
Chapter 1
The Nucleon-Nucleon System
1.1 The Lippmann-Schwinger Equation for the Scat-tering ProcessLet us consider two-nucleon scattering and de�ne ~k1 and ~k2 to be the individual nucleonmomenta. The relative momentum is then given as~p = 12(~k1 � ~k2) (1.1)The momentum eigenstates in the nucleon-nucleon (NN) c.m. system are thenj ~pi (1.2)and are chosen to be normalized ash~p j ~p 0i = �3(~p � ~p 0) : (1.3)They are eigenstates to the free Hamiltonian for the relative motionH0 = ~p 2m (1.4)where m is the nucleon mass.Let V be the NN potential, which is assumed to be energy independent.The Schr�odinger equation for a scattering state 	(+)~p(H0 + V ) 	(+)~p = E 	(+)~p (1.5)3



can be cast into an integral equation, the Lippmann-Schwinger equation (LSE):(H0 � E) 	(+)~p = �V	(+)~p (1.6)j 	(+)~p i = j ~pi+ 1E + i��H0V j 	(+)~p i (1.7)Let us consider the con�guration space representation. The conjugate variable to ~p is~x = ~r1 � ~r2 ; (1.8)and we choose j ~xi to be normalized ash~x j ~x0i = �3(~x� ~x0): (1.9)Then the Fourier transform is given byh~x j ~pi = 1(2�)3=2 ei~p�~x : (1.10)The con�guration space representation of the free propagatorG0 � 1E + i��H0 (1.11)is given ash~x j 1E + i��H0 j ~x 0i = Z d~p h~x j ~pi 1E + i�� p2=m h~p j ~x 0i= 1(2�)3=2 Z d3p ei~p�~x 1E + i�� p2=me�i~p�~x 0= 1(2�)3 Z d3p ei~p�(~x�~x0) 1E + i�� p2=m= 1(2�)3 4� Z 10 dp p2j0(p�) 1E + i�� p2=m (1.12)with � �j ~x� ~x0 jStandard residue techniques lead toh~x j G0 j ~x 0i = �m4� eipmEj~x�~x0jj ~x� ~x0 j ; (1.13)
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which exhibits the outgoing wave behavior from the source point ~x0 to ~x. It results thecon�guration space representation of the LSEh~x j 	(+)~p i � 	(+)~p (~x)= 1(2�)3=2 ei~p�~x � m4� Z d3x0 eipmEj~x�~x0jj ~x� ~x0 j V (x0) 	(+)~p (~x0) : (1.14)Thereby we assumed a local potentialh~x j V j ~x0i = �3(~x� ~x 0) V (x0) (1.15)In a well known manner one reads o� the asymptotic form for j ~x j! 1 :	(+)~p (~x) ! 1(2�) 32 ( ei~p~x + eipxx f(x̂) ); (1.16)with the scattering amplitude f(x̂) depending on the direction x̂ of observationf(x̂) = �m r�2 Z d3x0 e�ipx̂�~x0 V (x0) 	(+)~p (~x0) : (1.17)This can be interpreted in terms of a scattered momentum~p 0 � x̂p ; (1.18)and one introduces a transition amplitudeh~p 0 j t j ~pi � 1(2�) 32 Z d3x0 e�i~p 0~x 0 V (x0) 	(+)~p (~x 0)= h~p 0 j V j 	(+)~p i : (1.19)Apparently t is the result of the scattering process and determines all scattering observ-ables.Is there an integral equation directly for t? From (1.24) we read o�t j ~pi � V j 	(+)~p i ; (1.20)and using (1.7) we �nd t j ~pi = V j ~pi+ V G0 V j 	(+)~p i= V j ~pi+ V G0 t j ~pi (1.21)5



We can strip o� the initial state j ~pi and get the operator relationt = V + V G0 t (1.22)which is the LSE for the transition operator. Its simple physical interpretation results byiterating that equation:t = V + V G0 ( V + V G0t )= V + V G0V + V G0V G0V + V G0V G0V G0V + : : : (1.23)This is the Born series for scattering on V , a sum of terms of increasing order in V . Eachterm consists of a sequence of V 0s with free propagations in between. This is a generalstructure valid for any number of particles.It is useful to visualize that multiple scattering process in the form
twhere the dashed lines stand for the action of V and two horizontal lines for the freepropagation G0 between two interactions. Intuitively one can start from that sum ofterms (1.23) t = V + V G0 V + V G0 V G0 V + : : : (1.24)and ask the question: can this series be summed up into an integral equation for t ?Obviously it can:t = V + V G0 ( V + V G0V + V G0V G0V + : : :) ; (1.25)and we recover t again on the right hand side and thus gett = V + V G0 t (1.26)which is the LSE.Of course if one starts from Eq. (1.23) in an ad hoc manner one has to know the form ofthe free propagator G0 and therefore one has to make contact to the underlying dynamicalequation, in our case the Schr�odinger equation. Formally however this multiple scatteringseries is quite general and also valid for the Bethe-Salpeter equation, where G0 is di�erentfrom the G0 used in our nonrelativistic context.6



