Chapter 1

The Nucleon-Nucleon System

1.1 The Lippmann-Schwinger Equation for the Scat-
tering Process

Let us consider two-nucleon scattering and define El and Eg to be the individual nucleon
momenta. The relative momentum is then given as

N
p= 5(/‘61 — k) (1.1)

The momentum eigenstates in the nucleon-nucleon (NN) c.m. system are then

| D) (1.2)
and are chosen to be normalized as
o |p)=0w-7p"). (1.3)
They are eigenstates to the free Hamiltonian for the relative motion
=2
p
Hy=— 1.4
=T (14)

where m is the nucleon mass.
Let V' be the NN potential, which is assumed to be energy independent.
The Schrédinger equation for a scattering state \IJI(?+

g (1.5)

) _ g gl
(Ho+V) ¥ = B
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can be cast into an integral equation, the Lippmann-Schwinger equation (LSE):

(Hy—E)¥S) = —veld (1.6)
1
vy = — v v 1.7

Let us consider the configuration space representation. The conjugate variable to p'is
=17 —Ty, (1.8)
and we choose | ¥) to be normalized as
(| &) =87 - 2. (1.9)
Then the Fourier transform is given by

) L

The configuration space representation of the free propagator

Gy = 1.11
°~ E+ic— Hy (1.11)
is given as
Y I I i e ——
T = T T
E +ie — H, b b E +ie —p?/m P
1 o 1 o,
— d3 ip-T —1ip-T
(27)3/2 / be E+ie—p2/me
1 i 1
— d3 ip-(Z—2")
(2m)3 / pe E +ie —p*/m
1 00 1
= 4 / dp p*j
(27T)3 0 0 pDp ]0(pp) E+Z€—p2/m
(1.12)
with p =| 7 — 2 |
Standard residue techniques lead to
iVmE|Z—Z|
(# | Go | 7') = == —=—= . (1.13)
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which exhibits the outgoing wave behavior from the source point Z' to Z. It results the
configuration space representation of the LSE

P 2
:($waw_%/wfﬁngwwwﬁw)
(1.14)
Thereby we assumed a local potential
(Z| V|2 = *x—2") V(') (1.15)
In a well known manner one reads off the asymptotic form for | Z |— oo :
) o oy (6 + T @), (1.16)

with the scattering amplitude f(#) depending on the direction & of observation

f(@) = —m \/g / APz’ e T V(2 \Ifz(;r)(f') : (1.17)

This can be interpreted in terms of a scattered momentum

7 =dp, (1.18)
and one introduces a transition amplitude
1 =l 2l
<ﬁl | ¢ |m = (271-)% / dPa e~ T V(.CL',) \IJ;»+)(f,)
= (' V] ¥
(1.19)

Apparently ¢ is the result of the scattering process and determines all scattering observ-
ables.
[s there an integral equation directly for t? From (1.24) we read off

t|py=v |wihy (1.20)

p

and using (1.7) we find

t|p) :Lq@+VGmuwﬁ>

(1.21)



We can strip off the initial state | p) and get the operator relation
=V 4V Gyt (1.22)

which is the LSE for the transition operator. Its simple physical interpretation results by
iterating that equation:

t =V + VG (V + VGt )
(1.23)

This is the Born series for scattering on V', a sum of terms of increasing order in V. Each
term consists of a sequence of V's with free propagations in between. This is a general
structure valid for any number of particles.

It is useful to visualize that multiple scattering process in the form

E:

where the dashed lines stand for the action of V and two horizontal lines for the free

propagation Gy between two interactions. Intuitively one can start from that sum of
terms (1.23)

*o----0

t=V4+V G V+V G VG V+... (1.24)

and ask the question: can this series be summed up into an integral equation for ¢ 7
Obviously it can:

and we recover t again on the right hand side and thus get
t=V+V Gt (1.26)

which is the LSE.

Of course if one starts from Eq. (1.23) in an ad hoc manner one has to know the form of
the free propagator Gy and therefore one has to make contact to the underlying dynamical
equation, in our case the Schrodinger equation. Formally however this multiple scattering
series is quite general and also valid for the Bethe-Salpeter equation, where G is different
from the Gy used in our nonrelativistic context.



1.2 Alternative Derivation of the Lippmann-Schwinger
Equation

A free momentum eigenstate obeys
Hy|p) = Ep|p) (1.27)
and a scattering state obeys
H|p)" = E, 7). (1.28)
Here a scattering state is defined via
1 7)) = QD 5) = lime g ie G(E +ie) | 7)), (1.29)

where Q) is the Mgller operator, which maps a free state | p’ ) onto a scattering state
| 7).

