into a matrix equation of the form $A x=b$, Eq. (12.9).

Follow Section 12.6.1 in setting up the algorithm.

1. Define values for $N_{s t e p}, R_{\text {min }}$, and $R_{\max }$. These values then define the step-size h. Typical values for $R_{\min }$ and $R_{\max }$ should be -10 and 10 respectively for the lowestlying eigenvalues. The number of mesh-points $N_{\text {step }}$ should range from 100 to about 1000.
2. Construct the arrays (dimension 0 to $N_{s t e p}$), which contain all values of x_{k} and V_{k} (Hint, write a small function routine to set up the potential as function of x_{k}).
3. Then construct the vectors d (containing the diagonal) and e (containing the offdiagonal. Note that the dimension of these two vectors runs from 1 to $N_{\text {step }}-1$, since the wave function u is known at both ends of the grid. Then you have everything to fill the upper or lower half of the input matrix for your diagonalization routine.
(a) Perform a series of diagonalization of the matrix for different step sizes h. You obtain a series of eigenvalues $E\left(h / 2^{k}\right)$ with $\mathrm{k}=0,1,2 \ldots$ That will give you an array of 'x-values' $h, h / 2, h / 4, .$. and an array of 'y-values' $E(h), E(h / 2) \ldots$ You will have such a set of values as function of h for each eigenvalue.
(b) Use these values to perform an extrapolation to obtain the energy value for $h \rightarrow 0$. You may plot the values as function of h and use xmgrace for the extrapolation, you you may use a function like polint to extrapolate to $h=0$.
(c) Carry out this analysis for the three lowest eigenvalues and comment on the error of your calculation.
(d) Calculate and plot the radial wave function for those three lowest eigenstates.
