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In this form, the optical potential enters the partial wave Lippmann-Schwinger
equation given in Eq. (3.22). In practical calculations, the number of L values needed
to represent the nuclear optical potential at the level of accuracy required through
the partial wave components U (k, k') can be as large as 40 for a ‘°Ca target at 200
MeV, and 80 for a 2°8Pb target at the same energy. For high values of L an accurate
calculation of Eq. (3.32) becomes increasingly difficult due to the oscillatory character
of the Legendre polynomials Pr(cos(f)). This problem can be alleviated through
the use of the three-dimensional Born approximation to the scattering amplitude to
account for the infinite set of L values satisfying the condition L > L., where L.
is chosen such that the Born approximation is accurate. We typically have as a
condition for Lo where at this critical value 0.1%-0.5% difference occurs using the

Born approximation.

3.3 The Scattering Observables

The most general form for the scattering amplitude for spin 0-spin % scattering is

given as

1 1
<X%7 VI|M(E)|X%a V> = _/'L(27T)3<kla 57 VI|T(E)‘ka §a V>7 (334)

where X1 are the Pauli spinors [30, 31], k and k' are the initial and final momen-
tum. In elastic scattering |k| = |k’|. The projection of the spin state on the axis of

quantization is given by v and ¢/, and the reduced mass p is defined relativistically
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as

\/Epmj (k)Etarget(_k)Epmj (kI)Etarget(_kI)
Eproj(k) + Erarger(—k)

= (3.35)

The matrix M of Eq. (3.34), is an element in the spin space which is composed of
the Pauli spin matrices o,, 0y, 0, [30] and the unit matrix 1. Thus the most general

form of M can be given as

3
M=A1+>0;-C'=4-1+¢-C, (3.36)

=1

where A, and C? are complex functions of the momenta vectors. A set of three linearly

independent vectors can be constructed from k and k', namely k + k’ and k x k'.

Since we also require parity conservation, only the term k x k' can contribute.
Under these assumptions (parity conservation and rotational invariance) the most

general form of the scattering amplitude is thus given by

M=A-1+07-(k xk'). (3.37)

~

Using the normal vector N (Eq. 3.5), we obtain for the most general form of M
M = A(k,0) + & - NC(k, ), (3.38)

where k = |k| = |k’|. The first term A(k,#) cannot induce any change of the spin,
C(k,0) does. Thus C(k,0) is sometimes called the spin-flip amplitude.

The amplitudes A(k,#) and C(k,6) are obtained from the partial wave solutions
of the NA Lippmann-Schwinger equation as described in the previous section starting

with Eq. (3.22). They are explicitly obtained as:

o

Ak,0) = Y I(L+Dfy L-|—%(k) +Lf, L—%(k)]PL(COS 0) (3.39)

L=0
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and

o

Clh.8) = 3 (103 (0) = f1 13 (k) Pl(cosd). (3.40)

L=0

The functions fr, (k) are obtained from the partial wave NA t-matrix elements via
fL J(k) = —hC(27T)2MTL J(k, k), (341)

where p is given in Eq. (3.35).

Now we explicitly derive the expressions for the scattering observables which can
be obtained in spin 0-spin % scattering. We start from Eq. (3.38), and realize that
we can choose a coordinate system such that the normal vector, N, points in the y
direction. Thus one only has to consider o - N = oy. This means that one obtains
the scattering amplitude for the scattering of nucleons of some initial spin state to
an some final spin state by placing the operator A 4+ C'o, between the Pauli spinors
for these polarisation directions. The corresponding cross-section is then the absolute

value of this amplitude squared. In the usual representation of the spin matrices,

where o, is diagonal, we have the Pauli spinors:

1 1 R 1
X+ZL’ - \/5 X*I_\/i
1 —1
1| ! 1| ¢
X+y — ﬁ X—y_ﬁ
7 1
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Xtz = Xez = : (3.42)

As an example, the cross-section for +y — +¢ scattering (polarisation out of the

scattering plane) is given by

do ) R 2
ot = +g) = Xy (A+ Coy)xsy
2
L1 Ziylasce N
— JEE— , —1 I
V2 V2
0 l
= |[A+CP (3.43)
For the other spin orientations one obtains
do R ) ; 2
qqll i = =) = Iy (A + Coy)x—
2
0 —1 1
1 1
= |—=(1, =) |A+C —
st V2
t 0 1
= [0, (3.44)

and similarly 42(6, —j — +7) = |0%. These relations show that the operator |A+Co,|
can rotate spins about the y axis, but cannot change 4% into —y. For completeness

we also show
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1 0 —1 1 7
- (- 1) |4a+C —
NANRRE Ve
7 0 1
— A-CP (3.45)