The propagators, or Resolvents, are given by

Gol2) = Z_lHO (1.30)

and

Gz) = Z_lH (1.31)

Here G(z) is the free propagator (Resolvent) and G(z) the full propagator (Resolvent).

Let us consider
Gy'—-G' = (z—Hy)—(2—H) = —Hy+H =V, (1.32)
where we use that H = Hy+ V.
Multiplying Eq. (1.32) from the left with Gy and from the right with G yields
GGyt -G HG = G-Gy = GV G (1.33)
or

G = Go+GoV G. (1.34)

The above relation, Eq. (1.34), is called first Resolvent Identity.
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Applying the first Resolvent Identity on a momentum eigenstate and multiplying
both sides of the resulting equation with e yields

ie G(E+ie) | p) = ie Go(E+ie) | p) + ie Go(E +ie)V G(E +ie) | )
< 4 ie Go(E+ie)V G(E +ie) | 7)
= |p) + ie Go(E+ie)V G(E +ie) | P') .

E +ic — H, 17)

(1.35)

Taking the limit ¢ — 0 gives, together with the definition Eq. (1.29), the Lippmann-
Schwinger equation for states

7)Y =15) + Go(E+ie)V | 7)™ (1.36)

If we multiply Eq. (1.36) by V" and define

Vg =t)p), (1.37)
we obtain
VI Y =V |F) + V GoE+ie)V | 5)H (1.38)
or
tlp)y = VIg) + VGo(E+iot|p). (1.39)

Since the operators in Eq. (1.39) are applied on a general state | p’), we can consider this
equation as operator equation:

t = V+V Gy(E +ie)t . (1.40)

This equation is also called operator Lippmann-Schwinger equation.

A next task is to derive from Eq. (1.36) a relation to the scattering wave function
Y+ (7). Let us consider

1D = FIF) + (7| GoV R (1.41)
which leads to
WO = I = FIF) + FIGot]P) (1.42)
= 71D+ [ @ FIF) @Gt B
(1.43)
Applying the definition of G leads to
Sl o) . 1 .
190 = (F15) + [ V) g @), )



which is the desired equation for the scattering wave function () (r).

Energy conservation leads to an additional constraint for the t-operator. If a momen-
tum before the scattering event is denoted with p, and after the scattering event with p’’,
then energy conservation requires

12 o2
P _ P 5 52 (1.45)
m m

This means that we can extract an energy conserving d-function from the matrix element

FNTE) | P) = 0(Ey — By (0" H(E) | D) - (1.46)

The latter relation is sometimes called on-shell condition. The physical meaning is that
the observables of NN scattering only determine the matrix elements consistent with the
relation (1.46).

1.3 The Lippmann-Schwinger Equation for the Bound
State

Let us assume, that V' supports a bound state | ¥,) at E = F(0. Then
(Ho+V) | W) = Epy | ¥p) (1.47)

or

(Ho — Ey) | W) = =V | ¥y) (1.48)

Since Ej,(0 there is no regular and square integrable solution to the left hand side alone
and | ¥;) obeys the homogeneous LSE

1

U,) = ——
| W) B I

V|, (1.49)

Using the configuration space representation Eq. (1.12) for £ = E,(0 we see that (1.21)
guarantees the correct exponential fall-off behavior of

\/mu z’
(#w) = () = =[5 [ dr V@@ (1.50)



1.4 Connection Between Homogeneous and Inhomo-
geneous LSE’s

It is of interest and importance to relate the homogeneous equation, valid at the discrete
energy F = E
| Wo) = Go(Ep)V | Ws) (1.51)

and the inhomogeneous equation, derived for E)0
tE)=V + VGy(E)E) . (1.52)

The transition operator ¢(F) can be evaluated also for £(0. What happens for £ — E}?
We rewrite (1.52)
(1 — VGy(E) ) t(E) =V (1.53)

tE) = (1 — VGo(E) ) 'V (1.54)
Let us expand

tE) = (1+VGy + VGoVGy + ...)V
V(14+G)V + G)VGV + ...).

