Phys 735: Homework IV

due January 30, 2009

2. Scattering from a Square Well

A spinless particle of mass m, energy E scatters through angle θ in an attractive spherical square-well potential $V(r)$:

$$
V(r)=\left\{\begin{array}{cc}
-V_{0}, & 0<r<a \\
0 & r>a
\end{array}\right.
$$

where $V_{0}>0$.
(a) (5 p) Establish a relation among the parameters V_{0}, a, m, and universal constants, which guarantees that the cross section vanishes at zero energy $E=0$. This will involve a definite, but transcendental equation, which you must derive but need not solve numerically. For parameters meeting the above condition, the differential cross section, as $E \rightarrow 0$, will behave like

$$
\frac{\partial \sigma}{\partial \Omega} \xrightarrow{E \rightarrow 0} E^{\lambda} F(\cos \theta) .
$$

(b) (2 p) What is the numerical value of the exponent λ ?
(c) $(3 p)$ The angular distribution function $F(\cos \theta)$ is a polynomial in $\cos \theta$. What is the highest power of $\cos \theta$ in this polynomial?

2. Resonance for a Square Well ($6 p$)

Use the exact solution for the spherical square well of depth V_{0} to find the condition on the potential for the s-wave $(l=0)$ to produce a resonance at an energy $E_{0}=\left(\hbar^{2} k_{0}^{2}\right) / 2 m$. Can you relate your answer to bound state energies in the well?

3. Zero-Range Potential

Consider the $l=0$ free Schrödinger equation and define a solution ψ by the boundary condition that the $r \rightarrow 0$ limit of the logarithmic derivative of $r \psi$ is a constant, i.e.

$$
\begin{equation*}
\lim _{r \rightarrow 0}\left[\frac{1}{r \psi} \frac{d}{d r}(r \psi)\right]=\text { a constant independent of energy } \tag{1}
\end{equation*}
$$

The resulting problem mimics a potential, and is a solution for a zero-range potential. For such a 'potential', both the scattering amplitude and the bound state energy (if a bound state exists) are determined by a single parameter, namely the constant of Eq.(1).

Now, consider a zero-range potential which is known to have a single $l=0$ bound state with energy

$$
E_{0}=-\frac{\hbar^{2} \alpha^{2}}{2 m}
$$

(a) (5 p) Find the bound state wave function $\psi_{0}(\vec{r})$ as well as the scattering solutions $\psi_{k}(\vec{r})$.
(b) (6p) Show that the solutions are orthogonal and can be normalized to satisfy

$$
\begin{align*}
\int d^{3} r \mid \psi_{0}(\vec{r}) \|^{2} & =1 \\
\int d^{3} r \psi_{0}(\vec{r}) \psi_{k}(\vec{r}) & =0 \\
\int d^{3} r \psi_{k}^{*}(\vec{r}) \psi_{q}(\vec{r}) & =\delta(\vec{k}-\vec{q}) \tag{2}
\end{align*}
$$

Hint: It may be useful to recall that an integral of the form

$$
\int d^{3} k e^{i k r}
$$

has to be regularized and is defined by

$$
\begin{align*}
\int_{0}^{\infty} d k e^{i k r} & =\lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{\infty} d k e^{i k(r+i \epsilon)} \\
& =-\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{i(r+i \epsilon)} \\
& =i\left[\mathcal{P} \frac{1}{r}-i \pi \delta(r)\right] \tag{3}
\end{align*}
$$

where \mathcal{P} denotes the Cauchy Principal value.