The unpolarised cross-section, j—g(&), is a sum of the cross-sections for the final

states and an average of the initial states. If we define the cross-section for an average

of initial states as

d_a do do

g 0=+ = e (049 = )+ o (0. —g = +9)
do do do
. ) = o R i ao . 4

we can then write the unpolarised cross-section as a combination of the two equations

(all initial states to all final states)

do 1 |(do ) R do
at) =3 [—(Gal = +9) + g

70 0,1 — —g})] : (3.47)

which becomes using Eqs. (3.43-3.45)

- — 1 2 2 2 - 2
20 = 5 [1A0) + COP+ 0]+ 0F + |46) - C(0) ]

= [A(0) +[C(O), (3.48)
where there is assumed to be an implicit dependence on the elastic momentum, £.

The elastic cross-section, o, is defined as an integration over all angles of the

cross-section of Eq. (3.48)

P /0”(|A(9)2 +[C(8)]?) sin 0d6. (3.49)
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We may also obtain o;, which is a combination of the elastic cross-section and the
reaction cross-section, 0;eqe.

Otot = Oel + Oreac- (350)

The total cross-section is found by using the optical theorem [30]. The M matrix

obeys unitarity relations which give for spin 0-spin % elastic scattering

Grot = —%Im(]\/[(e —0)) = — T ( Ak, 0))). (3.51)

This equation implies that the C' amplitude is zero at exact forward scattering which
is true by definition, because k = k’. We can then find 0,¢qc by using Eq. (3.50).

In order to obtain the analyzing power, the spins of the outgoing projectiles are
measured, while the incident beam may be unpolarised. If the difference between the
+7y and —y cross-section is taken and the result divided by the unpolarised cross-

section, we obtain the analyzing power A,

Ay — fjl_g)(eiz — +g) - 3_6(9:2 — _g) (352)
9900,i — +9) + 2(0,i — —1)

By using Eqgs. (3.43-3.48), we can write this as
. 31 A0) + CO)) — |AW0) — CO)
! |A6) ] +[C(0)[?
A*(9)C(6) + A(6)C™(6)
|A(6) 2 +[C(0)[?
2Re(A*(0)C(0))
|A0)* + |C(0)]>

(3.53)

Equivalently, A, can be measured by sending a beam of polarised protons along

+7 and measure the total cross-section at angles § and —6 in the scattering plane.
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From the definition of the normal vector N, these measurements use N’s of opposite
directions and hence give rise to the same combinations A + C and A — C.

The last independent measurement involves the rotation of the spin vector in the
scattering plane, i.e. protons polarised along the + axis have a finite probability
of having the spin polarised along the % axis after the collision [34]. Consider an
incident polarised beam along +2 and a vector which describes the polarisation in the
z-direction of the scattered protons. The observable describing this ‘rotation’ of the
spin in the scattering plane is called the spin rotation parameter, Q, and is defined

as the difference of the cross-sections for +2 and —2 states, divided by the sum

0 — 990, +3 — +2) — 92(0, +& — —2) (3.54)

920, 4% — +2) + 920, +2 — —2)°

As done earlier in this Section, we can explicitly calculate the different terms in

Eq. (3.54):
do ) ) ; 2
m(ﬁ, +i = +2) = |xXio(A+Coy)xisl
2
- Ly ase R
V2 V2
1 0 0
1
= §|A+ZC’\, (3.55)
and
do R R i 2
— 0,4+ = —-2) = |[x\.(A+Coy)x_.]|
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2
- Ly ate I
W2 V2
) 0 1
= 1A—z'(,”. 3.56
2

Using the results of Egs. (3.55,3.56), Eq. (3.54) can be written as

31A0) +iC(O)* — |A(0) —iC(0)?
|A(6) +iC(0)]2 + [A(0) —iC(0) 2
i(C(0)A*(0) — A(6)C*(9))

[A0)]” +[C(0)]
2Im(A(0)C*(0))

= TAOET 00 (3:57)

QR =

Notice that A, and ) do complement each other. The A, is a measure of any spin
dependence out of the scattering plane, while () is a measure of spin dependence in

the plane. The following relation can be seen from Eqs. (3.53,3.57)

AP+ Q2 <1 (3.58)

Spin observables are a tool used in probing the nuclear structure and force. As
an example of experimental data using these observables we have plotted an elastic
collision of a 200 MeV proton on calcium 40 (**Ca (p,p)) in Fig. 3.2. Because the
spin observables are normalized with the cross-section they only vary from -1 to 1 (no

units), while the cross-section is measured in barns which is 1072m?.
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Figure 3.2: The angular distribution of the differential cross-section (g—”), analyzing power

(A,) and spin rotation function (Q) are shown for elastic proton scattering from °Ca at

200 MeV laboratory energy. The data are taken from Ref. [35].