(1.55)
If we apply t(E) onto | ¥,) and choose E = Ej, then we find, using Eq. (1.31)
HEy) | Up) = V(1 +14+ 14+ ...) |7y, (1.56)
which is clearly diverging.
More precisely
HE) = [(Gy' = V)Gl 'V
1
= Gogrgov”
= G,* B i i 1%
= G,' GtV
(1.57)
Inserting the completeness relation
ww |+ [ dp e (=1 (1.58)
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to the left of V' gives

1
t(F) = (F—H Wy) ——— (U
(B) = (E-H) |W)p—p (W |V
1
7 (B — Hy) | 9§y ———(wlD
b [ (B = ) | ) e |V
1
= N v
V| ">E—Eb< b |V
1
GV IOy (o | v
b [V e v
(1.59)
We see explicitly that ¢(E) has a pole at E = E},
1
HE) = V| W) (T | V for E — E, (1.60)
E — E,

Thus ¢(F) has a pole at the energy where the homogeneous LSE has a solution, which
is the same as requiring that the homogeneous part of the inhomogeneous LSE has a
solution:

O(F) = V Gy(E) ©(F) (1.61)

Put
OF) = V x(E) (1.62)

then
X(E) = Go(E) V x(E) (1.63)

This is identical to (1.38) and thus

This pole in ¢(E) at the NN bound state will be of decisive importance for describing an
interacting system of 3 or more nucleons.

1.5 Realization in a Partial Wave Representation in
Momentum Space

We introduce the momentum space basis to a fixed orbital angular momentum [ and
magnetic quantum number m
| plm;) (1.65)
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These states are defined via
=/ l — ) Y ~ !
(p" |plm) = ———=Y,(p') .
They are complete and orthonormal
> /dpp2 | plm)plm|=1
Im

S(p' —p)
pp

<p L'm | p, ! m,> = 6!!’ 6mm’
Let us consider the LSE for ¢(£) in this basis

@'U'm'[t(E)|plm) =

<plllml|v|plm> + Z /0 dpll p112<plllml|v|plllllmll>

lllml

1
X
E +ie—p"/m

(p”l”m”|t(E) |plm>

We take V' to be rotationally invariant:
<p, I"m! | V |p [ m> = 5ll’ 5mm’ W(p,;p)
which leads to an integral equation in one variable:

1
E + ie — p"%/m

t(p'p) = Vil'p) + /0 dp” p"* Vi(p'p") t(p"p)

What is V}, assuming V' (r) to be given? Introduce states
| 7lm)

defined analogously to (1.59) via

T im) = 5“3; " Yo (@)

Then

Cptmlrim)=[dp’ [ d& @im|5) ¢8| rim)

= [ [ oDy ) o e )

(27)3/2) xr

= \/g Gi(pr) i
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(1.67)

(1.68)

(1.69)

(1.70)

(1.71)

(1.72)

(1.73)

(1.74)



Therefore, assuming a local potential:

Vilp'p) = @'lm |V | plm)
= / der/ dr'r’? (' Im |+ [ m)

0 0
X A{r'"lm | V [rim){{rim]|plm)

/Oo dr r? /Oo dr' "2 j(p'r') M V(r) ji(pr)
0 0 rr

/OOO dr r* §,(p'r) V(r) ji(pr)

RN

(1.75)

This is one way to determine the momentum space representation of a local potential.
The LSE for ¢, can easily be solved by standard methods.
Let us now consider the full space for two nucleons including spin and isospin:

o 11
|p(15)]m(§§)tmt> =
Z C(lsj, mym — my)|plmy)|sm — my)
my
11 1 1
X ;C(iit’ vmy — l/)|§l/>|§|mt - m,) (1.76)

Clearly one has s = 0,1 and ¢t = 0,1. The antisymmetry (working in isospin formalism)
leads to the well known restriction

(=)t = —1 (1.77)
for the allowed quantum numbers. Thus ¢ = 1 states are
1Sy, %Py, *P,, ‘D, , 3P, =3 Fy, ... (1.78)
and t = 0 states are

P, %S, —*Dy, %Dy ... (1.79)

The hyphen denotes coupled states, where [ is not conserved. A well known mechanism
for that is the tensor force.
For a general NN force, which conserves spin and parity one has

(' (I's") j'm"t'my |V |p(ls) jmtmye) = 6} Omm Ottr Oy, 555/Wf,jtmt (', p) (1.80)

Because of (1.71) conservation of isospin follows and the indicated ¢-dependencies for V'
is redundant.

There is a dependence on my, the charge state of the two nucleons, in case of charge-
independence breaking (CIB) or charge-symmetry breaking (CSB):
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CIB means: np # pp/sirong forces CSB means: nn # pp/sirong forces

It is well established that in the state 'Sy the np force is different from the nn or pp force.
This is evident in the different scattering lengths:

Iy = —23.48 £ 0.009f m

App/ strong = —17.36 = 0.4 fm (recommended value)

(G.A. Miller et al, Phys. Rep. 194 (1990) 1)
U = —18.6 + 0.3 fm

(extracted from 7~ +d — n + n + 7; B. Gabioud et al, Phys. Rev. Lett. 42 (1979) 1508;
O. Schori et al, Phys. Rev. C35 (1987) 2252). That m— absorption experiment has been
redone at Los Alamos and is presently being analyzed.

