Phys 735: Homework III

due January 23, 2009

1. Scattering from a Hard Sphere

A potential describing a hard sphere is given by

$$
V(r)=\left\{\begin{array}{cc}
\infty & r<a \tag{1}\\
0 & r>a
\end{array}\right.
$$

(a) (2 pts) Derive an expression for the phase shifts δ_{l} as function of the momentum.
(b) (4p) Find the total cross-section for an incoming energy

$$
E=\frac{\hbar^{2} k^{2}}{2 m}
$$

in the two limits

- $k \rightarrow 0$
- $k \rightarrow \infty$

Compare your results for both cases with the classical cross section for scattering from a hard sphere, i.e. the result you derived in classical mechanics.

Hint: For $k \rightarrow \infty$ use the asymptotic forms of j_{l} and n_{l} to obtain a simple form for $\sin ^{2} \delta_{l}$. Furthermore, replace the sum over l by an integral, so that

$$
\sigma=\sum_{l=0}^{l=k a} \sigma_{l} \approx \frac{4 \pi}{k^{2}} \int_{0}^{k a}(2 l+1) \sin ^{2} \delta_{l} d l
$$

2. Cross Sections and Phase Shift Analysis

An experiment measures the differential cross section for the elastic scattering of two particles with wave vector k in the center of momentum to have the form

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(\theta)=\frac{1}{k^{2}} e^{-2(1-\cos \theta)} \tag{2}
\end{equation*}
$$

1. [1 pt] Plot the differential cross section as function of the scattering angle θ for all allowed values of θ.
2. [2 pts] Without any detailed calculation, deduce the number of partial waves which contribute to the scattering and indicate if this is compatible with scattering from a finite range potential.
3. [2 pts] What must be the modulus of the angle-dependent scattering amplitude, $\left|f_{E}(\theta)\right| ?$
Remark: A complex number $z=x+i y=R e^{i \alpha}$ has modulus $R=\sqrt{x^{2}+y^{2}}$ and phase α.

Next, the experimentalist measures the total cross section for the same particles and finds it to have the form

$$
\begin{equation*}
\sigma_{t o t}=\frac{4 \pi}{k^{2}} \tag{3}
\end{equation*}
$$

4. [2 pts] What is the value of the scattering amplitude in forward direction, $f_{E}\left(0^{\circ}\right)$?
5. [2 pts] Assuming that the scattering amplitude has a constant phase, what is $f_{E}(\theta)$?
6. [2 pts] What is the total elastic (integrated elastic) cross section for this reaction? Comment on why this is the same or different from the total cross section.
7. [2 pts] Why must the phase shift $\delta_{l}(k)$ be complex for this reaction?
8. [2 pts] Find the $l=0$ phase shift for this interaction.