1.2 Alternative Derivation of the Lippmann-SchwingerEquationA free momentum eigenstate obeysH0 j ~p i = Ep j ~p i (1.27)and a scattering state obeys H j ~p i(+) = Ep j ~p i(+) : (1.28)Here a scattering state is de�ned viaj ~p i(+) = 
(+) j ~p i = lim�!0 i� G(E + i�) j ~p i ; (1.29)where 
(+) is the M�ller operator, which maps a free state j ~p i onto a scattering statej ~p i(+).The propagators, or Resolvents, are given byG0(z) = 1z �H0 (1.30)and G(z) = 1z �H : (1.31)Here G0(z) is the free propagator (Resolvent) and G(z) the full propagator (Resolvent).Let us considerG�10 �G�1 = (z �H0)� (z �H) = �H0 +H = V ; (1.32)where we use that H = H0 + V .Multiplying Eq. (1.32) from the left with G0 and from the right with G yieldsG0(G�10 �G�1)G = G�G0 = G0V G (1.33)or G = G0 +G0V G : (1.34)The above relation, Eq. (1.34), is called �rst Resolvent Identity.7



Applying the �rst Resolvent Identity on a momentum eigenstate and multiplyingboth sides of the resulting equation with i� yieldsi� G(E + i�) j ~p i = i� G0(E + i�) j ~p i + i� G0(E + i�)V G(E + i�) j ~p i= i�E + i��H0 j ~p i + i� G0(E + i�)V G(E + i�) j ~p i= j ~p i + i� G0(E + i�)V G(E + i�) j ~p i : (1.35)Taking the limit � ! 0 gives, together with the de�nition Eq. (1.29), the Lippmann-Schwinger equation for statesj ~p i(+) = j ~p i + G0(E + i�)V j ~p i(+) (1.36)If we multiply Eq. (1.36) by V and de�neV j ~p i(+) = t j ~p i ; (1.37)we obtain V j ~p i(+) = V j ~p i + V G0(E + i�)V j ~p i(+) (1.38)or t j ~p i = V j ~p i + V G0(E + i�)t j ~p i : (1.39)Since the operators in Eq. (1.39) are applied on a general state j ~p i, we can consider thisequation as operator equation:t = V + V G0(E + i�)t : (1.40)This equation is also called operator Lippmann-Schwinger equation.A next task is to derive from Eq. (1.36) a relation to the scattering wave function +(~r). Let us considerh~r j ~pi(+) = h~r j ~p i + h~r j G0 V j ~pi(+) (1.41)which leads to (+)(~r) � h~r j ~p i(+) = h~r j ~p i + h~r j G0 t j ~pi (1.42)= h~r j ~pi + Z d3p0 h~r j ~p0i h~p0 j G0 t j ~pi : (1.43)Applying the de�nition of G0 leads toh~r j ~p i(+) = h~r j ~p i + Z d3p0 h~r j ~p0 i 1E + i�� p02m h~p0 j t j ~p i ; (1.44)8



which is the desired equation for the scattering wave function  (+)(r).Energy conservation leads to an additional constraint for the t-operator. If a momen-tum before the scattering event is denoted with ~p, and after the scattering event with ~p 0,then energy conservation requires~p 02m = ~p 2m ) ~p 02 = ~p 2 : (1.45)This means that we can extract an energy conserving �-function from the matrix elementh~p 0 j T (E) j ~p i = �(Ep0 � Ep) hp̂0 j t(E) j p̂i : (1.46)The latter relation is sometimes called on-shell condition. The physical meaning is thatthe observables of NN scattering only determine the matrix elements consistent with therelation (1.46).1.3 The Lippmann-Schwinger Equation for the BoundStateLet us assume, that V supports a bound state j 	bi at E = Ebh0: Then(H0 + V ) j 	bi = Eb j 	bi (1.47)or (H0 � Eb) j 	bi = �V j 	bi (1.48)Since Ebh0 there is no regular and square integrable solution to the left hand side aloneand j 	bi obeys the homogeneous LSEj 	bi = 1Eb �H0 V j 	bi (1.49)Using the con�guration space representation Eq. (1.12) for E = Ebh0 we see that (1.21)guarantees the correct exponential fall-o� behavior ofh~xj	bi � 	b(~x) = �mr�2 Z d3x0 e�pmjEbjj~x�~x 0jj~x� ~x 0j V (x0)	b(~x0) (1.50)
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1.4 Connection Between Homogeneous and Inhomo-geneous LSE'sIt is of interest and importance to relate the homogeneous equation, valid at the discreteenergy E = Eb j 	bi = G0(Eb)V j 	bi (1.51)and the inhomogeneous equation, derived for Ei0t(E) = V + V G0(E)t(E) : (1.52)The transition operator t(E) can be evaluated also for Eh0. What happens for E ! Eb?We rewrite (1.52) ( 1 � V G0(E) ) t(E) = V (1.53)t(E) = ( 1 � V G0(E) )�1 V (1.54)Let us expand t(E) = ( 1 + V G0 + V G0V G0 + : : : ) V= V ( 1 +G0V + G0V G0V + : : : ) : (1.55)If we apply t(E) onto j 	bi and choose E = Eb, then we �nd, using Eq. (1.31)t(Eb) j 	bi = V ( 1 + 1 + 1 + : : :) j 	bi ; (1.56)which is clearly diverging.More precisely t(E) = [ ( G�10 � V ) G0 ]�1V= G�10 1E �H0 � V V= G�10 1E �H V= G�10 G�1 V (1.57)Inserting the completeness relationj 	bih	b j + Z d3p j 	(+)~p ih	(+)~p j= 1 (1.58)10