In addition, nd breakup experiments are being presently performed (W. Tornow, TUNL),
in order to extract a,, using modern Faddeev calculations.

In ¢ = 1 states different from 1S, CIB or CSB is not yet convincingly established, though
small effects at least have to be there, simply because of the different pion masses.
We shall drop in the following the possible m;-dependence in the notation.

In this most general basis, the LSE for ¢ is represented as

@' (s gtt(E)pls)jt) = (p'(I's)jt|V|p(ls)jt)

+ Z/O dp112 pl/2<pl (lls)Jt|V|pl/(l/ls)Jt>
lll
1

X
E +ie—p"/m

(p"(1"s)jt|t(E)|p(ls)jt)  (1.81)

or

(., p) = Vil w'p) + > /0 dp” p"* Vil (pp") ty,(0"p) (1.82)

T E+ie—p"?/m
Since s is at most 1 and parity is conserved
I=lorl=10%2 (1.83)

Thus one has either a single equation or two coupled equations. A prominent example

for the coupled case is
°S, —* Dy (1.84)

acting in the deuteron.
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1.6 NN Phase-Shifts

The t-matrix generated by the coupled or uncoupled LSFE is unitary. Let us choose a
matrix notation

t = t7p) etc. (1.85)
Then
t =V + VGt =V+1tGV (1.86)
The adjoint of that is
th =V + VGt (1.87)

since VT = V. This is valid on physical grounds. Subtraction yields

t — 1 = VGt —VGyt!
= VGo(t—t") +V(Go — Gt
(1=VGo)(t—t) =V(Gy—Gy) t'
t—t1 = (1-VG) V(G —Gy) t
= t(Gy — Gyt

(1.88)
Now !
Gy = 1 1.89
7 E + ic — H, (1.89)
thus

and we get, back in explicit notation

"2
p

tn(p'p) — ti(pp') = /0 dp" p"* 3 o (PP")(=2m0) 8(E = =) 1 (pp")
lll

VmE
—  _om m% > tow (PVmE) t (pVmE)

lll

(1.91)
Let us choose the on-the-energy shell values p = p' = vVmE :
t(pp) — ty(pp) = —mimp Y tyw (pp)tim (pp) (1.92)
l”
Back in matrix notation this is
t—t' = —mimp tt! (1.93)
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Now we introduce a S-matrix
S =1—immpt (1.94)

and find

SST = (1 —dimmpt) (1 + immp t')
= 1 —immp(t — t' — drmptt) =1 (1.95)

Thus S is unitary and can be parameterized in the coupled case by 3 parameters:

isin2€ e01102) 0 g2F 2102
which is the ”Stapp” or ”bar”-phase shift parameterization
(H.P. Stapp et al, Phys. Rev. 105 (1957) 302).
In the uncoupled case S is simply
S = ¢ (1.97)

with § real.

The most recent NN phase-shift parameters by the Nijmegen group
(V.G.J. Stoks et al, Phys. Rev C48 (1993) 792)

can be viewed on-line at
http://nn-online.sci.kun.nl/

and by the Arndt group
(R. A. Arndt et al, Phys. Rev. D45 (1992) 3995)
Their on-line facility is called SAID and can be accessed via

telnet said.phys.vt.edu

using the login said . You need an xterm if you want to do the graphics.

1.7 Deuteron Properties

The homogeneous LSE Eq. (1.51) is now projected onto the basis given in Eq. (1.73).
Thus for

U(p) = (p(Is) j t] ) (1.98)
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with [ = 0,2, s =7 =1, ¢t =0 one gets the set of two coupled equations

1

U (p) = T2 > /0 dp' p'? Vie (pp') W (p')
b= 1'=0,2

(1.99)

This can be solved numerically by standard techniques. Realistic forces are adjusted to
reproduce various measurable quantities:

o E, = —2.2246 MeV

perimental value caused by MEC)

n=Ap/As = 0.02564 (asymptotic d/s ratio)

The deuteron d-state probability

by = Jo° Yi(p) pPdp
I5° Wip) p* dp + J5° U(p) p? dp

Q = 0.2859 fm? (there are theoretical uncertainties in the description of that ex-

A, = 0.8883 fm~!/2 (asymptotic normalization constant for the s-wave component)

(1.100)

is not a measurable quantity, but strongly correlated to nuclear binding energies, as we
shall see later. In general, the smaller p; the larger the triton and a-particle binding

energies.

