Phys 726: Homework V

due November 6, 2009

On the Three-Body System

The Schrödinger equation for a three-body system with pairwise interactions is given by

$$
\begin{equation*}
\left(H_{0}+\sum_{i=1}^{3} V_{i}\right) \Psi=E \Psi . \tag{1}
\end{equation*}
$$

Here H_{0} contains the kinetic energies of the three particles, and $V_{1} \equiv V_{23}, V_{2} \equiv V_{13}, V_{3} \equiv$ V_{12} characterizes the interactions in the two-body subsystems.

In order to develop a scheme for solving Eq. (1), Faddeev suggested to decompose the three-body wave function Ψ into 3 components, nowadays called Faddeev components

$$
\begin{equation*}
\Psi=\sum_{i=1}^{3} \psi_{i} \equiv \psi(1,23)+\psi(2,31)+\psi(3,12) \tag{2}
\end{equation*}
$$

and derived a set of 3 coupled equations for ψ_{i}, called Faddeev equations or later the Alt-Grassberger-Sandhas equations, which are more suited for practical applications. In the case of three identical particles, this system of coupled equations can be reduced to one single equation for one Faddeev component, which can be arbitrarily chosen to be $\psi_{1}=\psi(1,23)$. In order to do this, one has to explicitly work with the permutation operators for 3 particles.
(a) $[2 \mathrm{pts}]$

Show that once a solution for ψ_{1} is obtained, the total wave function for the threebody system can be written as

$$
\begin{equation*}
\Psi=(1+P) \psi \tag{3}
\end{equation*}
$$

where the permutation operator P is given by

$$
\begin{equation*}
P \equiv P_{12} P_{23}+P_{13} P_{23} . \tag{4}
\end{equation*}
$$

In addition, explain the choice of P.
(b) $[3 \mathrm{pts}]$

Proof that in order for Ψ to be totally antisymmetric, one has to require that the Faddeev component ψ_{1} is antisymmetric in the pair " 1 " $\equiv(23)$.
(Hint: Consider e.g. $P_{12} \Psi$ or $P_{13} \Psi$.)
(c) $[3 \mathrm{pts}]$

The momenta in a three-body system are given by \vec{k}_{i}, and the total momentum is $\vec{K}=\sum_{i} \vec{k}_{i}$. Consider the kinetic energy term of Eq. (1)

$$
\begin{equation*}
H_{0}=\sum_{i} \frac{k_{i}^{2}}{2 m} \tag{5}
\end{equation*}
$$

where the 3 particles are assumed to have equal mass m. It is natural to work with Jacobi momenta, which are defined for the 3 different choices of the subsystem as:

$$
\begin{align*}
\vec{p}_{1} & =\frac{1}{2}\left(\vec{k}_{2}-\vec{k}_{3}\right) \tag{6}\\
\vec{q}_{1} & =\frac{2}{3}\left(\vec{k}_{1}-\frac{1}{2}\left(\vec{k}_{2}+\vec{k}_{3}\right)\right)
\end{align*}
$$

which corresponds to $\psi_{1}(1,23)$. The other two choices are:

$$
\begin{align*}
\vec{p}_{2} & =\frac{1}{2}\left(\vec{k}_{3}-\vec{k}_{1}\right) \tag{7}\\
\vec{q}_{2} & =\frac{2}{3}\left(\vec{k}_{2}-\frac{1}{2}\left(\vec{k}_{3}+\vec{k}_{1}\right)\right)
\end{align*}
$$

and

$$
\begin{align*}
\vec{p}_{3} & =\frac{1}{2}\left(\vec{k}_{1}-\vec{k}_{2}\right) \tag{8}\\
\vec{q}_{3} & =\frac{2}{3}\left(\vec{k}_{3}-\frac{1}{2}\left(\vec{k}_{1}+\vec{k}_{2}\right)\right)
\end{align*}
$$

Show that the kinetic energy in Jacobi coordinates takes the form

$$
\begin{equation*}
H_{0}=\frac{K^{2}}{2 M}+\frac{p_{\ell}^{2}}{2 \mu_{\ell}}+\frac{q_{\ell}^{2}}{2 M_{\ell}} \tag{9}
\end{equation*}
$$

with $\ell=1,2$, 3. In Eq. (9)

$$
\begin{equation*}
M=3 m ; \quad M_{\ell}=\frac{2}{3} m ; \quad \mu_{\ell}=\frac{1}{2} m \tag{10}
\end{equation*}
$$

where m is the mass of a single particle (e.g., the nuclear mass).
(d) $[3 \mathrm{pts}]$

In order to change from one set of Jacobi coordinates to another, one has to express e.g. Set 1 as function of Set 2 etc. Derive relations for

$$
\begin{equation*}
\vec{p}_{1}\left(\vec{p}_{2}, \vec{q}_{2}\right), \quad \vec{q}_{1}\left(\vec{p}_{2}, \overrightarrow{q_{2}}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{p}_{1}\left(\vec{p}_{3}, \vec{q}_{3}\right), \quad \vec{q}_{1}\left(\vec{p}_{3}, \vec{q}_{3}\right) \tag{12}
\end{equation*}
$$

(The correct answer can be found in Ref. [1]
(e) $[4 \mathrm{pts}]$

Show that the matrix elements of the permutation operator P of Eq. (4) in the basis $|\vec{p} \vec{q}\rangle_{1}$ are given as

$$
\begin{align*}
\left\langle\vec{p}^{\prime} \vec{q}\right| P\left|\vec{p}^{\prime \prime} \vec{q}^{\prime \prime}\right\rangle & =\delta\left(\vec{p}^{\prime}-\frac{1}{2} \vec{q}-\vec{q}^{\prime \prime}\right) \delta\left(\vec{q}+\vec{p}^{\prime \prime}+\frac{1}{2} \vec{q}^{\prime \prime}\right) \tag{13}\\
& +\delta\left(\vec{p}^{\prime}+\frac{1}{2} \vec{q}+\vec{q}^{\prime \prime}\right) \delta\left(\vec{q}-\vec{p}^{\prime \prime}+\frac{1}{2} \vec{q}^{\prime \prime}\right)
\end{align*}
$$

References

[1] Ch. Elster, W. Schadow, A. Nogga and W. Glöckle, Few Body Syst. 27, 83 (1999) [arXiv:nucl-th/9805018].