to the left of V givest(E) = (E �H0) j 	bi 1E � Eb h	b j V+ Z d~p (E �H0) j 	(+)~p i 1E � ~p 2=mh	(+)~p j V= V j 	bi 1E � Eb h	b j V+ Z d~p V j 	(+)~p i 1E � ~p 2=mh	(+)~p j V : (1.59)We see explicitly that t(E) has a pole at E = Ebt(E) ! V j 	bi 1E � Eb h	b j V for E ! Eb (1.60)Thus t(E) has a pole at the energy where the homogeneous LSE has a solution, whichis the same as requiring that the homogeneous part of the inhomogeneous LSE has asolution: �(E) = V G0(E) �(E) (1.61)Put �(E) � V �(E) (1.62)then �(E) = G0(E) V �(E) (1.63)This is identical to (1.38) and thus�(E) = 	b at E = Eb (1.64)This pole in t(E) at the NN bound state will be of decisive importance for describing aninteracting system of 3 or more nucleons.1.5 Realization in a Partial Wave Representation inMomentum SpaceWe introduce the momentum space basis to a �xed orbital angular momentum l andmagnetic quantum number m j plmi (1.65)11



These states are de�ned viah ~p 0 j p l mi � �(p 0 � p)p p0 Ylm(p̂ 0) : (1.66)They are complete and orthonormalXlm Z dp p2 j p l mihp l m j = 1 (1.67)hp l m j p0 l0 m0i = �(p 0 � p)p p0 �ll0 �mm0 (1.68)Let us consider the LSE for t(E) in this basishp0l0m0jt(E)jplmi = hp0l0m0jV jplmi+ Xl00m00 Z 10 dp00 p002hp0l0m0jV jp00l00m00i� 1E + i�� p002=mhp00l00m00jt(E)jplmi (1.69)We take V to be rotationally invariant:hp0 l0 m0 j V j p l mi = �ll0 �mm0 Vl(p0; p) (1.70)which leads to an integral equation in one variable:tl(p0p) = Vl(p0p) + Z 10 dp00 p00 2 Vl(p0p00) 1E + i� � p00 2=m tl(p00p) (1.71)What is Vl, assuming V (r) to be given? Introduce statesj rlmi (1.72)de�ned analogously to (1.59) viah~x j r l mi � �(x� r)xr Ylm(x̂) (1.73)Then h p l m j r l mi = Z d~p 0 Z d~x hp l m j ~p 0i h~p 0 j ~xih~x j r l mi= Z d3p0 Z d3x �(p0 � p)p0p Y �lm(p̂ 0) 1(2�)(3=2) e�i~p 0�~x �(x� r)xr Ylm(x̂)= s 2� jl(pr) il (1.74)12



Therefore, assuming a local potential:Vl(p0p) = hp0lm j V j plmi= Z 10 dr r2 Z 10 dr0r0 2 hp0 l m j r0 l mi� hr0 l m j V j r l mihhr l m j p l mi= 2� Z 10 dr r2 Z 10 dr0 r0 2 jl(p0r0) �(r � r0)rr0 V (r) jl(pr)= 2� Z 10 dr r2 jl(p0r) V (r) jl(pr) (1.75)This is one way to determine the momentum space representation of a local potential.The LSE for tl can easily be solved by standard methods.Let us now consider the full space for two nucleons including spin and isospin:jp(ls)jm(12 12)tmti � Xml C(lsj;mlm�ml)jplmlijsm�mli�X� C(12 12t; �mt � �)j12�ij12 jmt �m�i (1.76)Clearly one has s = 0; 1 and t = 0; 1. The antisymmetry (working in isospin formalism)leads to the well known restriction (�)l+s+t = �1 (1.77)for the allowed quantum numbers. Thus t = 1 states are1S0 ; 3P0 ; 3P1 ; 1D2 ; 3P2 �3 F2; : : : (1.78)and t = 0 states are 1P1 ; 3S1 �3 D1 ; 3D2 ; : : : (1.79)The hyphen denotes coupled states, where l is not conserved. A well known mechanismfor that is the tensor force.For a general NN force, which conserves spin and parity one hashp0(l0s0)j 0m0t0m0tjV jp(ls)jmtmti = �jj0�mm0�tt0�mtmt0 �ss0V sjtmtll0 (p0; p) (1.80)Because of (1.71) conservation of isospin follows and the indicated t-dependencies for Vis redundant.There is a dependence on mt, the charge state of the two nucleons, in case of charge-independence breaking (CIB) or charge-symmetry breaking (CSB):13



CIB means: np 6= pp=strong forces CSB means: nn 6= pp=strong forcesIt is well established that in the state 1S0 the np force is di�erent from the nn or pp force.This is evident in the di�erent scattering lengths:anp = �23:48� 0:009fmapp=strong = �17:36� 0:4fm (recommended value)(G.A. Miller et al, Phys. Rep. 194 (1990) 1)ann = �18:6� 0:3fm(extracted from �� + d! n + n+ 
; B. Gabioud et al, Phys. Rev. Lett. 42 (1979) 1508;O. Schori et al, Phys. Rev. C35 (1987) 2252). That �� absorption experiment has beenredone at Los Alamos and is presently being analyzed.In addition, nd breakup experiments are being presently performed (W. Tornow, TUNL),in order to extract ann using modern Faddeev calculations.In t = 1 states di�erent from 1S0 CIB or CSB is not yet convincingly established, thoughsmall e�ects at least have to be there, simply because of the di�erent pion masses.We shall drop in the following the possible mt-dependence in the notation.In this most general basis, the LSE for t is represented ashp0(l0s0)jtjt(E)jp(ls)jti = hp0(l0s)jtjV jp(ls)jti+Xl00 Z 10 dp002 p002hp0 (l0s)jtjV jp00(l00s)jti� 1E + i�� p002=mhp00(l00s)jtjt(E)jp(ls)jti (1.81)or tsjl0l(p0; p) = V sjl0l (p0p) +Xl00 Z 10 dp00 p002V sjl0l00(pp00) 1E + i�� p002=m tsjl00l(p00p) (1.82)Since s is at most 1 and parity is conservedl = l0 or l = l0 � 2 (1.83)Thus one has either a single equation or two coupled equations. A prominent examplefor the coupled case is 3S1 �3 D1 (1.84)acting in the deuteron. 14