Let us now consider the single nucleon momentum distribution

We have

and thus

One has

11 2 L
n(k) = 532(\Ifbm| > 6k — k™) | @, m)
m =1
]_ — —
= X (W m | 8(F — Fe) |y m)
— 1 cm _’cm cm
Pzi(lﬁ k2)—k1

(Flwym) = 3 [ dp p*(Flp(is)jm) (o)

= 35" Cllsj,myym — my)Yig, (k)|sm — my) ¥, (k)
L my
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(1.104)
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and therefore

Wl =

> O s jymm —my)

- my

X

C(ls jomym —my) Y, (k) Yin, (k)
\Ifl,(k-) \I!l(k-)

X

Now, with a being defined as a = 2a + 1 we have

C(ls jymym—my) = (=)"Tm ™ \I;C'(j sl,—m,m—my)

Using the above relation we find

~

n(k) = - Z Z Y’ml lml k

my

~

X \I’ll \Ijl Z A

x C(jsl,—m,m—my) —m, m — my)

52 Y () Yim fé)%@?(k)

2 i) = ﬁ W (k)

J
z

WS Wl

(1.106)

(1.107)

(1.108)

(1.109)

(1.110)

This is displayed for several realistic NN forces in the next figure, where different short

range behavior of NN forces is reflected for k < 1fm™'.
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p fim~1] 2 [fm=]

p [fm~4)

There is hope to measure these quantities in electron scattering on deuterons.

Of interest is also the NN correlation function, the probability to find 2 nucleons at
a distance r:

—_

C(r)

w

= (Uym|6(F — T)[¥, m)

—_

= = > (ym|F) (A%, m)

w
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= — > Uir) (1.111)
The connection between configuration and momentum space is given by

Uy (r) = \/g/ooo dp p*5i(pr)¥i(p) (1.112)

The [ = 0 and 2 parts of C(r) together with their sum are displayed below. We see
differences at short distances, depending on the strengths of the short range repulsions,
as shown in the next figure
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1.8 Nuclear Forces

The determination of the nuclear force is a longstanding and still unsolved basic problem.
The whole issue on how to set up a framework for deriving a nuclear force is not touched
here. Simply a list of so called "realistic” NN forces is given:

e Paris potential (dispersion theoretical background) by M. Lacombe et al, Phys. Rev.
C21 (1980) 861

e Nijmegen 78 potential (one-boson-exchange background) by M.M. Nagels et al,
Phys. Rev. D17 (1978) 768

e AV14 potential (one-pion tail, otherwise phenomenological) by R. B. Wiringa et al,
Phys. Rev. C29 (1984) 1207

e Bonn potential (meson exchange potential (multiple meson), based on time-ordered
perturbation theory by R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149 (1987)
1 and R. Machleidt, Adv. Nucl. Phys. 19 (1989) 189

All those potential have XQ/Ndata > 2 with respect to the Nijmegen data base.

Most recent NN potential, however all phenomenological with about 30-50 parameters fit
the Nijmegen data base with a x?/Ngue ~ 1 and are

e Nijmegen I (includes V?-term)

e Nijmegen II (local)

e Reid 93 (local) by V.G.J. Stoks et al, Phys. Rev. C49 (1994) 2950

e AV18 (updated AV14, local, as operators defined) by R.B. Wiringa et al, Phys. Rev.
O51 (1995) 38

e CD-Bonn (nonlocal) by R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C53,

(1996), R1483.

They come in charge-dependent versions and describe the NN data up to 350 MeV
perfectly well with x?/Nyaa ~ 1

This is the first time that one has a set of "realistic” nearly phase-equivalent NN forces.
They cover a certain range of properties, a NN force can have:
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e local versus nonlocal

e soft or hard core

What is still missing in that family are potentials with dynamical nonlocalities at very
short distances r < 0.8 fm, say, resulting from the overlap regions of extended nucleons.
They might be good for surprises.

1.9 Construction of the NN Potential From Invari-
ance Requirements

We want to investigate to what extent the form of the potential Vyyy(1,2) acting between
two nucleons is determined by the requirement that the Hamiltonian describing the sys-
tem be invariant under various symmetry transformations. This analysis will be made
considering the two nucleons as identical particles, i.e., disregarding the difference of the
mass and charge between the neutron and proton. The Hamiltonian has then the form

1
H = o (p} +p3) + Van(1,2) , (1.113)

m being the nucleon mass.

Regarding the symmetry properties of H, we shall assume first of all invariance under the
restricted Galilei group. Then we shall assume invariance under the discrete transforma-
tions of space reflection, time invariance and permutation of the two nucleons. Finally,
we shall assume invariance under the isospin transformations of the group SM(2).

