
Assignment VI: Eigensystems

Due 10/17/2016 (4 pm)

1. Testing Matrix Calls (partially in Class)

Before using subroutines from external libraries such as lapack or linpack, it is a good idea
to test those routines with small matrices, for which you know the correct answer. In this
way it will only take a short time to realize how hard it is to get the calling procedure
perfectly correct.

The subroutine dminv.f90 inverts a matrix and computes its determinant. Write a driver
routine to test this subroutine with the matrix

A =







4 −2 1
3 6 −4
2 1 8





 (1)

(a) Verify that the inverse of A is [R.L. Eq. (15.39)]

A−1 =
1

263







52 17 2
−32 30 19
−9 −8 30





 (2)

(b) As a general procedure, applicable even if you do not know the analytic answer,
check the your inverse in both directions, i.e. verify that

AA−1 = A−1A = 1 (3)

(c) Compute the determinant of A and compare with your analytic answer.

(d) Consider the same matrix A as in Eq. (1), but now used to describe a system of
three linear equations of the form

AX = B. (4)

Here the vector B on the RHS is assumed to be known, and the problem is to solve
for the vector X . Use the routine dgesv.f from LAPACK to solve the system for

B1 =







+4
−10
+22





 . (5)

The LAPACK and BLAS libraries are available on the Suse-Linux computers under
/usr/local/lib



(e) Consider the symmetric matrix

A =







1 −4 2
−4 1 −2
2 −2 −2





 (6)

Use the LAPACK routine dsyev.f to verify that the eigenvalues are 6, -3, -3, and
compute the eigenvectors. Do the same using the LAPACK routine dgeev.f.

(e) Consider the matrix

A =







−2 +2 −3
+2 +1 −6
−1 −2 0





 . (7)

Use the LAPACK routine dgeev.f to verify that the eigenvalues are λ1 = 5, λ2 =
λ3 = −3.
Notice that double roots can cause problems. In particular, there is a uniqueness
problem with their eigenvectors since any combination of these eigenvectors would
also be an eigenvector.

1. Verify that the eigenvector for λ1 = 5 is proportional to

X1 =







−1
−2
+1





 . (8)

2. The eigenvalue −3 corresponds to a double root. This means that the corre-
sponding eigenvectors are degenerate, i.e. their are not unique. Two linearly
independent ones are

X2 =







−2
+1
0





 , X3 =







3
0
1





 . (9)

In this case it is not clear what your eigenproblem solver will give as eigen-
vectors. Try to find a relationship between your computed eigenvectors to the
above given ones.

2. Schrödinger Equation via Diagonalization (M.H-J 07 12.6)

Instead of solving the Schrödinger equation in coordinate space as differential equation,
we will solve it through diagonalization of a large matrix. Please see Section 12.6 in the
handout for details. However, you will solve the three-dimensional harmonic oscillator.
Please review your quantum mechanics notes.



The radial part of the wave function, R(r) is the solution to

−

h̄2

2m

(

1

r2
d

dr
r2

d
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−

l(l + 1)

r2

)

R(r) + V (r)R(r) = ER(r). (10)

Then one substitutes R(r) = (1/r)u(r) to obtain the differential equation for u(r). Fur-
thermore, it is convenient to introduce the dimensionless variable ρ = (1/α)r, where α is
a constant with dimension length to obtain the radial equation as

−

h̄2

2mα2

d2

dρ2
u(ρ) +

(

V (ρ) +
l(l + 1)

ρ2
h̄2

2mα2

)

u(ρ) = Eu(ρ) (11)

Concentrate on the special case l = 0 and use V (ρ) = 1

2
kα2ρ2, which leads to

−

d2

dρ2
u(ρ) +

mk

h̄2
α4ρ2u(ρ) =

2mα2

h̄2
Eu(ρ). (12)

The constant α can now be fixed so that

mk

h̄2
α4 = 1 (13)

Define

λ =
2mα2

h̄2
E (14)

and show that you can rewrite the Schrödinger equation as

−

d2

dρ2
u(ρ) + ρ2u(ρ) = λu(ρ) (15)

Include your derivation of the final equation in your write-up, and give the expression
for the expected eigenvalues Enl for the 3D harmonic oscillator. Here n = 0, 1, 2, . . ., and
l = 0, 1, 2, . . ..

In your calculation use units such that k = h̄ = m = α = 1. Using a 3-point discretization
(see Homework III) for the second derivative this differential equation is turned into a
matrix equation of the form Ax = b, Eq. (12.9).

Follow Section 12.6.1 in setting up the algorithm.

1. Define values for Nstep, Rmin, and Rmax. These values then define the step-size h.
Typical values for Rmin and Rmax should be -10 and 10 respectively for the lowest-
lying eigenvalues. The number of mesh-points Nstep should range from 100 to about
1000.



2. Construct the arrays (dimension 0 to Nstep), which contain all values of xk and Vk

(Hint, write a small function routine to set up the potential as function of xk).

3. Then construct the vectors d (containing the diagonal) and e (containing the off-
diagonal. Note that the dimension of these two vectors runs from 1 to Nstep-1, since
the wave function u is known at both ends of the grid. Then you have everything
to fill the upper or lower half of the input matrix for your diagonalization routine.

(a) Perform a series of diagonalization of the matrix for different step sizes h. You
obtain a series of eigenvalues E(h/2k) with k=0,1,2 ... That will give you an array
of ’x-values’ h,h/2, h/4, .. and an array of ’y-values’ E(h), E(h/2) ...
You will have such a set of values as function of h for each eigenvalue.

(b) Use these values to perform an extrapolation to obtain the energy value for h → 0.
You may plot the values as function of h and use xmgrace for the extrapolation, you
you may use a function like polint to extrapolate to h = 0.

(c) Carry out this analysis for the three lowest eigenvalues and comment on the error
of your calculation.

(d) Calculate and plot the radial wave function for those three lowest eigenstates.