1.6 NN Phase-ShiftsThe t-matrix generated by the coupled or uncoupled LSE is unitary. Let us choose amatrix notation t � tsjl0l(p0p) etc. (1.85)Then t = V + V G0 t = V + t G0 V (1.86)The adjoint of that is ty = V + V G0� ty (1.87)since V y = V: This is valid on physical grounds. Subtraction yieldst � ty = V G0t� V G�0ty= V G0(t� ty) + V (G0 �G�0)ty(1� V G0)(t� ty) = V (G0 �G�0) tyt� ty = (1� V G0)�1V (G0 �G�0 ) ty= t ( G0 � G�0 ) ty (1.88)Now G0 = 1E + i� � H0 1 (1.89)thus G0 � G�0 = �2�i �(E �H0) 1 (1.90)and we get, back in explicit notationtl0l(p0p)� t�ll0(pp0) = Z 10 dp00 p00 2 Xl00 tl0l00(p0p00)(�2�i) �(E � p00 2m ) t�ll00(pp00)= �2�i mpmE2 Xl00 tl0l00(p0pmE) t�ll00(ppmE) (1.91)Let us choose the on-the-energy shell values p = p0 = pmE :tl0l(pp) � t�ll0(pp) = ��imp Xl00 tl0l00(pp)t�ll00(pp) (1.92)Back in matrix notation this is t� ty = ��imp t ty (1.93)15



Now we introduce a S-matrix S = 1 � i�mp t (1.94)and �nd S Sy = (1 � i�mp t) (1 + i�mp ty)= 1 � i�mp (t � ty � i�mp t ty) = 1 (1.95)Thus S is unitary and can be parameterized in the coupled case by 3 parameters:S =  cos2� e2i�1 isin2� ei(�1+�2)isin2� ei(�1+�2) cos2� e2i�2 ! (1.96)which is the "Stapp" or "bar"-phase shift parameterization(H.P. Stapp et al, Phys. Rev. 105 (1957) 302).In the uncoupled case S is simply S = e2i� (1.97)with � real.The most recent NN phase-shift parameters by the Nijmegen group(V.G.J. Stoks et al, Phys. Rev C48 (1993) 792)can be viewed on-line at http://nn-online.sci.kun.nl/and by the Arndt group(R. A. Arndt et al, Phys. Rev. D45 (1992) 3995)Their on-line facility is called SAID and can be accessed viatelnet said.phys.vt.eduusing the login said . You need an xterm if you want to do the graphics.1.7 Deuteron PropertiesThe homogeneous LSE Eq. (1.51) is now projected onto the basis given in Eq. (1.73).Thus for 	l(p) � hp (ls) j t j 	bi (1.98)16



with l = 0; 2, s = j = 1, t = 0 one gets the set of two coupled equations	l(p) = 1Eb � p2m Xl0=0;2 Z 10 dp0 p0 2 Vll0(pp0) 	l0(p0) (1.99)This can be solved numerically by standard techniques. Realistic forces are adjusted toreproduce various measurable quantities:� Eb = �2:2246 MeV� Q = 0:2859 fm2 (there are theoretical uncertainties in the description of that ex-perimental value caused by MEC)� As = 0.8883 fm�1=2 (asymptotic normalization constant for the s-wave component)� � = AD=As = 0:02564 (asymptotic d=s ratio)The deuteron d-state probabilitypd � R10 	22(p) p2dpR10 	20(p) p2 dp + R10 	22(p) p2 dp (1.100)is not a measurable quantity, but strongly correlated to nuclear binding energies, as weshall see later. In general, the smaller pd the larger the triton and �-particle bindingenergies.Let us now consider the single nucleon momentum distributionn(k) � 12 13 Xm h	b m j 2Xi=1 �(~k � ~kcmi ) j 	b mi (1.101)= 13Xm h	b m j �(~k � ~kcm1 ) j 	b mi (1.102)We have ~p = 12 (~kcm1 � ~kcm2 ) = ~kcm1 (1.103)and thus n(k) = 13 Xm Z d3p h	b m j ~pi �(~k � ~p) h~p j 	bmi: (1.104)One has h~kj	bmi = Xl Z 10 dp p2h~kjp(ls)jmi	l(p)= Xl Xml C(lsj;ml; m�ml)Ylml(k̂)jsm�mli	l(k) (1.105)17