The operators we have at our disposal to build up the potential are the coordinates 77, 75,
the momenta py, b, the spin vector operators 1), 3 and the isospin vector operators
7 72 Going to the two nucleon c.m. frame gives

To= 5T
R = % (Fy + %)
1_3: = Pa—pP1
P = po+pr. (1.114)
1. Assume that the potential operator is hermitian
Van = Vi . (1.115)

23



2. Using time-translation invariance, which makes Vyy not explicitly dependent on
the time ¢, gives

Van = Vwwn (7R, 7, P,¢W,a® 70 7)) (1.116)

Let us now discuss the implications of the assumed invariance on the dependencies
of Vyn on the indicated variables.

3. Consider the invariance for rotations in charge space, which determines the depen-
dence of Vi on the isospin vectors 7! and 7(?). The unitary operator representing
a rotation in charge space is given by

Uj(w) = el (1.117)
where I is the total isospin and @ = 7 w. The required invariance is expressed by
Ul Vwny Ur = Vy (1.118)

with arbitrary 7 and w. (1.118) will be satisfied if Viyy is a scalar in isospin space.
In order to construct all possible scalars from 7V and 7%, it is remarked that any
polynomial expression in 7 can be reduced to a linear expression by using

0,0 = i
=1,
(1.119)
so that, e.g.,
(7172 = 327 . 7)) (1.120)

Hemnce, the most general expression that has to be considered is linear, both in 7!
and 7). The only scalar quantity obtained in this way is 7(!) - 7). It follows that
Vyn is a function only of this quantity as regards its dependence on the isospin
variables of the two particles:

—

Van = Van(7 R, 5, P,30, 3 [7. 7)) (1.121)

Expanding Viyy in a power series of 71 .72 and expressing (71 -72)" with (1.120)
in terms of 7). 72 and the identity operator in isospin space, one obtains

Vin = Wi(7 R, 5, B,50,5?) + (#0720 (7, R, 5, B,5M,5?) . (1.122)

We can now limit ourselves to study the implications of invariance an each term
V; separately, since all other symmetry transformations commute with the isospin
operators. For convenience we drop the index ¢ from now on.
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4. Invariance under space translations is expressed by

ulvu, =V

I
<

The condition (1.123) then implies that V does not depend on R:

V(7 p,P,dM,e?) .
5. Invariance under proper Galilei transformations is expressed by
ULvius =V
with
U ( P -avt) eon (- 5 mft )
=exp (=P -v exp | — = mR -0
G 14 7 0 14 7 0
with ¢y being the c.m. velocity. It follows that

5(2))

() 5(2)) ,

Ql

ULV U; = V(7

UgﬁU
= V(7 Tom,

P —

Ql

The condition (1.126) then implies that V' is independent of P:

Vo= V({7 56,59) .

6. Invariance under space reflections implies in the normal way that

V(Fﬁ&(l)ag(m) = V(—F, _ﬁa 6:(1)76:(2)) .

7. Invariance under the permutation of the two nucleons gives

Ql

V (7,7, (1) 3(2)) = V(-7 ]5’3(2)75(1))_
(6

Invariance under the combined transformations (6) and (7) gives

V(7 p,eM, 6Py = v(Fpa?,5W) .
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8. Invariance under time reversal means

Vv(f’\7 _’7 6—’(1)’ 5—"(2)) = V* 7:’7 . —: _6_»‘(1)7 _6_»(2))

(1.133)
Since V' is assumed to be hermitian.
9. Invariance under spatial rotations is expressed by
UbV Uy =V (1.134)

with Ugr = exp (% J i w), with fbeing the total angular momentum of the

system, J=L+5. Requiring rotational invariance means that
V(7 p,éY, @) = V(RF, Rp, RV, R7?) | (1.135)

where Rd gives the rotated of the vector d.

Let us first take into account the dependence of V' on the spin variables. Here the proce-
dure is not so straightforward as it was for the isospin, since spin, position and momentum
vectors can be combined to build rotational invariant quantities. Using spin identifies sim-
ilar to (1.120), one can show that V' can be expressed as

Vo= Vo + dOVY 4 GOV v (R e, 6?) . (1.136)

V, is linear in both 71 and &® but contains only bilinear combinations of these two
operators. From rotation and space-reflection invariance, V,, and V., must be scalars, \75(1)

and Vﬁ@) pseudovectors. Combination of space reflection and particle exchange [(6) and
(7)] implies that

Vo + 30V 4 6@ V3 4 v (758Y,59)
= Vo + 3P VP 4+ 70V 4 v (7 58?,60).

