Phys. 726: Homework III

due October 7, 2009

1. Cross Sections and Phase Shift Analysis

An experiment measures the differential cross section for the elastic scattering of two particles with wave vector k in the center of momentum to have the form

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(\theta)=\frac{1}{k^{2}} e^{-2(1-\cos \theta)} \tag{1}
\end{equation*}
$$

1. [1 pt] Plot the differential cross section as function of the scattering angle θ for all allowed values of θ.
2. [2 pts] Without any detailed calculation, deduce the number of partial waves which contribute to the scattering and indicate if this is compatible with scattering from a finite range potential.
3. [2 pts] What must be the modulus of the angle-dependent scattering amplitude, $\left|f_{E}(\theta)\right|$?
Remark: A complex number $z=x+i y=R e^{i \alpha}$ has modulus $R=\sqrt{x^{2}+y^{2}}$ and phase α.

Next, the experimentalist measures the total cross section for the same particles and finds it to have the form

$$
\begin{equation*}
\sigma_{t o t}=\frac{4 \pi}{k^{2}} \tag{2}
\end{equation*}
$$

4. [2 pts] What is the value of the scattering amplitude in forward direction, $f_{E}\left(0^{\circ}\right)$?
5. [2 pts] Assuming that the scattering amplitude has a constant phase, what is $f_{E}(\theta)$?
6. [2 pts] What is the total elastic (integrated elastic) cross section for this reaction? Comment on why this is the same or different from the total cross section.
7. [2 pts] Why must the phase shift $\delta_{l}(k)$ be complex for this reaction?
8. [2 pts] Find the $l=0$ phase shift for this interaction.

2. Scattering from a square well

Two particles of mass m scatter. The potential between them is approximated by an attractive square well:

$$
V(r)=\left\{\begin{array}{cc}
-V_{0} & r<b \tag{3}\\
0 & r>b
\end{array}\right.
$$

1. [3 pts] Solve for $k \cot \delta_{0}$, where δ_{0} is the S wave phase shift.
2. [3 pts] Show explicitly that the condition for the scattering amplitude for this partial wave,

$$
\begin{equation*}
f_{0}=\frac{e^{i \delta_{0}(k)} \sin \delta_{0}(k)}{k}, \tag{4}
\end{equation*}
$$

to have a pole on the positive imaginary k axis, is also the condition for this potential to produce a bound state.
3. [2 pts] Based on the above expression for f_{0}, verify that the scattering amplitude is an analytic function of the energy $E=k^{2} / 2 \mu$ with a branch cut from 0 to ∞, and a bound state pole on the negative axis.

Hint: The problems are taken from R.Landau's chapter 3