and therefore n(k) = 13 Xm Xll0 Xml C(l0 s j;ml m�ml) (1.106)� C(l s j;ml m�ml) Y �l0ml(k̂) Ylml(k̂)� 	l0(k) 	l(k)Now, with â being de�ned as â � 2a+ 1 we haveC(l s j;ml m�ml) = (�)s+m�ml vuut ĵ̂l C(j s l ;�m;m�ml) (1.107)Using the above relation we �ndn(k) = 13 Xml Xll0 Y �l0ml(k̂) Ylml(k̂) (1.108)� 	l0(k) 	l(k) Xm vuut ĵ̂l vuut ĵ̂l 0� C(j s l;�m;m�ml) C(j s l0;�m;m�ml)= 13 Xml Xl Y �lml(k̂) Ylml(k̂) ĵ̂l 	2l (k) (1.109)= ĵ3 14� Xl 	2l (k) = 14� Xl=0;2 	2l (k) (1.110)This is displayed for several realistic NN forces in the next �gure, where di�erent shortrange behavior of NN forces is re
ected for k >� 1fm�1:
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There is hope to measure these quantities in electron scattering on deuterons.Of interest is also the NN correlation function, the probability to �nd 2 nucleons ata distance r: C(r) � 13Xm h	bmj�(~r � ~x)j	b mi= 13Xm h	bmj~rih~rj	b mi19



= 14� Xl=0;2	2l (r) (1.111)The connection between con�guration and momentum space is given by	l(r) = s 2� Z 10 dp p2jl(pr)	l(p) (1.112)The l = 0 and 2 parts of C(r) together with their sum are displayed below. We seedi�erences at short distances, depending on the strengths of the short range repulsions,as shown in the next �gure
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1.8 Nuclear ForcesThe determination of the nuclear force is a longstanding and still unsolved basic problem.The whole issue on how to set up a framework for deriving a nuclear force is not touchedhere. Simply a list of so called "realistic" NN forces is given:� Paris potential (dispersion theoretical background) by M. Lacombe et al, Phys. Rev.C21 (1980) 861� Nijmegen 78 potential (one-boson-exchange background) by M.M. Nagels et al,Phys. Rev. D17 (1978) 768� AV14 potential (one-pion tail, otherwise phenomenological) by R. B. Wiringa et al,Phys. Rev. C29 (1984) 1207� Bonn potential (meson exchange potential (multiple meson), based on time-orderedperturbation theory by R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149 (1987)1 and R. Machleidt, Adv. Nucl. Phys. 19 (1989) 189All those potential have �2=Ndata � 2 with respect to the Nijmegen data base.Most recent NN potential, however all phenomenological with about 30-50 parameters �tthe Nijmegen data base with a �2=Ndata � 1 and are� Nijmegen I (includes r2-term)� Nijmegen II (local)� Reid 93 (local) by V.G.J. Stoks et al, Phys. Rev. C49 (1994) 2950� AV18 (updated AV14, local, as operators de�ned) by R.B. Wiringa et al, Phys. Rev.C51 (1995) 38� CD-Bonn (nonlocal) by R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C53,(1996), R1483.They come in charge-dependent versions and describe the NN data up to 350 MeVperfectly well with �2=Ndata � 1This is the �rst time that one has a set of "realistic" nearly phase-equivalent NN forces.They cover a certain range of properties, a NN force can have:22



� local versus nonlocal� soft or hard coreWhat is still missing in that family are potentials with dynamical nonlocalities at veryshort distances r � 0:8fm, say, resulting from the overlap regions of extended nucleons.They might be good for surprises.1.9 Construction of the NN Potential From Invari-ance RequirementsWe want to investigate to what extent the form of the potential VNN(1; 2) acting betweentwo nucleons is determined by the requirement that the Hamiltonian describing the sys-tem be invariant under various symmetry transformations. This analysis will be madeconsidering the two nucleons as identical particles, i.e., disregarding the di�erence of themass and charge between the neutron and proton. The Hamiltonian has then the formH = 12m (p21 + p22) + VNN(1; 2) ; (1.113)m being the nucleon mass.Regarding the symmetry properties of H, we shall assume �rst of all invariance under therestricted Galilei group. Then we shall assume invariance under the discrete transforma-tions of space re
ection, time invariance and permutation of the two nucleons. Finally,we shall assume invariance under the isospin transformations of the group SM(2).The operators we have at our disposal to build up the potential are the coordinates ~r1; ~r2,the momenta ~p1; ~p2, the spin vector operators ~�(1); ~�(2) and the isospin vector operators~� (1); ~� (2). Going to the two nucleon c.m. frame gives~r = ~r2 � ~r1~R = 12 (~r1 + ~r2)~p = ~p2 � ~p1~P = ~p2 + ~p1 : (1.114)1. Assume that the potential operator is hermitianVNN = V yNN : (1.115)23