(1.137)
Taking the average of these two expressions for V', one gets
Vo= Vo+ S Vs + V(756" %) (1.138)

where § = 21 4 5@), V; = %(Vé”)g@)), and V, now being symmetric under the

exchange of the spin operators. The vector we can use to construct ‘7[; are 7,p and
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L = 7 x g, but only L is a pseudovector. Thus, ‘7[; must then be Lx (scalar quantity).
Then (1.138) reads

V o= Vo(Rp) + S -LVy(7,p) + V(7 p5,W, %) . (1.139)

Since V,, and Vj are scalars, they can only be functions of %, p?, L? 7 - p'and § - 7. Since
the operators 7 -p and p’ -7 are non-hermitian, it is convenient to consider their hermitian
combinations (7-p'+ p’- 7) and i(7"- p— p- ). The latter is a constant and can be dropped.
The former can only appear quadratically in V, and V3 due to time-reversal invariance.
With

-7+ 7-p)? = 20r%p® +p*r?) — AL® + 3h*, (1.140)
we get
Vo= Vo(? % L) + S LVa(r?p% L) + Vi (7, p,60,59) . (1.141)

From the requirements on V., follows that it can only contains terms of the type

+ (@2 AHEW P + 1 < 2. (1.142)

(3" 7)(E"
The last expression changes sign under time reversal and must be replaced by
(Y - p) (D7) + (FP-R)FV-p) + 1 < 2F-7+7-P) . (1.143)

It can be shown that (1.142) is de facto a function of the other quantities appearing in
(1.141) and thus not independent. We have, therefore, for V,

v, = (@ d?) vl p? L?)

+ (W .5?) Vv(”)( p%, L%
+ (5'(1) 7 (@E? - p) V’ylll( p%, L%
+ [(FW - L)EP L) + (@ L)ED - L)) VA2, p2, 1)

(1.144)

as most general form of V., compliant with all symmetry requirements.

Concluding, the most general, velocity-dependent, non-relativistic NN potential has the
form (1.122) with V; given by

Vi = Vet ph L2 + 650 Ve p?, L2>
+ S VI p L) + S EVS( ap L?)
+ (@ -L)(@® - L) + (- L)@V - L)] V(0% LP)

(1.145)



where Si, is the tensor force operator

3
S = = GV A @E? -7 - (W), (1.146)

Remark: As shown in the Appendix of S. Okubo and R.E. Marshak, Ann. Phys. 4,
166 (1958), the potential of (1.145) gives an S-matrix that on-shell is identical to the
one obtained from a potential in which the term VP is dropped. Therefore, if one is
only interested in NN scattering, it can be neglected. The same cannot be said for the
bound states or for the off-shell S-matrix. Often the term VL is also neglected. Some
arguments are given in Machleidt, Holinde, Elster, Phys. Rep. 149, 1 (1987).

1.10 Simple Introduction to One Boson-Exchange Po-
tential (OBEP)

The basic idea of OBE models is to represent the NN interaction as superposition of
tree-diagrams (born terms) which represent the exchange of single mesons, namely scalar
(s), pseudoscalar (ps), vector (v) bosons (JP = 07,07,17, respectively), with masses
up to 1 GeV between two nucleons. Mesons with masses larger than 1 GeV would only
give very short-ranged exchange contributions and contribute in a region where the OBE
model is no longer valid.

The couplings for the various mesons are given in terms of their interaction Lagrangian
densities by

»CNNPS = Yps 77/; s w¢ps (1147)
LNNS = Us 'LL Q/) ¢s (1'148)
fo

Lyn, = gui/;’mlb#; +

L2 o 0(0" 05— 0°08) (1.149)
for pseudoscalar (m,n), scalar (o,d) and vector mesons (p,w), respectively. m is the
nuclear mass, ¢ the nucleon and ¢, the meson field operators. For isospin 7' = 1 means
¢o is to be replaced by T - ¢Ta, with 7; being the usual Pauli matrices. Furthermore,
Ouw = % [Vu>w], where v, are the usual Dirac-matrices (see, e.g., Bjorken-Drell). The
coupling constants g, (o = s, ps,v) and f, and the meson masses m,, are at least partially
determined from high-energy experiments or symmetry relations. The Lagrangian density
for vector mesons contains Dirac (g,) as well as Pauli coupling (f,). An OBE-potential

28



V(q',q) is obtained through the superposition of exchange contributions of the different
Mesons

V@, = Y Valdd (1.150)

a=s,ps,v

with

— | m m._ =/ (=1
Val@'0) = g5y * -0 I w(—q) Py a(@") T w(q) . (1.151)

The factors , / é’;, ] /Eﬂq are the so-called minimal relativity factors, which take into consid-

eration the relativistic unitarity condition (see K. Erkelenz, Phys. Rep. 13C, 191 (1974)).
They certainly contribute to the nonlocality of V(§'',¢q). (Their effect has been studied
in a simple model in Ch. Elster, E.E. Evans, H. Kamada, W. Glockle, Few-Body Systems
21, 25 (1996).

