Phys 735: Homework X

due March 13, 2009

1. Momentum space Dirac Equation

The normalized, coordinate-space plane wave solution of the Dirac equation is given as

$$
\begin{equation*}
\Phi_{s}^{(\pm)}(x)=e^{ \pm i p_{\mu} x^{\mu}} u_{s}^{(\pm)}(\mathbf{p}) \tag{1}
\end{equation*}
$$

where the space-time dependence is in the exponential, the 4 D spin dependence in the spinor, and \mathbf{p} is not an operator.

When this plane wave solution is substituted into the coordinate-space Dirac equation one obtains the momentum-space Dirac equation for the free particle spinors $u_{s}^{(\pm)}(\mathbf{p})$:

$$
\begin{equation*}
\left(\gamma^{\mu} p_{\mu} \mp m\right) u_{s}^{(\pm)}(\mathbf{p})=0 \tag{2}
\end{equation*}
$$

(a) (3pts) Prove the relation (2) starting from (1) for $u_{s}^{(+)}(\mathbf{p})$ and $u_{s}^{(-)}(\mathbf{p})$.
(b) (3pts) The adjoint spinor $\bar{u}_{s}^{(\pm)}(\mathbf{p})=u_{s}^{(\pm) \dagger}(\mathbf{p}) \gamma^{0}$ satisfies the transpose Dirac equation

$$
\begin{equation*}
\bar{u}_{s}^{(\pm)}(\mathbf{p})\left(\gamma^{\mu} p_{\mu} \mp m\right)=0 \tag{3}
\end{equation*}
$$

Prove the above equation (3) for both cases.

2. Projection Operators

When manipulating solutions of the Dirac equation, it is often useful to combine groups of them into a simple operator. To do this, define the projection operators

$$
\begin{equation*}
\Lambda_{ \pm}(p)=\frac{ \pm \gamma^{\mu} p_{\mu}+m}{2 m} \tag{4}
\end{equation*}
$$

(a) (3pts) Show that these operators are projection operators, i.e. fulfill

$$
\begin{align*}
\Lambda_{ \pm}^{2}(p) & =\Lambda_{ \pm}(p) \\
\Lambda_{-} \Lambda_{+} & =\Lambda_{+} \Lambda_{-}=0 \\
\Lambda_{+}+\Lambda_{-} & =\mathbf{1} \tag{5}
\end{align*}
$$

(b) (3pts) Show that these operators have the desired effect when applied on the Dirac spinors:

$$
\begin{align*}
& \Lambda_{ \pm}(p) u_{s}^{(\pm)}(\mathbf{p})=u_{s}^{(\pm)}(\mathbf{p}) \\
& \Lambda_{\mp}(p) u_{s}^{(\pm)}(\mathbf{p})=0 \tag{6}
\end{align*}
$$