2. Using time-translation invariance, which makes VNN not explicitly dependent onthe time t, gives VNN � VNN (~r; ~R; ~p; ~P ; ~�(1); ~�(2); ~� (1); ~� (2)) : (1.116)Let us now discuss the implications of the assumed invariance on the dependenciesof VNN on the indicated variables.3. Consider the invariance for rotations in charge space, which determines the depen-dence of VNN on the isospin vectors ~� (1) and ~� (2). The unitary operator representinga rotation in charge space is given byUI(w) = ei~I �~w ; (1.117)where ~I is the total isospin and ~w = ~n w. The required invariance is expressed byU yI VNN UI = VNN (1.118)with arbitrary ~n and w. (1.118) will be satis�ed if VNN is a scalar in isospin space.In order to construct all possible scalars from ~� (1) and ~� (2), it is remarked that anypolynomial expression in ~� (i) can be reduced to a linear expression by using[� (i)j ; � (i)k ] = i"jk` � (i)`(� (i)j )2 = 1 ; (1.119)so that, e.g., (~� (1) � ~� (2))2 = 3� 2(~� (1) � ~� (2)) : (1.120)Hence, the most general expression that has to be considered is linear, both in ~� (1)and ~� (2). The only scalar quantity obtained in this way is ~� (1) � ~� (2). It follows thatVNN is a function only of this quantity as regards its dependence on the isospinvariables of the two particles:VNN � VNN(~r; ~R; ~p; ~P ; ~�(1); ~�(2); [~� (1) � ~� (2)]) : (1.121)Expanding VNN in a power series of ~� (1) �~� (2) and expressing (~� (1) �~� (2))n with (1.120)in terms of ~� (1) � ~� (2) and the identity operator in isospin space, one obtainsVNN = V1(~r; ~R; ~p; ~P ; ~�(1); ~�(2)) + (~� (1) � ~� (2)) V2(~r; ~R; ~p; ~P ; ~�(1); ~�(2)) : (1.122)We can now limit ourselves to study the implications of invariance an each termVi separately, since all other symmetry transformations commute with the isospinoperators. For convenience we drop the index i from now on.24



4. Invariance under space translations is expressed byU ya V Ua = V (1.123)with Ua = exp � i�h ~P � ~a�. We getU ya V (~r; ~R; ~p; ~P ; ~�(1); ~�(2)) Ua= V (U ya ~r Ua; U ya ~R Ua; U ya ~p Ua; U ya ~P Ua; U ya ~�(1) Ua; U ya ~�(2) Ua)= V (~r; ~R� ~a; ~p; ~P ; ~�(1); ~�(2)) : (1.124)The condition (1.123) then implies that V does not depend on ~R:V (~r; ~p; ~P ; ~�(1); ~�(2)) : (1.125)5. Invariance under proper Galilei transformations is expressed byU yG V UG = V (1.126)with UG � exp � i�h ~P � ~v0t� exp �� i�h m~R � ~v0� (1.127)with ~v0 being the c.m. velocity. It follows thatU yG V UG = V (~r; ~p; U yG ~P UG; ~�(1); ~�(2))= V (~r; ~p; ~P � ~v0m;~�(1); ~�(2)) : (1.128)The condition (1.126) then implies that V is independent of ~P :V = V (~r; ~p; ~�(1); ~�(2)) : (1.129)6. Invariance under space re
ections implies in the normal way thatV (~r; ~p; ~�(1); ~�(2)) = V (�~r;�~p; ~�(1); ~�(2)) : (1.130)7. Invariance under the permutation of the two nucleons givesV (~r; ~p; ~�(1); ~�(2)) = V (�~r;�~p; ~�(2); ~�(1)) : (1.131)Invariance under the combined transformations (6) and (7) givesV (~r; ~p; ~�(1); ~�(2)) = V (~r; ~p; ~�(2); ~�(1)) : (1.132)25



8. Invariance under time reversal meansV (~r; ~p; ~�(1); ~�(2)) = V �(~r;�~p;�~�(1);�~�(2))= V (~r;�~p;�~�(1);�~�(2)) (1.133)Since V is assumed to be hermitian.9. Invariance under spatial rotations is expressed byU yR V UR = V (1.134)with UR = exp � i�h ~J � ~n w�, with ~J being the total angular momentum of thesystem, ~J = ~L+ ~S. Requiring rotational invariance means thatV (~r; ~p; ~�(1); ~�(2)) = V (R~r;R~p; R~�(1); R~�2)) ; (1.135)where R~a gives the rotated of the vector ~a.Let us �rst take into account the dependence of V on the spin variables. Here the proce-dure is not so straightforward as it was for the isospin, since spin, position and momentumvectors can be combined to build rotational invariant quantities. Using spin identi�es sim-ilar to (1.120), one can show that V can be expressed asV = V� + ~�(1)~V (1)� + ~�(2)~V (2)� + V
(~r; ~p; ~�(1); ~�(2)) : (1.136)V
 is linear in both ~�(1) and ~�(2) but contains only bilinear combinations of these twooperators. From rotation and space-re
ection invariance, V� and V
 must be scalars, ~V (1)�and ~V (2)� pseudovectors. Combination of space re
ection and particle exchange [(6) and(7)] implies thatV� + ~�(1) � ~V (1)� + ~�(2) � ~V (2)� + V
(~r; ~p; ~�(1); ~�(2))= V� + ~�(2) � ~V (1)� + ~�(1) � ~V (2)� + V
(~r; ~p; ~�(2); ~�(1)) : (1.137)Taking the average of these two expressions for V , one getsV = V� + ~S � ~V� + V
(~r; ~p; ~�(1); ~�(2)) (1.138)where ~S = �h2 (~�(1) + ~�(2)); ~V� = 1�h(~V (1)� ; ~�(2)), and V
 now being symmetric under theexchange of the spin operators. The vector we can use to construct ~V� are ~r; ~p and26