The meson propagators are usually given by
P, = ((¢'-q)+mg)" (1.152)

and the vertex functions for the meson-nucleon vertices ') (i = 1,2) are given by

re = g, (1.153)

L5 = gps i (1.154)
rY(direct) = (g, + fo)7" (1.155)
ng)(gradient) = — 2{; (@"+q). (1.156)

In order to take into account the finite extension of the nucleon and to be able to solve
the dynamical equations, the coupling constants get modified with form factors. This is
essentially achieved by replacing

Jo — GaFald', Q) (1.157)

where F, (¢, q) can be, e.g., of dipole type

o S A2 —m? e
Fl(@,7)] = <A2+(§’—J)2> : (1.158)
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The exponent n, is usually taken as n, = 1, A, is the cutoff parameter and usually of the
order 1 — 2 GeV. The positive energy Dirac spinors are given by

@) = B (g ) 1) (1.159)

Eq+m

where | i) denote the Pauli spinors ( (1) > and ( (1) ) Inserting (1.159), (1.153), (1.152)

into (1.151) gives for the scalar contribution of the potential (Pauli spinors are omitted):

m  [m (E,+m)(E,+m) 1
Vi@ @) = ~g | =
B\ E, 4m?

21 2 - — 21 2 -3 —
o (1o Tatice- (@ xq)\(;  d'-d+i0-(¢"x7) (1.160)
(£} +m)(Eq +m) +

This expression has, due to the ¢ and E, dependencies, a strong nonlocality. In order to
arrive at expressions, which can be transformed to coordinate space, one changes variables
to

F=1q'-q
— ]' — —
p= 5(@+4q)
(1.161)
and in addition has to introduce the following approximations:
1. On-shell approximation: E; = E,
2. Expansion of E in powers of 731—22:
E = (1 ((]"+cf)2+m2>% = m+ 1 (¢ +¢*) +
2 4m
2 2
P k
" 2m 8m
(1.162)

3. Keeping only the lowest order in p? and k2.
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With these approximations, the scalar potential becomes

" q° p? k? 2
VEik,p) = — e 1-— 5zt gor T 9 S (kxp) (1.163)

where § = 5 (31 + 09).

This expression still contains nonlocalities due to p'? as well as (k X p) terms. The latter
leads to the angular momentum operator L = —i xVin r- space, whereas the former
provides V? terms. After a Fourier transform, the coordinate space expression of the
scalar potential is given by

Velr) = — Z—; Mg {ll— % (EY] Y(myr)
1
4m?

2
where Y(z) = e™*/x and Z,(z) = (%) (1/z + 1/2%) V().
The treatment of the Schrodinger equation with a momentum dependent potential is given

by O. Rojo, L.M. Simmons, Phys. Rev. 125, 273 (1962). The expressions for the other
potential terms shall only be given here:

9 . . 5 —
o 9ps (01 k)0 - k)
(| _ _ 7P 1.1
V;;s( ap) 4m2 )2 _|_m1275 ( 65)
e 1 ) 3p2 k2 3t
V'U(k,p) — W2+ 2 {gu 1+2m2 - 8m2 + 2m25 (kXﬁ)
— (61 09) T2 + 2 (G1 - k)(02 k)]
vJv k? di g5 : L@ Bk
b G LB RS - a6 DGR
2
o (=613 K + (31 F) (7 k)]}
(1.166)

The structure of the expression (1.160) already suggests that one would prefer to work
with OBE potentials in momentum space. Even the already approximated expressions
(1.163), (1.165), (1.166) are still complicated functions of the momenta, though they
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can be Fourier transformed analytically to coordinate space. The corresponding r-space
expressions to (1.165) and (1.166) are

]' 2 S 2 — —
Vi(r) = o % Mps l(n::; ) V(mypsr) G102 + Z(mysr) 5121 (1.167)
2 1 o\ 2 3
Ve(r) = Z_W My {[1+ 5 (%) ] V(mor) = 5 V2 Y(myr) + Y(m,r) V]
]' v 2 — — 3 7 al ]‘
+ 6 (%) Y(myr) 6162 — B Zy(myr) L - S — 19 Z(myr) 512}
]' vJU v 2 2 v 2 — —
() s+ 2 (%) st s

—  4Zy(myr) L-S - % Z(myr) 512}
f2 1 /my\? L 1
™G (E) Y(my,r) 61 -y — D Z(myr) Siap - (1.168)

Here the tensor operator Sio is given by (1.146) and
Z(z) = (ma/m)?*(1 + 3/x + 3/2*)Y(x).

Details on OBE potentials are given in the references quoted in Section 1.8.
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