Phys. 726: Homework I

due September 16, 2009

1. (3 pts)

Prove that

$$
\sigma \cdot \mathbf{a} \sigma \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{b}+i \sigma \cdot(\mathbf{a} \times \mathbf{b})
$$

2. (5 pts)

Suppose the neutron-proton force in the deuteron (ground-state) can be described by the potential

$$
V=V_{1}(r)+V_{2}(r) \mathbf{s}_{1} \cdot \mathbf{s}_{2}
$$

where \mathbf{s}_{1} and \mathbf{s}_{2} are the spin operators of the proton and neutron, and the potentials V_{1} and V_{2} depend only on the neutron-proton separation r. What are the good quantum numbers of the deuteron?

If the additional term (called tensor force)

$$
V^{\prime}=V_{3}(r)\left(\frac{3\left(\mathbf{s}_{1} \cdot \mathbf{r}\right)\left(\mathbf{s}_{2} \cdot \mathbf{r}\right)}{r^{2}}-\mathbf{s}_{1} \cdot \mathbf{s}_{2}\right)=: V_{3}(r) S_{12}
$$

is added to the above potential V, what are now the good quantum numbers?
3. (6 pts)

Show that any positive integral power of each of these operators

$$
\left(\mathbf{s}_{1} \cdot \mathbf{s}_{2}\right) \quad \text { and } \quad S_{12}=\frac{3\left(\mathbf{s}_{1} \cdot \mathbf{r}\right)\left(\mathbf{s}_{2} \cdot \mathbf{r}\right)}{r^{2}}-\mathbf{s}_{1} \cdot \mathbf{s}_{2}
$$

and also any product of these powers can be represented in the form of a linear combination of these operators and a unit matrix.