~L = ~r � ~p, but only ~L is a pseudovector. Thus, ~V� must then be ~L� (scalar quantity).Then (1.138) readsV = V�(~r; ~p) + ~S � ~L V�(~r; ~p) + V
(~r; ~p; ~�(1); ~�(2)) : (1.139)Since V� and V� are scalars, they can only be functions of r2; p2; L2; ~r � ~p and ~p � ~r. Sincethe operators ~r �~p and ~p �~r are non-hermitian, it is convenient to consider their hermitiancombinations (~r � ~p+ ~p �~r) and i(~r � ~p� ~p �~r). The latter is a constant and can be dropped.The former can only appear quadratically in V� and V� due to time-reversal invariance.With (~p � ~r + ~r � ~p)2 = 2(r2p2 + p2r2) � 4L2 + 3�h2 ; (1.140)we get V = V�(r2; p2; L2) + ~S � ~L V�(r2; p2; L2) + V
(~r; ~p; ~�(1); ~�(2)) : (1.141)From the requirements on V
 follows that it can only contains terms of the type~�(1) � ~�(2); (~�(1) � ~r)(~�(2) � ~r); (~�(1) � ~p)(~�(2) � ~p);(~�(1) � ~L)(~�(2) � ~L) + (~�(2) � ~L)(~�(1) � ~L);(~�(1) � ~p)(~�(2) � ~r) + (~�(2) � ~r)(~�(1) � ~p) + 1 $ 2 : (1.142)The last expression changes sign under time reversal and must be replaced by[(~�(1) � ~p)(~�(2)~r) + (~�(2) � ~r)(~�(1) � ~p) + 1 $ 2](~p � ~r + ~r � ~p) : (1.143)It can be shown that (1.142) is de facto a function of the other quantities appearing in(1.141) and thus not independent. We have, therefore, for V
V
 = (~�(1) � ~�(2)) V (I)
 (r2; p2; L2)+ (~�(1) � ~�(2)) V (II)
 (r2; p2; L2)+ (~�(1) � ~p)(~�(2) � ~p) V (III)
 (r2; p2; L2)+ [(~�(1) � ~L)(~�(2) � ~L) + (~�(2) � ~L)(~�(1) � ~L)] V (IV )
 (r2; p2; L2) (1.144)as most general form of V
 compliant with all symmetry requirements.Concluding, the most general, velocity-dependent, non-relativistic NN potential has theform (1.122) with Vi given byVi = V ci (r2; p2; L2) + ~�(1) � ~�(2) V �i (r2; p2; L2)+ S12 V Ti (r2; p2; L2) + ~S � ~L V LSi (r2; p2; L2)+ [(~�(1) � ~L)(~�(2) � ~L) + (~�(2) � ~L)(~�(1) � ~L)] V �Li (r2; p2; L2) ; (1.145)27



where S12 is the tensor force operatorS12 = 3r2 (~�(1) � ~r)(~�(2) � ~r) � (~�(1) � ~�(2)) : (1.146)Remark: As shown in the Appendix of S. Okubo and R.E. Marshak, Ann. Phys. 4,166 (1958), the potential of (1.145) gives an S-matrix that on-shell is identical to theone obtained from a potential in which the term V �p is dropped. Therefore, if one isonly interested in NN scattering, it can be neglected. The same cannot be said for thebound states or for the o�-shell S-matrix. Often the term V �L, is also neglected. Somearguments are given in Machleidt, Holinde, Elster, Phys. Rep. 149, 1 (1987).1.10 Simple Introduction to One Boson-Exchange Po-tential (OBEP)The basic idea of OBE models is to represent the NN interaction as superposition oftree-diagrams (born terms) which represent the exchange of single mesons, namely scalar(s), pseudoscalar (ps), vector (v) bosons (Jp = 0+; 0�; 1�, respectively), with massesup to 1 GeV between two nucleons. Mesons with masses larger than 1 GeV would onlygive very short-ranged exchange contributions and contribute in a region where the OBEmodel is no longer valid.The couplings for the various mesons are given in terms of their interaction Lagrangiandensities by LNNps = gps � i
5  �ps (1.147)LNNs = gs �  �s (1.148)LNNv = gv � 
�  ��v + fv4m � ��v  (@��vv � @v��v ) (1.149)for pseudoscalar (�; �), scalar (�; �) and vector mesons (�; !), respectively. m is thenuclear mass,  the nucleon and �� the meson �eld operators. For isospin T = 1 means�� is to be replaced by ~� � ~��, with �i being the usual Pauli matrices. Furthermore,��� = i2 [
�; 
�], where 
� are the usual Dirac-matrices (see, e.g., Bjorken-Drell). Thecoupling constants g�(� = s; ps; v) and fv and the meson masses m� are at least partiallydetermined from high-energy experiments or symmetry relations. The Lagrangian densityfor vector mesons contains Dirac (gv) as well as Pauli coupling (fv). An OBE-potential28



V (~q 0; ~q) is obtained through the superposition of exchange contributions of the di�erentmesons V (~q 0; ~q) = X�=s;ps;v V�(~q 0; ~q) (1.150)with V�(~q 0; ~q) = s mEq0 s mEq �u (�~q 0) �(2)� u(�~q) P� �u(~q 0) �(1)� u(~q) : (1.151)The factors q mEq0 q mEq are the so-called minimal relativity factors, which take into consid-eration the relativistic unitarity condition (see K. Erkelenz, Phys. Rep. 13C, 191 (1974)).They certainly contribute to the nonlocality of V (~q 0; q). (Their e�ect has been studiedin a simple model in Ch. Elster, E.E. Evans, H. Kamada, W. Gl�ockle, Few-Body Systems21, 25 (1996).The meson propagators are usually given byP� = ((~q 0 � ~q )2 +m2�)�1 (1.152)and the vertex functions for the meson-nucleon vertices �(i)� (i = 1; 2) are given by�(i)s = gs (1.153)�(i)ps = gps i 
5 (1.154)�(i)v (direct) = (gv + fv)
� (1.155)�(i)v (gradient) = � fv2m (~q 0 + ~q )� : (1.156)In order to take into account the �nite extension of the nucleon and to be able to solvethe dynamical equations, the coupling constants get modi�ed with form factors. This isessentially achieved by replacingg� �! g�F�(~q 0; ~q) (1.157)where F�(~q 0; ~q) can be, e.g., of dipole typeF�[(~q 0; ~q )2] =  �2� �m2��2� + (~q 0 � ~q )2!n� : (1.158)29



The exponent n� is usually taken as n� = 1;�� is the cuto� parameter and usually of theorder 1� 2 GeV. The positive energy Dirac spinors are given byu(i)(~q ) = sEq +m2m  1~��~qEq+m ! j ii (1.159)where j ii denote the Pauli spinors  10 ! and  01 !. Inserting (1.159), (1.153), (1.152)into (1.151) gives for the scalar contribution of the potential (Pauli spinors are omitted):Vs(~q 0; ~q ) = �g2s smE 0q smEq (E 0q +m)(Eq +m)4m2 1(~q 0 � ~q )2 +m2s�  1� ~q 0 � ~q + i~�2 � (~q0 � ~q )(E 0q +m)(Eq +m) ! 1� ~q 0 � ~q + i~�1 � (~q 0 � ~q )(E 0q +m)(Eq +m) ! :(1.160)This expression has, due to the ~q and Eq dependencies, a strong nonlocality. In order toarrive at expressions, which can be transformed to coordinate space, one changes variablesto ~k = ~q 0 � ~q~p = 12 (~q0 + ~q ) (1.161)and in addition has to introduce the following approximations:1. On-shell approximation: E 0q = Eq2. Expansion of E in powers of q2m2 :E = �12 (~q 0 + ~q )2 +m2� 12 = m+ 14m (q02 + q2) + � � �= m+ p22m + k28m + � � � (1.162)3. Keeping only the lowest order in p2 and k2.30



With these approximations, the scalar potential becomesV cs (~k; ~p) = � g2sk2 +m2s "1� p22m2 + k28m2 � i2m2 ~S � (~k � ~p)# (1.163)where ~S = 12 (~�1 + ~�2).This expression still contains nonlocalities due to ~p 2 as well as (~k � ~p) terms. The latterleads to the angular momentum operator ~L = �i~r � ~r in r-space, whereas the formerprovides r2 terms. After a Fourier transform, the coordinate space expression of thescalar potential is given byV cs (r) = � g2s4� ms ("1� 14 �msm �2# Y(msr)+ 14m2 hr2 Y(msr) + Y(msr) r2i + 12 Z1(msr) ~L � ~S � (1.164)where Y(x) = e�x=x and Z1(x) = �m�m �2 (1=x + 1=x2) Y(x).The treatment of the Schr�odinger equation with a momentum dependent potential is givenby O. Rojo, L.M. Simmons, Phys. Rev. 125, 273 (1962). The expressions for the otherpotential terms shall only be given here:V cps(~k ; ~p ) = � g2ps4m2 (~�1 � ~k)(~�2 � ~k)k2 +m2ps (1.165)V cv (~k; ~p ) = 1k2 +m2v (g2v "1 + 3p22m2 � k28m2 + 3i2m2 ~S � (~k � ~p)� (~�1 � ~�2) k24m2 + 14m2 (~�1 � ~k)(~�2 � ~k)#+ gvfv2m "� k2m + 4im ~S � (~k � ~p) � ~�1 � ~�2 k2m + 1m (~�1 � ~k)(~�2 � ~k)#+ f 2v4m2 h�~�1 � ~�2 k2 + (~�1 � ~k)(~�2 � ~k)i) : (1.166)The structure of the expression (1.160) already suggests that one would prefer to workwith OBE potentials in momentum space. Even the already approximated expressions(1.163), (1.165), (1.166) are still complicated functions of the momenta, though they31



can be Fourier transformed analytically to coordinate space. The corresponding r-spaceexpressions to (1.165) and (1.166) areV cps(r) = 112 g2ps4� mps "�mpsm �2 Y(mpsr) ~�1 � ~�2 + Z(mpsr) S12# (1.167)V cv (r) = g2v4� mv ("1 + 12 �mvm �2# Y(mvr) � 34m2 [r2 Y(mvr) + Y(mvr)r2]+ 16 �mvm �2 Y(mvr) ~�1 � ~�2 � 32 Z1(mvr) ~L � ~S � 112 Z(mvr) S12)+ 12 gvfv4� mv (�mvm �2 Y(mvr) + 23 �mvm �2 Y(mvr) ~�1 � ~�2� 4Z1(mvr) ~L � ~S � 13 Z(mvr) S12�+ f 2v4� mv (16 �mvm �2 Y(mvr) ~�1 � ~�2 � 112 Z(mvr) S12) : (1.168)Here the tensor operator S12 is given by (1.146) andZ(x) = (m�=m)2(1 + 3=x+ 3=x2)Y(x).Details on OBE potentials are given in the references quoted in Section 1.8.
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